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Fast Distributed Algorithms for Computing
Separable Functions
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Abstract—The problem of computing functions of values at the
nodes in a network in a fully distributed manner, where nodes do
not have unique identities and make decisions based only on local
information, has applications in sensor, peer-to-peer, and ad hoc
networks. The task of computing separable functions, which can
be written as linear combinations of functions of individual vari-
ables, is studied in this context. Known iterative algorithms for
averaging can be used to compute the normalized values of such
functions, but these algorithms do not extend, in general, to the
computation of the actual values of separable functions. The main
contribution of this paper is the design of a distributed randomized
algorithm for computing separable functions. The running time of
the algorithm is shown to depend on the running time of a min-
imum computation algorithm used as a subroutine. Using a ran-
domized gossip mechanism for minimum computation as the sub-
routine yields a complete fully distributed algorithm for computing
separable functions. For a class of graphs with small spectral gap,
such as grid graphs, the time used by the algorithm to compute
averages is of a smaller order than the time required by a known
iterative averaging scheme.

Index Terms—Data aggregation, distributed algorithms, gossip
algorithms, randomized algorithms.

I. INTRODUCTION

THE development of sensor, peer-to-peer, and ad hoc wire-
less networks has stimulated interest in distributed algo-

rithms for data aggregation, in which nodes in a network com-
pute a function of local values at the individual nodes. These
networks typically do not have centralized agents that organize
the computation and communication among the nodes. Further-
more, the nodes in such a network may not know the complete
topology of the network, and the topology may change over time
as nodes are added and other nodes fail. In light of the preceding
considerations, distributed computation is of vital importance in
these modern networks.

We consider the problem of computing separable functions
in a distributed fashion in this paper. A separable function can
be expressed as the sum of the values of individual functions.
Given a network in which each node has a number, we seek a
distributed protocol for computing the value of a separable func-
tion of the numbers at the nodes. Each node has its own estimate
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of the value of the function, which evolves as the protocol pro-
ceeds. Our goal is to minimize the amount of time required for
all of these estimates to be close to the actual function value.

In this paper, we are interested in fully distributed compu-
tations, in which nodes have a local view of the state of the
network. Specifically, an individual node does not have infor-
mation about nodes in the network other than its neighbors. To
accurately estimate the value of a separable function that de-
pends on the numbers at all of the nodes, each node must obtain
information about the other nodes in the network. This is ac-
complished through communication between neighbors in the
network. Over the course of the protocol, the global state of the
network effectively diffuses to each individual node via local
communication among neighbors.

More concretely, we assume that each node in the network
knows only its neighbors in the network topology and can con-
tact any neighbor to initiate a communication. On the other
hand, we assume that the nodes do not have unique identities
(i.e., a node has no unique identifier that can be attached to its
messages to identify the source of the messages). This constraint
is natural in ad hoc and mobile networks, where there is a lack
of infrastructure (such as IP addresses or static GPS locations),
and it limits the ability of a distributed algorithm to recreate the
topology of the network at each node. In this sense, the con-
straint also provides a formal way to distinguish distributed al-
gorithms that are truly local from algorithms that operate by
gathering enormous amounts of global information at all the
nodes.

The absence of identifiers for nodes makes it difficult,
without global coordination, to simply transmit every node’s
value throughout the network so that each node can identify
the values at all the nodes. As such, we develop an algorithm
for computing separable functions that relies on an order-
and duplicate-insensitive statistic [1] of a set of numbers, the
minimum. The algorithm is based on properties of exponential
random variables and reduces the problem of computing the
value of a separable function to the problem of determining the
minimum of a collection of numbers, one for each node.

This reduction leads us to study the problem of information
spreading or information dissemination in a network. In this
problem, each node starts with a message, and the nodes
must spread the messages throughout the network using local
communication so that every node eventually has every message.
Because the minimum of a collection of numbers is not affected
by the order in which the numbers appear, nor by the presence of
duplicates of an individual number, the minimum computation
required by our algorithm for computing separable functions
can be performed by any information-spreading algorithm. Our
analysis of the algorithm for computing separable functions
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establishes an upper bound on its running time in terms of
the running time of the information-spreading algorithm it
uses as a subroutine.

