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Controlled dynamics

Discrete-time controlled dynamic system

xk+1 = f (xk , uk ,wk), k = 0, 1, . . .

I State space S (assumed countable). For all k , xk ∈ S.

I Control space C. For x ∈ S, U(x) ⊂ C denotes a non-empty set of
admissible controls in state x .
For all k , uk ∈ U(xk).

I Random disturbance space D (assumed countable): wk ∈ D, ∀k.
For all k , P(wk | xk , uk) is the probability of occurence of wk when
the current state and control are xk and uk .

Assumption (time-homogeneous disturbances): the probability
distributions P(· | x , u), x ∈ S, u ∈ U(x) are assumed to be
independent of k.



Cost function

Assumption: cost accumulates additively over time.

Cost per-stage function: g : S × C × D → R

Terminal cost: G : S → R.

Discount factor 0 < α ≤ 1.

Meaning of α < 1: 1 EUR in the future has less value than 1 EUR today. If the

interest rate is r per period of time, then the value today of 1 EUR received k

periods from now is (1 + r)−k . Discount factor: α = (1 + r)−1.

Finite horizon problems: minimizing the expected N-stage costs,

E

[
αNG (XN) +

N−1∑
k=0

αkg(Xk ,Uk ,Wk) | X0 = x

]
,

where αNG (XN) is a terminal cost for ending up with final state XN .



Decision policies

Definition. An admissible decision policy is a sequence π = {µ0, µ1, . . .}
where each µk is a function mapping the states into controls with
µk(x) ∈ U(x) for all x ∈ S.

Once a policy is fixed, the sequence of states Xk becomes a discrete time,
countable state-space Markov chain with transition probabilities

P(Xk+1 = y | Xk = x) =
∑

w : f (x,µk (x),w)=y

P(w | x , µk(x)).

Definition. A decision policy is called stationary if µk = µ,∀k.

A stationary policy yields a time-homogeneous Markov chain.
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Finite horizon dynamic programming

Expected N-stage cost under π = {µ0, µ1, . . .}, starting from X0 = x :

V π
N (x) = E

[
αNG (XN) +

N−1∑
k=0

αkg(Xk , µk(Xk),Wk) | X0 = x

]
.

The optimal cost function: VN(x) = minπ V
π
N (x).

Principle of optimality. Let π∗ = {µ∗0 , µ∗1 , . . . , µ∗N−1} be an optimal
policy for the initial N-stage problem. Assume that when using π∗, a
given state xi occurs at time i with positive probability. Consider a
subproblem where we start at time i in state xi and minimize the
cost-to-go from time i to N

E

[
αNG (XN) +

N−1∑
k=i

αkg(Xk , µk(Xk),Wk) | Xi = xi

]

Then the truncated policy {µ∗i , µ∗i+1, . . . , µ
∗
N−1} is optimal for this

subproblem.
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Finite horizon dynamic programming algorithm

Expected N-stage cost under π = {µ0, µ1, . . .}, starting from X0 = x :

V π
N (x) = E

[
αNG (XN) +

N−1∑
k=0

αkg(Xk , µk(Xk),Wk) | X0 = x

]
.

The optimal cost function: VN(x) = minπ V
π
N (x).

Dynamic programming: (recursive computation)

I Initialization: JN(x) = αNG (x),∀x ∈ S.

I For k = 1 . . . ,N

JN−k(x) = min
u∈U(x)

E
[
αN−kg(x , u,W ) + JN−k+1(f (x , u,W ))

]
,∀x ∈ S.

I VN = J0.



Finite horizon dynamic programming algorithm

Remark that Jk = αkVN−k . Alternative formulation of DP algorithm:

Dynamic programming: (recursive computation)

I Initialization: V0(x) = G (x),∀x ∈ S.

