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Abstract— Mean-field models are a popular tool in a variety
of fields. They provide an understanding of the impact of
interactions among a large number of particles or people or
other ‘“self-interested agents”, and are an increasingly popular
tool in distributed control.

This paper considers a particular randomized distributed
control architecture introduced in our own recent work. In
numerical results it was found that the associated mean-
field model had attractive properties for purposes of control.
In particular, when viewed as an input-output system, its
linearization was found to be minimum phase.

In this paper we take a closer look at the control model. The
results are summarized as follows:

(i) The Markov Decision Process framework of Todorov is
extended to continuous time models, in which the “control
cost” is based on relative entropy. This is the basis of
the construction of a family of Markovian generators,
parameterized by a scalar ¢ € R.

(ii) A decentralized control architecture is proposed in
which each agent evolves as a controlled Markov process.
A central authority broadcasts a common control signal
{¢:} to each agent. The central authority chooses {(;:}
based on an aggregate scalar output of the Markovian
agents.

This is the basis of the mean field model.

(iii) Provided the control-free system (with ( = 0) is a
reversible Markov process, the following identity holds for
the transfer function G obtained from the linearization,

Re (G(jw)) = PSDy (w) >0 weR,

where the right hand side denotes the power spectral

density for the output of any one of the individual Markov

processes (with ¢ = 0).

I. INTRODUCTION

Mean field models are a standard tool in physics when
analyzing a large number of particles, where an individual
particle has negligible impact upon the ensemble. Similar
models are the foundation of competitive equilibrium the-
ory in economics, and mean field models are increasingly
popular in control theory [1], [4]-[6].

The present work considers application to distributed con-
trol, inspired by numerical results in our prior work [12] on
automated demand response for a large collection of loads.
The goal was to obtain ancillary service to help regulate the
power grid, as in many prior works [2], [11].
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The paper [12] focused on a large population of “on-off”
loads, with special attention to residential pool pumps. The
normal operation of a pool pump was modeled as a Markov
decision process, which included as an exogenous input a
regulation signal from a balancing authority. This resulted
in an input-output system with input equal to the regulation
signal, and output equal to the number of pools in operation.
In the numerical example considered, the control system had
some very attractive properties: Its linearization was stable,
and simulations of 100,000 pools resulted in behavior very
closely matched to the deterministic linear model obtained
from linearization of the Markovian dynamics. Most im-
portant was the finding that the linearization was minimum
phase. This is a valuable property in any control system.

In this paper we set out to see why these conclusions might
be expected in greater generality.

To explain the goals of the paper we take a high-level look
at the prior work [12]. Shown in Fig. | is a state transition
diagram for the discrete-time Markovian model considered
in [12]. The variables p® and p® indicate the probability of
turning a pool pump on (respectively, off), which depends
upon how long the pool has been off (respectively, on).
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Fig. 1. State transition diagram for the pool-pump model.

A continuous time counterpart is described by a model on
a continuous state space,

X={(m,7):me{® 06}, >0}

If X; = (®,7), this means that the pool pump has been
operating for exactly 7 seconds. If ¢ > 7, this implies that the
pump was turned on at time ¢ — 7. The differential generator
for this Markovian model is defined for functions f:X —
R that are differentiable in their second variable. There are
functions ¢®(-) and ¢®(-) such that for any such f,

q®(7)[f(@70) - f(@vT)] + %f (@,T),

DF (&) = r=(D,7)
°(M)f(@,0) - f(e,7)]+ Zf(6,7),
x=(6,7)

Hence ¢®(7) is the jump rate to the on-state, for a pool that
has been off for 7 seconds.



In this prior work the Markovian dynamics were controlled
through a signal {¢;} that is broadcast to all pools. For this
continuous time model, the jump rates would be modified
by this signal. With N pools, on letting X, denote the state
of the ith pool, the following limit is shown to hold under
mild assumptions:

N
1 ;

Jim = Zlﬂ{Xt €A} =m(A), AcCX. (1)

If D¢, denotes the transformed generator at time ¢, then the

limit is the solution to the differential equation,

d
— gy = D 2
dt:u't Htl¢, 2)
This means that for functions f satisfying the conditions
above,

%/f(ﬂc)ﬂt(dx) = /(Dctf (2))pe(dz) .

The output is defined by a linear function of u;: For a
function ¢/: X — R,

Yt = /u(x)ut(dx) 3)

The coupled equations (2,3) describe a nonlinear input-
output model of the form considered in this paper. The input
(¢ and output y; are assumed to be real-valued.