In view of our goal of distributed computation, we analyze a
gossip algorithm for information spreading. Gossip algorithms
are a useful tool for achieving fault-tolerant and scalable dis-
tributed computations in large networks. In a gossip algorithm,
each node repeatedly initiates communication with a small
number of neighbors in the network and exchanges information
with those neighbors.

The gossip algorithm for information spreading that we study
is randomized, with the communication partner of a node at any
time determined by a simple probabilistic choice. We provide
an upper bound on the running time of the algorithm in terms of
the conductance of a stochastic matrix that governs how nodes
choose communication partners. By using the gossip algorithm
to compute minima in the algorithm for computing separable
functions, we obtain an algorithm for computing separable func-
tions whose performance on certain graphs compares favorably
with that of known iterative distributed algorithms [2] for com-
puting averages in a network.

A. Related Work

In this section, we present a brief summary of related work.
Algorithms for computing the number of distinct elements in
a multiset or data stream [3], [4] can be adapted to compute
separable functions using information spreading [5]. We are not
aware, however, of a previous analysis of the amount of time
required for these algorithms to achieve a certain accuracy in
the estimates of the function value when the computation is
fully distributed (i.e., when nodes do not have unique identi-
ties). These adapted algorithms require the nodes in the net-
work to make use of a common hash function. In addition, the
discreteness of the counting problem makes the resulting algo-
rithms for computing separable functions suitable only for func-
tions in which the terms in the sum are integers. Our algorithm
is simpler than these algorithms and can compute functions with
noninteger terms.

There has been a lot of work on the distributed computation
of averages, a special case of the problem of reaching agree-
ment or consensus among processors via a distributed compu-
tation. Distributed algorithms for reaching consensus under ap-
propriate conditions have been known since the classical work
of Tsitsiklis [6] and Tsitsiklis, Bertsekas, and Athans [7] (see
also the book by Bertsekas and Tsitsiklis [8]). Averaging algo-
rithms compute the ratio of the sum of the input numbers to ,
the number of nodes in the network, and not the exact value of
the sum. Thus, such algorithms cannot be extended, in general,
to compute arbitrary separable functions. On the other hand,
an algorithm for computing separable functions can be used to
compute averages by separately computing the sum of the input
numbers and the number of nodes in the graph (using one as the
input at each node).

Recently, Kempe, Dobra, and Gehrke showed the existence of
a randomized iterative gossip algorithm for averaging with the
optimal averaging time [9]. This result was restricted to com-
plete graphs. The algorithm requires that the nodes begin the
computation in an asymmetric initial state in order to compute

separable functions, a requirement that may not be convenient
for large networks that do not have centralized agents for global
coordination. Furthermore, the algorithm suffers from the pos-
sibility of oscillation throughout its execution.

In a more recent paper, Boyd, Ghosh, Prabhakar, and Shah
presented a simpler iterative gossip algorithm for averaging that
addresses some of the limitations of the Kempe et al. algorithm
[2]. Specifically, the algorithm and analysis are applicable to
arbitrary graph topologies. Boyd et al. showed a connection be-
tween the averaging time of the algorithm and the mixing time (a
property that is related to the conductance, but is not the same)
of an appropriate random walk on the graph representing the
network. They also found an optimal averaging algorithm as a
solution to a semidefinite program.

For completeness, we contrast our results for the problem of
averaging with known results. As we will see, iterative aver-
aging, which has been a common approach in the previous work,
is an order slower than our algorithm for many graphs, including
ring and grid graphs. In this sense, our algorithm is quite dif-
ferent than (and has advantages in comparison with) the known
averaging algorithms.