I For k = 1 . . . ,N

Vk(x) = min
u∈U(x)

E [g(x , u,W ) + αVk−1(f (x , u,W ))]

= min
u∈U(x)

∑
w∈D

P(w | x , u) (g(x , u,w) + αVk−1(f (x , u,w))) ,∀x ∈ S



Finite horizon dynamic programming algorithm

Notation:

I pxy (u) =
∑

w : f (x,u,w)=y P(w | x , u)

I ĝ(x , u) =
∑

w∈D P(w | x , u)g(x , u,w)

For k = 1 . . . ,N

Vk(x) = min
u∈U(x)

∑
w∈D

P(w | x , u) (g(x , u,w) + αVk−1(f (x , u,w)))

= min
u∈U(x)

(
ĝ(x , u) + α

∑
w∈D

P(w | x , u)Vk−1(f (x , u,w))

)
= min

u∈U(x)

(
ĝ(x , u) + α

∑
y∈S

pxy (u)Vk−1(y)

)
.



Notation

I For any function J : S → R, we consider the function obtained by
DP iteration to J
(an optimal cost-to-go function for N = 1 and terminal cost J):

(TJ)(x) = min
u∈U(x)

E [g(x , u,W ) + αJ(f (x , u,W ))] , x ∈ S.

I For any function J : S → R and any admissible control function
µ : S → C ,

(TµJ)(x) = E [g(x , µ(x),W ) + αJ(f (x , µ(x),W ))] , x ∈ S.



Properties of operators T and Tµ

For any two functions J, J ′, we write J ≤ J ′ if J(x) ≤ J ′(x), ∀x ∈ S.

Lemma (Monotonicity)
For any two vectors J ≤ J ′, and for any stationary policy µ,

T kJ ≤ T kJ ′, k ≥ 1,

T k
µJ ≤ T k

µJ
′, k ≥ 1,

where T k denotes the composition of the mapping T with itself k times
(for k = 0, it is the identity mapping, T 0J := J).

Proof. Follows from the interpretations of T k and T k
µ as k-stage

cost-to-go: an increase of the terminal cost can only increase the k-stage
cost-to-go.



Properties of operators T and Tµ

Notation: e : S → R is the unit function, e(x) = 1, ∀x ∈ S.

Lemma
For any k ≥ 0, any function J : S → R, any stationary policy µ and any
r > 0,

(T k(J + re))(x) = (T kJ)(x) + αk r , ∀x ∈ S,
(T k

µ (J + re))(x) = (T k
µJ)(x) + αk r , ∀x ∈ S.

Proof. By induction on k .



Infinite horizon problems

A reasonable approximation of a finite horizon problems with very large
number of stages.

Optimal policy is often stationary - easier to implement.

Typical objective is to minimize

V π(x) = lim sup
N→∞

E

[
N−1∑
k=0

αkg(Xk , µk(Xk),Wk) | X0 = x

]
.

I Stochastic shortest path problems: α = 1 and the state space
contains a special state t that is cost-free termination state.
The objective is to reach the termination state with minimal
expected cost.

I Discounted problems: α < 1.
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Infinite horizon problems

In some problems (e.g. α = 1; g(x , u,w) > 0, ∀x , u,w), V π(x) =∞ for
all π and all initial states x .

In this case, we will be interested in minimizing the average cost per
stage,

lim
N→∞

1

N
V π
N (x),

when this limit is well defined and finite.



Main questions

I Under which conditions V ∗(x) = limN→∞ V ∗N(x),∀x?

I Under which conditions,

V ∗(x) = min
u∈U(x)

E [g(x , u,W ) + αV ∗(f (x , u,W ))], ∀x .

This is called Bellman’s equation.

I Is there an optimal policy that is stationary?
If in the Bellman equation the minimum is attained for some µ, does
his imply that the stationary policy π = (µ, µ, . . .) is optimal?

I How to compute or approximate V ∗ and how to find an optimal
stationary policy?
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Stochastic shortest path problems

Deterministic shortest path problem:

I Input: a graph with nodes 1, 2, ..., n, t, where t is a special state
called the destination or termination state.

I Problem: for each node i 6= t, choose a successor node µ(i) so that
(i , µ(i)) is an arc, and the path formed by a sequence of successor
nodes starting at any node j terminates at t and has minimum sum
of arc lengths over all paths that start at j and terminate at t.

Stochastic shortest path problem (SSP):

I At each node i , we must select a probability distribution over all
possible successor nodes j out of a given set of probability
distributions pij(u) parametrized by a control u ∈ U(i).