Because (2) is linear in the “state” p;, and (3) is also
linear in 4, it is easy to obtain a linearized model given some
structure on the controlled generator. The question addressed
in this paper is, why should the linearized system have good
properties for the purposes of control?

We address this question for models in continuous time,
since the analysis is most elegant in this setting. While many
of the results in this paper can be extended to a general
state space setting, for the remainder of the paper we restrict
to a finite state space, X = {z!,...,z?}. The family of
generators {D¢ : ( € R} is a collection of d x d matrices,
which are assumed to be a smooth function of the scalar
parameter (.

The linear model is intended to approximate the nonlinear
model near an equilibrium. To define the equilibrium we let
7 denote an invariant probability measure for the Markov
process with generator D = Dy. This satisfies the invariance
equation,

7D (27) = ZW(Ii)D(Ii,Ij) =0, zl € X.
i=1
For the nonlinear model (2), if (; = 0 and if pg = 7, then
we = 7 for all t.
The linear model evolves according to the d-dimensional

linear state space equations,

d
%‘I)t = AP, + B,

The ith component of ®; is intended to approximate s (z*)—
7(z?), and 74 = C'®, is intended to approximate y; —y°, with

e =CP “4)

Y0 = >, m(z")U(z"). The d x d matrix A is the transpose
of Dy = D, and C; = U(x") — w(x%) for each . The matrix
B is obtained from the derivative of D¢, at ( = 0:

d
B, = ZT((IZ)Dé(I’L,IJ> (5)
i=1
where D} (z,z7) denotes the derivative of D¢ (z*,z7) with
respect to ¢, evaluated at ( = 0.

The transfer function for this model is G(s) = C[Is —
A]7'B, s € C. The minimum phase condition means that
all zeros of G lie in the strict left half plane. In this paper we
establish a stronger condition on the transfer function, under
the assumption that the nominal Markov model is reversible.
Through the procedure introduced in this paper, the linear
dynamics satisfy the positive real condition,

Re (G(jw)) > 0, weR. (6)

We obtain positivity by establishing the following identity,

Re (G(jw)) =PSDy (w) weER, 7

where the right hand side denotes the power spectral density
for {Y; = u(X,)} with X the stationary Markov process
with generator D.

The positive real condition is established only when the
family of generators is constructed using the optimal control
approach described in Section III. This recalls a similar result
from linear optimal control theory, where it is known that the
positive real condition holds for a certain transfer function,
provided the system is controlled using state feedback based
on linear-quadratic optimal control [7], [15]. We do not know
if there is any connection between the main results of this
paper, and these famous results from linear control theory.

The remainder of the paper is organized as follows:
Section II contains an extension of Todorov’s optimal control
framework to Markovian models in continuous time. This is
the basis of the mean-field model in Section III, and the main
result that establishes the identity (7). An example is given
to show that reversibility of the nominal model is necessary
in general. Conclusions and discussion are contained in
Section IV.

II. CONSTRUCTION OF THE CONTROLLED GENERATOR

Here we describe a stochastic optimal control problem in
which the input is completely unconstrained. The optimiza-
tion criterion will include a scalar weighting term (. The
optimal solution will define the generator D that is used in
the mean field analysis that follows.

We consider a model in continuous time, with finite state
space X = {x!,... z%}. The optimization is based on a
nominal Markov process on this state space. Its generator
(i.e., rate matrix) is defined for functions f: X — R via,

Df (x) =Y D(x,2')f(@')

— lim LE[f(X,) — £(X0) | Xo = 1],

xz e X
tl0 t

®)



The transition semigroup is the exponential, P! = e'P, t >
0. The Markov process is assumed to be irreducible, so that
there is a unique invariant probability measure 7: Interpreted
as a row vector, it satisfies 7D = 0 and 7P? = 7 for t > 0.

For fixed T and fixed initial condition X (0) = =, let p°
denote the probability distribution for the stochastic process
{X::0<t<T} for the nominal model.

This is an unusual stochastic control problem because
there is no explicit “input”. Any modification p of p° is
permitted. A particular optimization objective will ensure
that an optimal solution is Markovian.

It is assumed that a utility function ¢/: X — R is given, that
represents some benefit as a function of state. The cost of
deviation p # p° is defined by Kullback-Leibler divergence,
denoted D(p||p®). The T-stage welfare is defined as the
difference,

W) = &, [ "u(x) &) - Do)

where in the expectation {X; : 0 < ¢t < T} is distributed
according to p. The maximizer exists, and is denoted p* (or
p7» when the time horizon is emphasized).