On the topic of information spreading, gossip algorithms for
disseminating a message to all nodes in a complete graph in
which communication partners are chosen uniformly at random
have been studied for some time [10]–[12]. Karp, Schindel-
hauer, Shenker, and Vöcking presented a push and pull gossip
algorithm, in which communicating nodes both send and receive
messages, that disseminates a message to all nodes in a graph
in time with high probability [13]. In this paper, we
have provided an analysis of the time required for a gossip al-
gorithm to disseminate messages to nodes for the more gen-
eral setting of arbitrary graphs and nonuniform random choices
of communication partners. For other related results, we refer
the reader to [14]–[16]. We take note of the similar (indepen-
dent) recent work of Ganesh, Massoulié, and Towsley [17], and
Berger, Borgs, Chayes, and Saberi [18] on the spread of epi-
demics in a network.

B. Organization

The rest of this paper is organized as follows. Section II
presents the distributed computation problems we study and
an overview of our results. In Section III, we develop and
analyze an algorithm for computing separable functions in a
distributed manner. Section IV contains an analysis of a simple
randomized gossip algorithm for information spreading, which
can be used as a subroutine in the algorithm for computing
separable functions. In Section V, we discuss applications of
our results to particular types of graphs and compare our results
to previous results for computing averages. Finally, we present
conclusions and future directions in Section VI.

II. PRELIMINARIES AND RESULTS

We consider an arbitrary connected network, represented by
an undirected graph , with nodes. For no-
tational purposes, we assume that the nodes in are numbered
arbitrarily so that . A node, however, does not
have a unique identity that can be used in a computation. Two
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nodes and can communicate with each other if (and only if)
.

To capture some of the resource constraints in the networks
in which we are interested, we impose a transmitter gossip con-
straint on node communication. Each node is allowed to contact
at most one other node at a given time for communication. How-
ever, a node can be contacted by multiple nodes simultaneously.

Let denote the power set of the vertex set (the set of
all subsets of ). For an -dimensional vector , let

be the components of .

Definition 1: We say that a function is
separable if there exist functions such that, for all

and

(1)

Goal. Let be the class of separable functions for which
for all and . Given a func-

tion , and a vector containing initial values for all
the nodes, the nodes in the network are to compute the value

by a distributed computation, using repeated commu-
nication between nodes.

Note 1: Consider a function for which there exist functions
satisfying, for all , the condition

in lieu of (1). Then, is logarithmic separable, i.e.,
is separable. Our algorithm for computing separable

functions can be used to compute the function . The
condition corresponds to in this case. This
lower bound of on is arbitrary, although our algorithm
does require the terms in the sum to be positive.

Before proceeding further, we list some practical situations
where the distributed computation of separable functions arises
naturally. By definition, the sum of a set of numbers is a sepa-
rable function.

1) Summation. Let the value at each node be . Then, the
sum of the values is the number of nodes in the network.

2) Averaging. According to Definition 1, the average of a set
of numbers is not a separable function. However, the nodes
can estimate the separable function and sepa-
rately and use the ratio between these two estimates as an
estimate of the mean of the numbers.
Suppose the values at the nodes are measurements of a
quantity of interest. Then, the average provides an unbiased
maximum-likelihood estimate of the measured quantity.
For example, if the nodes are temperature sensors, then
the average of the sensed values at the nodes gives a good
estimate of the ambient temperature.

For more sophisticated applications of a distributed averaging
algorithm, we refer the reader to [19] and [20]. Averaging is used
for the distributed computation of the top eigenvectors of a
graph in [19], while in [20], averaging is used in a throughput-
optimal distributed scheduling algorithm in a wireless network.
Time model. In a distributed computation, a time model deter-
mines when nodes communicate with each other. We consider
two time models, one synchronous and the other asynchronous,
in this paper. The two models are described as follows.

1) Synchronous time model: Time is slotted commonly across
all nodes in the network. In any time slot, each node may
contact one of its neighbors according to a random choice
that is independent of the choices made by the other nodes.
The simultaneous communication between the nodes sat-
isfies the transmitter gossip constraint.

2) Asynchronous time model: Each node has a clock that ticks
at the times of a rate Poisson process. Equivalently, a
common clock ticks according to a rate Poisson process
at times , where are independent
identically distributed (i.i.d.) exponential random variables
of rate . On clock tick , one of the nodes, say , is
chosen uniformly at random. We consider this global clock
tick to be a tick of the clock at node . When a node’s
clock ticks, it contacts one of its neighbors at random. In
this model, time is discretized according to clock ticks. On
average, there are clock ticks per one unit of absolute
time.