I For a given selection of distributions and for a given origin node, the
path traversed as well as its length are now random, but we wish
that the path leads to the destination t with probability 1 and has
minimum expected length.
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Stochastic shortest path problems
A special case of the total cost infinite horizon problem where:

1. No discounting (α = 1).

2. State space S = {1, . . . , n, t} with transition probabilities

pij(u) = P(Xk+1 = j |Xk = i ,Uk = u), i , j ∈ S , u ∈ U(i).

The destination t is absorbing, i.e., for all u ∈ U(t),

ptt(u) = 1.

3. The control constraint set U(i) is a finite set for all i .

4. A cost g(i , u) is incurred when control u ∈ U(i) is selected. The
destination is cost-free. i.e. g(t, u) = 0 for all u ∈ U(t).

Note: If the cost of the applying control u at state i and moving to state
j is g̃(i , u, j), we use as cost per stage the expected cost

g(i , u) =
∑

j=1,...,n,t

pij(u)g̃(i , u, j).



Stochastic shortest path problems

Objective: to reach the termination state with minimal expected cost.

Two special cases:

I Deterministic shortest path problem. States: nodes (state t is the
destination), controls: arcs, costs: values of arcs.

I Finite horizon problem. Transitions from state-time pairs (i , k) to
(j , k + 1) according to pij(u) of the finite horizon problem.
The termination state corresponds to the end of horizon and it is
reached with probability 1 in one step from any (j ,N) at a cost G (j).



DP operators

Since the destination t is cost-free and absorbing, the cost starting from
t is zero for every policy.

Define the mappings T and Tµ on functions J with components
J(1), ..., J(n) by

(TJ)(i) = min
u∈U(i)

[g(i , u) +
n∑

j=1

pij(u)J(j)], i = 1, ..., n,

(TµJ)(i) = g(i , µ(i)) +
n∑

j=1

pij(µ(i))J(j), i = 1, ..., n,

For the states i and controls u for which pit(u) > 0, we have

n∑
j=1

pij(u) = 1− pit(u) < 1.



Vector notation
For any stationary policy µ,

Pµ =

 p11(µ(1)) · · · p1n(µ(1))
...

...
...

pn1(µ(n)) · · · pnn(µ(n))

 , gµ =

 g(1, µ(1))
...

g(n, µ(n))

 .
Then

TµJ = gµ + PµJ.

The cost function of a policy π = µ0, µ1, ...

Jπ = limsup
N→∞

Tµ0 · · ·TµN−1
J0 = limsup

N→∞
(gµ0 +

N−1∑
k=1

Pµ0 · · ·Pµk−1
gµk

),

where J0 denotes the zero vector.

The cost function of a stationary policy µ

Jµ = limsup
N→∞

TN
µ J0 = limsup

N→∞

N−1∑
k=0

Pk
µgµ.



Assumptions

Definition. A stationary policy µ is said to be proper if,

ρµ = max
i=1,...,n

P{xn 6= t|x0 = i , µ} < 1.

A stationary policy that is not proper is said to be improper.

I µ is proper iff in the Markov chain corresponding to µ for any state i
there is a path of positive probability to the termination state.

I Under a proper policy,

P(X2n 6= t | X0 = i , µ) = P(X2n 6= t |Xn 6= t, X0 = i , µ)

× P(Xn 6= t | X0 = i , µ)

≤ ρ2µ

and for any k , P(Xk 6= t | X0 = i , µ) ≤ ρbk/ncµ .
⇒ the termination state will eventually be reached with probability 1
under a proper policy.



Assumptions
The associated total cost-to-go vector Jµ exists and is finite as the
expected cost at the kth period is bounded in absolute value by

ρbk/ncµ max
i=1,...,n

|g(i , µ(i))|,

so that

|Jµ(i)| ≤ lim
N→∞

N−1∑
k=0

ρbk/ncµ max
i=1,...,n

|g(i , µ(i))| <∞.

Assumptions:

A1 There exists at least one proper policy.

A2 For every improper policy µ, Jµ(i) =∞ for at least one state i .

Remarks:

I Sufficient conditions for A2: g(i , u) > 0 for all i 6= t and u ∈ U(i).

I Special case: A1 and A2 are satisfied is when all policies are proper.