The parameter ( is a real scalar. For notational simplicity,
until Section III we take ¢ = 1.

Before proceeding with the formula for p*, it is helpful
to recall the definition of divergence in this sample-path
setting. We let A7 denote the sigma algebra generated by
the stochastic process {X; : t < T'}. A log-likelihood ratio
is interpreted as an Xp-measurable random variable: If p
admits a log likelihood ratio L = log(p/p"), this means that
for any Xr-measurable random variable F' we can write,

E,[F] = E[e" F] )

where the expectation on the left is under p, and the
expectation on the right is under p° (the subscript is not
used for the nominal model). The K-L divergence is then
defined to be,

D(p|lp°) = Ep[L]

If L does not exist, then D(p||p®) = oo.

Proposition 2.1: Suppose that the nominal is irreducible,
and that X (0) = x is specified. Then p. is unique, and is
given by the twisted (or ‘tilted’) distribution that is uniquely
defined by the log likelihood ratio,

T
L* = —A% +/ U(X,)dt (10)
0

The optimal welfare Wr(p}) coincides with the constant

A%, appearing in (10), which is equal to the cumulative log-
moment generating function,

s

where the expectation is w.r.t. the nominal model.

(1)

Proof of Proposition 2.1: Optimality of p* (with log
likelihood ratio (10)) is a consequence of Kullback’s inequal-
ity (see eqn (4.5) of [10]). See also Theorem 3.1.2 of [3] for a
version of this result on a finite probability space. The papers
[13], [16] contain more background and other applications
of this result.

An explicit value for the optimal welfare follows: We have,

T
D' Ip) = E[L] = =N + B [ [ i)l
0
and consequently,

mgx Wr(p) = Wr(p*) = A%

The formula (11) follows from the fact that p* = X" p°

defines a probability distribution:

1=E[L'] = eA*TE[exp</oTu(Xt) dtﬂ (12)
O

While the optimal probability measure p* is Markovian,
it is not time-homogeneous.

We now consider an infinite horizon optimization problem:
Find a Markov process for which the associated family of
distributions {pr}, with initial condition X (0) = =z, attain
the limit,

1
lim —Wr(p7) (13)

.1 . N
lim —WT(pT) =W, = o

T—oo T
This has a solution defined by a time-homogeneous Markov
process, whose generator is denoted D. Its construction is
based on the solution to an eigenvector problem: Let I,
denote the diagonal matrix Iy = diag (U(z!),...,uU(z?)),
and let v: X — (0,00) denote a non-trivial solution to the
eigenvector problem,

[D+ Iylv = Av (14)

where A is the eigenvalue of D + I;; with maximal real-part
(the Perron-Froebenius eigenvalue [9]).

Proposition 2.2: The following hold under the assump-
tions of Proposition 2.1:

(1) Wi, = A; the eigenvalue appearing in (14).

(i1) The generator for the Markov process that attains the
optimal average welfare W_ is obtained by normaliz-
ing D + I, and applying a similarity transformation
using I,:

D =1I;'[D+ I, — AL, (15)
(iii) For each T, the welfare for the distribution pr is
given by,

; v(X7)
W (i =Tw’;o—E[1og( )}
Yorter) =T - [y )
The  eigenvector  equation  (14)  implies  that
Yo D(,a’) = 0 for all z € X, as required for a
Markovian generator.



Proof of Proposition 2.2: Part (i) is essentially known:
From (12) it follows that W_ is the multiplicative-ergodic
limit,

wi = Jin_Lios(Efesn( [ uckoar)]) 0o

The right hand side is denoted A (/) in [9], where it is shown
in far greater generality that the multiplicative-ergodic limit
A(U) coincides with the eigenvector A.

However, the proof that A = A(U) and the proof of
the remaining claims of the theorem will follow from a
representation of the Markov process with generator D.

Let p denote the probability measure on sample paths,
with given initial condition X (0) = z. For finite T, if F is
an Xr-measurable functional then, for the Markovian model
with generator D we have (exactly as in (9)),

Es[F] = E[¢"TF]
where the expectation is with respect to p°, and

Ly = 1og(z((f£))) + /OT[U(Xt) — A]dt

Using the fact that pr is a probability distribution gives,

=t = e[ o ([ )]

The identity A = A(U/) follows: Since v is strictly positive
and finite-valued, it follows that p is infinite-horizon optimal:

. 1 ~\ _ . 1 * *
A V) = AU = i e = Wa

This establishes (ii).
Given the formula for L, the total welfare at time 7" using
p is thus,

Wr(p) = E {/OTU(Xt)dt] — D(prllp7)