In this paper, we measure the running times of algorithms
in absolute time, which is the number of time slots in the syn-
chronous model and is (on average) the number of clock ticks
divided by in the asynchronous model. To obtain a precise
relationship between clock ticks and absolute time in the asyn-
chronous model, we appeal to tail bounds on the probability
that the sample mean of i.i.d. exponential random variables is
far from its expected value. In particular, we make use of the
following lemma, which also plays a role in the analysis of the
accuracy of our algorithm for computing separable functions.

Lemma 1: For any , let be i.i.d. exponential
random variables with rate . Let . Then, for
any

(2)

Proof: By definition, . The
inequality in (2) follows directly from Cramér’s Theorem (see
[21, pp. 30, 35]) and properties of exponential random vari-
ables.

A direct implication of Lemma 1 is the following corollary,
which bounds the probability that the absolute time at which
clock tick occurs is far from its expected value.

Corollary 1: For . Further, for any

Our algorithm for computing separable functions is ran-
domized and is not guaranteed to compute the exact quantity

at each node in the network. To study
the accuracy of the algorithm’s estimates, we analyze the
probability that the estimate of at every node is within
a multiplicative factor of the true value after
the algorithm has run for some period of time. In this sense,
the error in the estimates of the algorithm is relative to the
magnitude of .
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To measure the amount of time required for an algorithm’s
estimates to achieve a specified accuracy with a specified prob-
ability, we define the following quantity. For an algorithm that
estimates , let be the estimate of at node
at time . Furthermore, for notational convenience, given ,
let be the following event:

Definition 2: For any and , the -com-
puting time of , denoted , is

Intuitively, the significance of this definition of the -com-
puting time of an algorithm is that, if runs for an amount
of time that is at least , then the probability that the
estimates of at the nodes are all within a factor
of the actual value of the function is at least .

As noted before, our algorithm for computing separable func-
tions is based on a reduction to the problem of information
spreading, which is described as follows. Suppose that, for

, node has the one message . The task of informa-
tion spreading is to disseminate all messages to all nodes via
a sequence of local communications between neighbors in the
graph. In any single communication between two nodes, each
node can transmit to its communication partner any of the mes-
sages that it currently holds. We assume that the data transmitted
in a communication must be a set of messages, and therefore,
cannot be arbitrary information.

Consider an information-spreading algorithm , which spec-
ifies how nodes communicate. For each node , let
denote the set of nodes that have the message at time .
While nodes can gain messages during communication, we as-
sume that they do not lose messages, so that if

. Analogous to the -computing time, we define a
quantity that measures the amount of time required for an infor-
mation-spreading algorithm to disseminate all the messages
to all the nodes in the network.

Definition 3: For , the -information-spreading
time of the algorithm , denoted , is

In our analysis of the gossip algorithm for information
spreading, we assume that when two nodes communicate,
each node can send all of its messages to the other in a single
communication. This rather unrealistic assumption of infinite
link capacity is merely for convenience, as it provides a simpler
analytical characterization of in terms of .
Our algorithm for computing separable functions requires only
links of unit capacity.

A. Our Contribution

The main contribution of this paper is the design of a dis-
tributed algorithm to compute separable functions of node
values in an arbitrary connected network. Our algorithm is

randomized, and in particular, it uses exponential random vari-
ables. This usage of exponential random variables is analogous
to that in an algorithm by Cohen1 for estimating the sizes of
sets in a graph [22]. The basis for our algorithm is the following
property of the exponential distribution.

Property 1: Let be independent random vari-
ables such that, for , the distribution of is ex-
ponential with rate . Let be the minimum of .
Then, is distributed as an exponential random variable of rate

.
Proof: For an exponential random variable with rate ,

for any

Using this fact and the independence of the random variables
, we compute for any

This establishes the property stated above.