I In the deterministic shortest path problem, A1 corresponds to the
existence of a path from each node to the destination and A2 to assuming
all cycles have strictly positive cost.
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Main results

1. The optimal cost vector is the unique solution of Bellman’s equation
J∗ = TJ∗.

2. DP algorithm converges to the optimal cost vector J∗ for an
arbitrary starting vector.

3. A stationary policy µ is optimal if and only if TµJ
∗ = TJ∗.

4. Computation of an optimal proper policy.
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Properties of proper policies

Proposition 1.

(a) For a proper policy µ, the associated cost vector Jµ satisfies

lim
k→∞

(T k
µJ)(i) = Jµ(i), i = 1, ..., n,

for every vector J. Furthermore,

Jµ = TµJµ,

and Jµ is the unique solution of this equation.

(b) A stationary policy µ satisfying for some vector J,

J(i) ≥ (TµJ)(i), i = 1, ..., n,

is proper.



Proof
Property (a). We have:

TµJ = gµ + PµJ.

By induction, for all J ∈ Rn and k ≥ 1

T k
µJ = Pk

µJ +
k−1∑
m=0

Pm
µ gµ.

As µ is proper, for all J ∈ Rn, we have lim
k→∞

Pk
µJ = 0, so that

lim
k→∞

T k
µJ = lim

k→∞

k−1∑
m=0

Pm
µ gµ = Jµ.

Also, by definition
T k+1
µ J = gµ + PµT

k
µJ,

as k →∞, we obtain Jµ = gµ +PµJµ, which is equivalent to Jµ = TµJµ.

Uniqueness: if J = TµJ, then we have J = T k
µJ for all k, so that

J = limk→∞ T k
µJ = Jµ.



Proof

Property (b). By the hypothesis J ≥ TµJ, and the monotonicity of Tµ,

J ≥ T k
µJ = Pk

µJ +
k−1∑
m=0

Pm
µ gµ, k = 1, 2, ...

If µ were not proper, by A2, some component of the sum in the right
hand side of the above relation would diverge to ∞ as k →∞, which is a
contradiction.

Q.E.D.



Bellman’s equation

Theorem

1. The optimal cost vector J∗ satisfies Bellman’s equation

J∗ = TJ∗.

Furthermore, J∗ is the unique solution of this equation.

2. We have
lim
k→∞

(T kJ)(i) = J∗(i), i = 1, ..., n,

for every vector J.

3. A stationary policy µ is optimal if and only if

TµJ
∗ = TJ∗.



Proof

Step I. T has at most one fixed point.

If J and J ′ are two fixed points, then we select µ and µ′ such that
J = TJ = TµJ and J ′ = TJ ′ = Tµ′J

′;
(possible because the control constraint set is finite)

By Prop. 1(b), we have that µ and µ′ are proper, and Prop. 1(a) implies
that J = Jµ and J ′ = Jµ′ . We have J = T kJ ≤ T k

µ′J for all k ≥ 1, and

by Prop. 1(a), we obtain J ≤ limk→∞T k
µ′J = Jµ′ = J ′. Similarly, J ′ ≤ J,

showing that J = J ′ and that T has at most one fixed point.



Proof
Step II. T has at least one fixed point.
Let µ be a proper policy (there exists one by A1). Choose µ′ such that

Tµ′Jµ = TJµ.

Then we have Jµ = TµJµ ≥ Tµ′Jµ. By Prop. 1(b), µ′ is proper, and
using the monotonicity of Tµ′ and Prop. 1(a), we obtain

Jµ ≥ lim
k→∞

T k
µ′Jµ = Jµ′ .

Continuing in the same manner, we construct a sequence {µk} such that
each µk is proper and

Jµk ≥ TJµk ≥ Jµk+1 , k = 0, 1, ...

Since the set of proper policies is finite, some policy µ must be repeated
within the sequence {µk}, and for this policy

Jµ = TJµ.

Thus Jµ is a fixed point of T .
Step I ⇒ Jµ is the unique fixed point of T .



Proof

Step III. The unique fixed point of T is equal to the optimal cost vector

J∗, and T kJ → J∗ for all J.

The construction in Step II provides a proper µ such that TJµ = Jµ.

We will show that T kJ → Jµ for all J and that Jµ = J∗.

Let e = (1, 1, ..., 1), let δ > 0 be some scalar, and let Ĵ be the vector
satisfying

TµĴ = Ĵ − δe.