= —E[log(z(())iz)))} + AT

which establishes (iii). a

III. MEAN FIELD MODEL AND ITS LINEAR
APPROXIMATION

Up to now we have only two generators: The nominal
generator D, and its transformation (15) obtained as the
solution to an optimal control problem. We next construct
a parameterized family of generators denoted {D¢ : ( € R}.
For each (, this is obtained as the infinite-horizon optimal
control solution of the previous section, with the finite-
horizon welfare modified as follows,

Wr(p) = CEp {/OTU(Xt)dt} — D(pllp°)

If ¢ = 0 then p* = pU. For arbitrary ¢, the generator D, that
solves the infinite-horizon optimal control problem is of the

form (15), in which v = v¢ is a solution to the eigenvector
problem,

[D + CIL{}UC = ACUC (17)

where
Ay = A(GU) = lim % log E[exp(C /OTu(Xt) dt)}

The solutions to (17) are used to define the continuous
family of generators, D, = H;Cl[D + Iy — AcI]L,,, or

componenetwise,
De(e' o) = S DGt o) () - AW = ')

(18)

The mean field model is the nonlinear state space model

defined by (2), which in this finite state space setting
becomes,

d ) )
b (@) =D pu(a')Dg, (o', ) (19)

zteX

Recall that 7 denotes the unique invariant probability mea-
sure for the nominal model. The nominal model is called
reversible if the detailed-balance equations hold:

7(z")Do (2", 27) = 7(27) Dy (27, 2), z' xd e X

Theorem 3.1: Suppose that the nominal model is re-
versible. Then its linearization (4) satisfies,

Re G(jw) = PSDy (w), weR, (20)

where
G(s)=C[Is— A]"'B for s € C. Q1
The proof of the proposition involves a sequence of steps.
The first steps are contained in Section III-A: The power
spectral density for Y can be expressed in terms of the family
of resolvent matrices for the Markov process, and these can
be interpreted as a component of the transfer function G.
The formula (20) is based on these results, and a closer look
at the linearization contained in Section III-B, which closes
with a proof of Thm. 3.1.

Before proceeding with these technical arguments, we give
an example to show that the positive real condition may not
hold if the nominal model is not reversible. Moreover, this
example shows that without reversibility, the linearization
may not be minimum phase.

Consider the Markov chain with eight states, whose transi-
tion diagram and generator are shown in Fig. 2. This Markov
process cannot be reversible because some transitions are
uni-directional. For example, an immediate transition from 3
to 1 is possible, but not from 1 to 3.

In the notation of this paper we have d = 8, and we take
2t =4 for 1 <i<8. The utility function &/: X — R is taken
to be U(x) = .

Shown in Fig. 3 is a Nyquist plot and pole-zero plot for
the transfer function G(s) = C[Is—A]"'B with a = ¢ = 10
and b = 1. The Nyquist plot shows that the system is not
positive real, and the pole-zero plot shows that the system is
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Fig. 2.
neither positive real nor minimum phase.

not minimum phase: there is a zero in the right half plane, at
approximately s = +9. A common pole-zero pair at s = 0
is not shown in the plot.

This example demonstrates that the positive real condition
obtained in Thm. 3.1 requires assumptions on the nominal
model. Reversibility is used to obtain the identity (20) that
implies the positive real condition. We know of no alternate
assumptions that imply the positive-real condition.

A. Resolvents and transfer functions

The family of resolvent matrices are defined for s € C by

the integral, -
R, = / e~Stptdt
0

This is well defined whenever Re (s) < 0. It can be shown
using (8) (or the representation P! = ¢!P) that the resolvent
equation holds DRy = sRs — I; equivalently,

Ry =[sI — D]} (22)

We already see that this forms a component of G(s) in (21)
(recall that A = D"). Consequently, for each s satisfying
Re(s) <0,

G(s)=C[Is— A"'B=B'[Is— A"]"'C" = B'R,C"
(23)
Based on this identity, the following result shows that the
frequency response is similar to a cross-power spectral
density:
Proposition 3.2: The frequency response for the transfer
function (21) with A = D" can be expressed, for w € R, by

G = | " eI, [(X0)g(X,)] di

where f(z') = B;/m(z") and g(z°) = C; = U(z?), z* € X.