Our algorithm uses an information-spreading algorithm as a
subroutine, and as a result, its running time is a function of the
running time of the information-spreading algorithm it uses. The
faster the information-spreading algorithm is, the better our al-
gorithm performs. Specifically, the following result provides an
upper bound on the -computing time of the algorithm.

Theorem 1: Given an information-spreading algorithm
with -spreading time for , there exists an
algorithm for computing separable functions such
that, for any and

Motivated by our interest in decentralized algorithms, we an-
alyze a simple randomized gossip algorithm for information
spreading. When node initiates a communication, it contacts
each node with probability . With probability , it
does not contact another node. The matrix
characterizes the algorithm; each matrix gives rise to an infor-
mation-spreading algorithm . We assume that is stochastic,
and that if and , as nodes that are not
neighbors in the graph cannot communicate with each other.
Section IV describes the data transmitted between two nodes
when they communicate.

We obtain an upper bound on the -information-spreading
time of this gossip algorithm in terms of the conductance of the
matrix , which is defined as follows.

1We thank D. Malkhi for pointing this reference out to us.
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Definition 4: For a stochastic matrix , the conductance of
, denoted , is

In general, the above definition of conductance is not the same as
the classical definition [23]. However, we restrict our attention
in this paper to doubly stochastic matrices . When is doubly
stochastic, these two definitions are equivalent.

Note that the definition of conductance implies that
. Throughout the remainder of this paper, we assume that

and . Without these assumptions, each node in the
network would have at most one neighbor to communicate with,
or the network would contain a nonempty node subset
such that no node in could contact a node outside of .

Theorem 2: Consider any doubly stochastic matrix such
that if and , then . There exists an
information dissemination algorithm such that, for any

Note 2: The results of Theorems 1 and 2 hold for both the syn-
chronous and asynchronous time models. Recall that the quanti-
ties and are defined with respect to absolute
time in both models.
A comparison. Theorems 1 and 2 imply that, given a doubly
stochastic matrix , the time required for our algorithm to ob-
tain a approximation with probability at least is, up
to constant factors, at most . When the
network size and the accuracy parameters and are fixed,
the running time scales in proportion to , a factor that
captures the dependence of the algorithm on the matrix . Our
algorithm can be used to compute the average of a set of num-
bers. For iterative averaging algorithms such as the ones in [6]
and [2], the convergence time largely depends on the mixing
time of , which is lower bounded by (see [23], for
example). Thus, our algorithm is (up to an factor) no slower
than the fastest iterative algorithm based on time-invariant linear
dynamics.

III. FUNCTION COMPUTATION

In this section, we describe our algorithm for computing the
value of the separable function ,
where . For simplicity of notation, let .
Given , each node can compute on its own. Next, the nodes
use the algorithm shown in Fig. 1, which we refer to as COMP,
to compute estimates of . The quantity is a
parameter to be chosen later.

We describe how the minimum is computed as required by
step 2 of the algorithm in Section III-A. The running time of the
algorithm COMP depends on the running time of the algorithm
used to compute the minimum.

Now, we show that COMP effectively estimates the function
value when the estimates are all correct by providing a

Fig. 1. Algorithm for computing separable functions.

lower bound on the conditional probability that the estimates
produced by COMP are all within a factor of .

Lemma 2: Let be real numbers (with for
), , and , where

the are as defined in the algorithm COMP. For any node , let
, and let be the estimate of obtained

by node in COMP. For any

Proof: Observe that the estimate of at node is a func-
tion of and . Under the hypothesis that for all
nodes , all nodes produce the same estimate
of . This estimate is , and so

.
Property 1 implies that each of the random variables

has an exponential distribution with rate . From
Lemma 1, it follows that for any

(3)

This inequality bounds the conditional probability of the event
, which is equivalent to the

event . Now, for

(4)

and

(5)

Applying the inequalities in (3)–(5), we conclude that for

Noting that the event is equivalent to the
event when for all nodes completes
the proof of Lemma 2.

A. Using Information Spreading to Compute Minima

We now elaborate on step 2 of the algorithm COMP.
Each node in the graph starts this step with a vector
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, and the nodes seek the vector
, where . In the in-

formation-spreading problem, each node has a message ,
and the nodes are to transmit messages across the links until
every node has every message.