There is a unique such vector because the equation Ĵ = TµĴ + δe can be

written Ĵ = gµ + δe + PµĴ, so Ĵ is the cost vector corresponding to µ for

gµ replaced by gµ + δe. Since µ is proper, by Prop. 1(a), Ĵ is unique.

Furthermore, we have Jµ ≤ Ĵ, which implies that

Jµ = TJµ ≤ TĴ ≤ TµĴ = Ĵ − δe ≤ Ĵ.



Proof

Using the monotonicity of T , we obtain

Jµ = T kJµ ≤ T k Ĵ ≤ T k−1Ĵ ≤ Ĵ, k ≥ 1.

Hence, T k Ĵ converges to some vector J̃, and we have

TJ̃ = T ( lim
k→∞

T k Ĵ).

The mapping T can be seen to be continuous, so we can interchange T
with the limit in the preceding relation, obtaining J̃ = TJ̃.

By the uniqueness of the fixed point of T , we must have J̃ = Jµ.
Also,

Jµ − δe = TJµ − δe ≤ T (Jµ − δe) ≤ TJµ = Jµ.

Thus, T k(Jµ − δe) is monotonically increasing and bounded above. As
earlier, it follows that limk→∞T k(Jµ − δe) = Jµ. For any J, we can find
δ > 0 such that

Jµ − δe ≤ J ≤ Ĵ.



Proof

By the monotonicity of T , we then have

T k(Jµ − δe) ≤ T kJ ≤ T k Ĵ, k ≥ 1,

and since limk→∞T k(Jµ − δe) = limk→∞T k Ĵ = Jµ, it follows that

lim
k→∞

T kJ = Jµ.

To show that Jµ = J∗, take any policy π = {µ0, µ1, ...}. We have

Tµ0 · · ·Tµk−1
J0 ≥ T kJ0,

where J0 is the zero vector. Taking the limsup of both sides as k →∞,

Jπ ≥ Jµ,

so µ is an optimal stationary policy and Jµ = J∗.



Proof

(c) If µ is optimal, then Jµ = J∗ and, by A1 and A2, µ is proper, so by
Prop. 1(a),

TµJ
∗ = TµJµ = Jµ = J∗ = TJ∗.

Conversely, if J∗ = TJ∗ = TµJ
∗, it follows from Prop. 1(b) that µ is

proper, and by using Prop. 1(a), we obtain J∗ = Jµ. Therefore, µ is
optimal.

Q.E.D.



Example: Minimizing Expected Time to Termination

Problem: Minimize the expected time to termination.

Cost: g(i , u) = 1, i = 1, ..., n, u ∈ U(i),

J∗(i) uniquely solve Bellman’s equation:

J∗(i) = min
u∈U(i)

1 +
n∑

j=1

pij(u)J∗(j)

 , i = 1, ..., n.

Special case: if only one control at each state, J∗(i) represents the mean
first passage time mi from i to t:

mi = 1 +
n∑

j=1

pijmj , i = 1, ..., n.



Example

A spider and a fly move along a line Z at times k = 0, 1, ....

At each time, the following transitions:

I Fly: one unit to the left with probability p, one unit to the right with
probability p, and stays where it is with probability 1− 2p.

I Spider: one unit towards the fly if its distance from the fly is more
that one unit. If the spider is one unit away from the fly, it will
either move one unit towards the fly or stay where it is.

I If the spider and the fly land in the same position at the end of a
period, then the spider captures the fly and the process terminates.

I Spider’s objective: to capture the fly in minimum expected time.



Example

State: distance between spider and fly.

A stochastic shortest path problem with states 0, 1, ..., n;
n is the initial distance; 0 is the termination state.

pij the transition probabilities for i ≥ 2

p1j(M) and p1j(M) the transition probabilities from state 1 to state j if
the spider moves and does not move

pii = p, pi(i−1) = 1− 2p, pi(i−2) = p, i ≥ 2,

p11(M) = 2p, p10(M) = 1− 2p,

p12(M) = p, p11(M) = 1− 2p, p10(M) = p,

with all other transition probabilities being 0.
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Bellman’s equation

I J∗(0) = 0

I J∗(1) = 1 + min[2pJ∗(1), pJ∗(2) + (1− 2p)J∗(1)]

I J∗(i) = 1 + pJ∗(i) + (1− 2p)J∗(i − 1) + pJ∗(i − 2), i ≥ 2

Eq. for i = 2:

J∗(2) =
1

1− p
+

(1− 2p)J∗(1)

1− p
.