Proof: The proof begins with the representation (23),
which holds by definition whenever Re (s) < 0. From the
definition of the resolvent matrix, (23) gives,

G(s) = /000 e 5t {Z P'(2',27)B;C; | dt
— [ el xaaeo)a

where the final equality follows from the definition of f
and g.

a 0 0 0 0 0 0
(a+b+c) 0 b ¢ 0 0 0
0 —(a+b) a 0 0 0 0
0 a —a 0 0 0 0
0 0 0 —a a 0 0
0 0 0 a —(a+b) 0 b
0 0 c b 0 —(a+b+c¢) a
0 0 0 0 0 a a

State transition diagram and generator for a Markov process that is not reversible. The transfer function for the linearized mean field model is

To complete the proof we must extend (23) to s = —jw,
for which Re (s) = 0. For this we note that g(z*) = C; =
U(z?), so that

Jim Ex[F(Xo)g(Xe)) =0,
where the convergence rate is exponential. O

B. Linearization

To apply (3.2) we require a representation of the matrix
B defined in (5). For this we normalize the eigenvector so
that ve(x') = 1 for all ¢; this is without loss of generality
since the components D¢ (x%, z7) of the generator (18) are
defined in terms of the ratio v (27)/v¢ (z?).

Let hg denote the solution to Poisson’s equation,

Doho = — (24)

with boundary condition hg(z') = 0. For a finite-state space
Markov process, one solution to Poisson’s equation is given
by

oo
h(x) = Rol () = / EU(X:) | Xo =x]dt, zeX
' (25)
and then we take ho(z) = h(z) — h(z!), z € X.
Let Dt denote the generator for the time-reversed process,
b
m(zt)’

Proposition 3.3: The entries of B are given by,

Di(z', %) = n(2?)D (a7, z*) ' xd e X

If the process is reversible, then B; NC; =
2 (U (7).

To prove the proposition we first need the following
formulae for the derivatives of As and v.. We omit the proof,

which is similar to the discrete-time case [8], [9].

= 2n(x

Lemma 3.4: The log-moment generating function has
derivative at the origin given by,

d =y = n(eu)

| :

¢=0
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The derivative of the eigenvector is the solution to Poisson’s
equation,

Proof of Prop. 3.3: Applying the lemma to (18) gives,
for all =%, 29 € X,

D¢(a',27) = [1 = Cho(z")|D(x", 27)[1 + Cho(a7)]
+[cu(a) — AdI{a" = 27} + 0(Q)
[1*Cho($l)} (2", 27)[1 + Cho(a”)]
+ (") = ll{z" = 27} + 0(Q)
From the definition ¢/ =

derivative is given by,

U — 3%, we conclude that the

d
dCDC(x xj)’g:o = —ho(x

+U(2H{a' = 27}

The entries of the matrix B are thus given by,

B; = Y wla®)(~ho(a')D(a',7) + D(a, a9 o (a?)

2t

i)D(xi, xj) + D(xi, xj)ho(xj)

+ ﬁ(xi)ﬂ{xi = asj})
:—Zho D(z',27) + 7(x) ) (2?)
where in the second identity we used the invariance equation,

> m(x")D(zf,27) = 0. The second identity is equivalent
to the desired representation. O

Proof of Thm. 3.1: Prop 3.3 tells us that under re-

versibility we have B; = 2m(x?)U(x?), and hence in the
notation of Prop. 3.2,
f@') = Bi/n(a') = 2(a"),  g(z") = Ci =U(a")
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Prop. 3.2 and Prop. 3.3 then give,
Gli) = [ B[ (Xa)g( )] d
=2 /OOO e ITE L [U(Xo)U (X)) dt
Thm. 3.1 thus follows:

Re G(jw) = 2Re /0 h e ITE L [U(Xo)U (X)) dt

/.

e IE L [U(X0)U (X)) di

IV. CONCLUSIONS

This paper gives a general condition under which the
linearization of a mean field model is positive-real.

The linearization around ¢ = 0 is a natural choice, but the
main result of the paper can be extended to any constant
value: If D is reversible, then so is D, for each fixed
¢ € R. Based on this observation, it is possible to show
that the linearization about any fixed value of ( is positive
real under the assumptions of Thm. 3.1. This suggests an
open question: Is the nonlinear model with state equation
(2) passive? Passivity would be a valuable property for the
purposes of control.

There are many open questions in the context of design.
Can we obtain more general sufficient conditions for the
positive real condition, the weaker minimum phase condition,
or the stronger passivity condition for the nonlinear model?

To relax the assumptions of Thm. 3.1, it is likely that we
will require application of the Kalman-Yakubovich-Popov
Lemma, which provides an algebraic characterization of the
passive real condition [14].

We are currently considering these theoretical questions,
and applications to problems in decentralized control, espe-
cially in power systems settings.
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