If all link capacities are infinite (i.e., in one time unit, a node
can send an arbitrary amount of information to another node),
then an information-spreading algorithm can be used directly
to compute the minimum vector . To see this, let the message

at the node be the vector , and then apply the informa-
tion-spreading algorithm to disseminate the vectors. Once every
node has every message (vector), each node can compute as
the componentwise minimum of all the vectors. This implies
that the running time of the resulting algorithm for computing

is the same as that of the information-spreading algorithm.
The assumption of infinite link capacities allows a node to

transmit an arbitrary number of vectors to a neighbor in one
time unit. A simple modification to the information-spreading
algorithm, however, yields an algorithm for computing the min-
imum vector using links of capacity . To this end, each node

maintains a single -dimensional vector that evolves in
time, starting with .

Suppose that, in the information dissemination algorithm,
node transmits the messages (vectors) to node
at time . Then, in the minimum computation algorithm, sends
to the quantities , where .
The node sets for ,
where and denote the times immediately before and after,
respectively, the communication. At any time , we will have

for all nodes if, in the information-spreading
algorithm, every node has all the vectors at the
same time . In this way, we obtain an algorithm for computing
the minimum vector that uses links of capacity and runs
in the same amount of time as the information-spreading
algorithm.

An alternative to using links of capacity in the computa-
tion of is to make the time slot times larger, and impose a
unit capacity on all the links. Now, a node transmits the num-
bers to its communication partner over a period of
time slots, and as a result the running time of the algorithm for
computing becomes greater than the running time of the in-
formation-spreading algorithm by a factor of . The preceding
discussion, combined with the fact that nodes only gain mes-
sages as an information-spreading algorithm executes, leads to
the following lemma.

Lemma 3: Suppose that the COMP algorithm is implemented
using an information-spreading algorithm as described above.
Let denote the estimate of at node at time . For any

, let . Then, for any time , with
probability at least for all nodes .

Note that the amount of data communicated between nodes
during the algorithm COMP depends on the values of the ex-
ponential random variables generated by the nodes. Since the
nodes compute minima of these variables, we are interested in
a probabilistic lower bound on the values of these variables (for
example, suppose that the nodes transmit the values when
computing the minimum ). To this

end, we use the fact that each is an exponential random vari-
able with rate to obtain that, for any constant , the proba-
bility that any of the minimum values is less than (i.e.,
any of the inverse values is greater than ) is at most ,
where is proportional to .

B. Proof of Theorem 1

Now, we are ready to prove Theorem 1. In particular,
we will show that the COMP algorithm has the properties
claimed in Theorem 1. To this end, consider using an informa-
tion-spreading algorithm with -spreading time for

as the subroutine in the COMP algorithm. For any
, let . By Lemma 3, for any time

, the probability that for any node at time
is at most .
On the other hand, suppose that for all

nodes at time . For any , by choosing
, we obtain from Lemma 2 that

(6)
Note that, because

.
Recall that is the smallest time such that,

under the algorithm COMP, at any time , all the nodes
have an estimate of the function value within a multiplicative
factor of with probability at least . By a straightfor-
ward union bound of events and (6), we conclude that, for any
time

For any and , by the definition of
-computing time, we now have

This completes the proof of Theorem 1.

IV. INFORMATION SPREADING

In this section, we analyze a randomized gossip algorithm for
information spreading. The method by which nodes choose part-
ners to contact when initiating a communication and the data
transmitted during the communication are the same for both
time models defined in Section II. These models differ in the
times at which nodes contact each other: in the asynchronous
model, only one node can start a communication at any time,
while in the synchronous model, all the nodes can communi-
cate in each time slot.

The information-spreading algorithm that we study is pre-
sented in Fig. 2, which makes use of the following notation. Let

denote the set of messages node has at time . Initially,
for all . For a communication that occurs

at time , let and denote the times immediately before and
after, respectively, the communication occurs.