Combining with i = 1,

J∗(1) = 1 + min

[
2pJ∗(1),

p

1− p
+

p(1− 2p)J∗(1)

1− p
+ (1− 2p)J∗(1)

]
,

or equivalently,

J∗(1) = 1 + min

[
2pJ∗(1),

p

1− p
+

(1− 2p)J∗(1)

1− p

]
.
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Example

Two cases where

J∗(1) = 1 + 2pJ∗(1),

2pJ∗(1) ≤ p

1− p
+

(1− 2p)J∗(1)

1− p
,

and

J∗(1) = 1 +
p

1− p
+

(1− 2p)J∗(1)

1− p
,

2pJ∗(1) ≥ p

1− p
+

(1− 2p)J∗(1)

1− p
.

Case 1) J∗(1) = 1/(1− 2p), and using the second eq., we find that this
solution is valid when

2p

1− 2p
≤ p

1− p
+

1

1− p
,

or equivalently (after some calculation), p ≤ 1/3. Thus for p ≤ 1/3, it is
optimal for the spider to move when it is one unit away from the fly.



Example

Case 2) J∗(1) = 1/p, when

2 ≥ p

1− p
+

1− 2p

p(1− p)
,

or equivalently, p ≥ 1/3. Thus, for p ≥ 1/3 it is optimal for the spider
not to move when it is one unit way from the fly.

The minimal expected number of steps for capture when the spider is one
unit away from the fly:

J∗(1) =

{
1/(1− 2p) if p ≤ 1/3,

1/p if p ≥ 1/3.

Given the value of J∗(1), we can calculate J∗(i), i = 2, ..., n.



Example: The Blackmailer’s Dilemma

There are two states, state 1 and the destination state t.

At state 1, we can choose a control u with 0 < u ≤ 1, while incurring a
cost −u; we then move to state t with probability u2, and stay in state 1
with probability 1− u2.

Interpretation: u is a demand made by a blackmailer, state 1 the situation
where the victim complies, and state t the situation where the victim
refuses. The blackmailer tries to maximize his total gain by balancing his
desire for increased demands with keeping his victim compliant.

Note: every stationary policy is proper.



Example: The Blackmailer’s Dilemma

For any stationary policy µ with µ(1) = u, we have

Jµ(1) = −u + (1− u2)Jµ(1)

from which

Jµ(1) = −1

u
.

Since u can be taken arbitrarily close to 0, it follows that J∗(1) = −∞,
but there is no stationary policy that achieves the optimal cost.



Example: The Blackmailer’s Dilemma

Bellman’s equation,

J∗(1) = (TJ∗)(1) = min
u∈(0,1]

[−u + (1− u2)J∗(1)],

has no (real number) solution.

The equation cannot have a solution with J∗(1) ≥ 0, since then u = 1
attains the minimum leading to a contradiction, and it cannot have a
solution with J∗(1) < 0, since then the minimizing value of u is

u = min

[
1,− 1

2J∗(1)

]
,

and by substitution, we have

J(1) = (TJ∗)(1) =

{
−1 if J∗(1) ≥ −1/2,

J∗(1) + 1
4J∗(1) if J∗(1) ≤ −1/2,

a contradiction.



Example: The Blackmailer’s Dilemma

There is an optimal nonstationary policy π = {µ0, µ1, ...} that applies
µk(1) = γ/(k + 1) at time k and state 1, where γ ∈ (0, 1/2).

One can show that Jπ(1) = −∞.

The blackmailer requests diminishing amounts over time, which
nonetheless add to ∞.

However, the probability of the victim’s refusal diminishes at a much
faster rate over time, and as a result, the probability of the victim
remaining compliant forever is strictly positive, leading to an infinite total
expected payoff to the blackmailer.


	Introduction
	Definition
	Finite horizon problems
	Infinite horizon problems

	Stochastic shortest path problems
	Definition and main results
	Bellman's equation
	Examples