As mentioned in Section II-A, the nodes choose communi-
cation partners according to the probability distribution defined
by an matrix . The matrix is nonnegative and sto-
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Fig. 2. Gossip algorithm for information spreading.

chastic, and it satisfies for any pair of nodes
such that . For each such matrix , there is an in-
stance of the information-spreading algorithm, which we refer
to as SPREAD .

We note that the data transmitted between two communi-
cating nodes in SPREAD conform to the push and pull mecha-
nism. That is, when node contacts node at time , both nodes

and exchange all of their information with each other. We
also note that the description in the algorithm assumes that the
communication links in the network have infinite capacity. As
discussed in Section III-A, however, an information-spreading
algorithm that uses links of infinite capacity can be used to com-
pute minima using links of unit capacity.

This algorithm is simple and distributed, and it satisfies the
transmitter gossip constraint. We now present analysis of the in-
formation-spreading time of SPREAD for doubly stochastic
matrices in the two time models. The goal of the analysis is
to prove Theorem 2. To this end, for any , let
denote the set of nodes that have the message after any com-
munication events that occur at absolute time (communication
events occur on a global clock tick in the asynchronous time
model and in each time slot in the synchronous time model). At
the start of the algorithm, .

A. Asynchronous Model

As described in Section II, in the asynchronous time model,
the global clock ticks according to a Poisson process of rate

, and on a tick one of the nodes is chosen uniformly at
random. This node initiates a communication, so the times at
which the communication events occur correspond to the ticks
of the clock. On any clock tick, at most one pair of nodes can
exchange messages by communicating with each other.

Let denote the index of a clock tick. Initially,
, and the corresponding absolute time is . For simplicity of

notation, we identify the time at which a clock tick occurs with
its index, so that denotes the set of nodes that have the
message at the end of clock tick . The following lemma
provides a bound on the number of clock ticks required for every
node to receive every message.

Lemma 4: For any , define

Then

Proof: Fix any node . We study the evolution of the
size of the set . For simplicity of notation, we drop the
subscript and write to denote .

Note that is monotonically nondecreasing over the
course of the algorithm, with the initial condition .
For the purpose of analysis, we divide the execution of the al-
gorithm into two phases based on the size of the set . In the
first phase, , and in the second phase,

.
Under the gossip algorithm, after clock tick , we have

either or . Further,
the size increases if a node contacts a node ,
as in this case will push the message to . For each such
pair of nodes , the probability that this occurs on clock tick

is . Since only one node is active on each clock tick

(7)

When , it follows from (7) and the definition of
the conductance of that

Let , so that

(8)

We seek an upper bound on the duration of the first phase. To
this end, let

Define the stopping time , and
. If , then ,

and thus .
Now, suppose that , in which case

. The function is convex for , which
implies that, for

(9)

Applying (9) with and yields

Since , it follows that

(10)
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Combining (8) and (10), and using the fact that
for , we obtain that, if , then

This implies that

Therefore, is a supermartingale.
Since is a supermartingale, we have the inequality

for any , as
. The fact that the set can contain at most the

nodes in the graph implies that

(11)

Taking expectations on both sides of (11) yields

Because as , the mono-
tone convergence theorem implies that

Applying Markov’s inequality, we obtain that, for

For the second phase of the algorithm, when ,
we study the evolution of the size of the set of nodes that do
not have the message, . This quantity will decrease as
the message spreads from nodes in to nodes in . For
simplicity, let us consider restarting the process from clock tick

after (i.e., when more than half the nodes in the graph have
the message), so that we have .

In clock tick , a node will receive the message
if it contacts a node and pulls the message from . As
such

Thus, we have

(12)

We note that this inequality holds even when , and
as a result, it is valid for all clock ticks in the second phase.
Repeated application of (12) yields

For , we have
. Markov’s inequality now implies the

following upper bound on the probability that not all of the
nodes have the message at the end of clock tick in the second
phase:

Combining the analysis of the two phases, we obtain that, for
. By applying the union

bound over all the nodes in the graph, using the fact that ,
and recalling that , we conclude that

This completes the proof of Lemma 4.

To extend the bound in Lemma 4 to absolute time, ob-
serve that Corollary 1 implies that the probability that
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clock ticks do not occur in absolute time
is at most . Applying the union bound now yields

,
where the last inequality follows from the inequalities

and . This establishes the upper bound
in Theorem 2 for the asynchronous time model.

B. Synchronous Model

In the synchronous time model, in each time slot, every node
contacts a neighbor to exchange messages. Thus, communica-
tion events may occur simultaneously. Recall that absolute time
is measured in rounds or time slots in the synchronous model.

The analysis of the randomized gossip algorithm for informa-
tion spreading in the synchronous model is similar to the anal-
ysis for the asynchronous model. However, we need additional
analytical arguments to reach analogous conclusions due to the
technical challenges presented by multiple simultaneous trans-
missions.

In this section, we sketch a proof of the time bound in The-
orem 2, , for the
synchronous time model. Since the proof follows a similar struc-
ture as the proof of Lemma 4, we only point out the significant
differences.

As before, we fix a node and study the evolution of the
size of the set . Again, we divide the execution of
the algorithm into two phases based on the evolution of : in
the first phase, , and in the second phase,

. In the first phase, we analyze the increase in , while
in the second phase, we study the decrease in . For the
purpose of analysis, in the first phase, we ignore the effect of
the increase in due to the pull aspect of protocol, that is,
when node contacts node , we assume (for the purpose of
analysis) that sends the messages it has to , but that does
not send any messages to . Clearly, an upper bound obtained on
the time required for every node to receive every message under
this restriction is also an upper bound for the actual algorithm.

Consider a time slot in the first phase. For , let
be an indicator random variable that is if node receives

the message via a push from some node in time
slot , and is otherwise. The probability that does not
receive via a push is the probability that no node
contacts , and so

(13)

The Taylor series expansion of about implies
that, if , then

(14)

For a doubly stochastic matrix , we have
, and so we can combine (13) and (14) to obtain

By linearity of expectation

When , we have

(15)

Inequality (15) is analogous to inequality (8) for the asyn-
chronous time model, with in the place of . We now
proceed as in the proof of Lemma 4 for the asynchronous model.
Note that here in the synchronous model
because of the restriction in the analysis to only consider the
push aspect of the protocol in the first phase, as each node in

can push a message to at most one other node in a single
time slot. Repeating the analysis from the asynchronous model
leads to the conclusion that the first phase of the algorithm ends
in at most rounds with proba-
bility at least .

The analysis of the second phase is the same as that
presented for the asynchronous time model, with re-
placed by , and thus the second phase requires at most

rounds with probability at least
. Combining these two bounds, we conclude that it

takes at most rounds for the algorithm
to spread all the messages to all the nodes with probability
at least . The constant here is smaller than the corre-
sponding one for the asynchronous model because absolute
time is measured in rounds in the synchronous model, and as
a consequence, there is no need here to convert between clock
ticks and absolute time as in the asynchronous model. This
completes the proof of Theorem 2 for the synchronous time
model.

V. APPLICATIONS

We study here the application of our preceding results to sev-
eral types of graphs. In particular, we consider complete graphs,
constant-degree expander graphs, and grid graphs. We use grid
graphs as an example to compare the performance of our algo-
rithm for computing separable functions with that of a known
iterative averaging algorithm.

For each class of graphs, we are interested in the -infor-
mation-spreading time , where is a doubly
stochastic matrix that assigns equal probability to each of the
neighbors of any node. Specifically, the probability that a
node contacts a node when becomes active is ,
where is the maximum degree of the graph, and
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, where is the degree of . Recall from Theorem 1 that
the information dissemination algorithm SPREAD can be
used as a subroutine in an algorithm for computing separable
functions, with the running time of the resulting algorithm being
a function of . We consider how this running
time scales with the number of nodes for different graphs in
each class.

A. Complete Graph

On a complete graph, the communication matrix has
for , and for . This regular

structure allows us to directly evaluate the conductance of ,
which is . This implies that the -computing
time of the algorithm for computing separable functions based
on SPREAD is, up to constant factors, at most

. Thus, for a constant and
, the computation time scales as as in-

creases.

B. Expander Graph

Expander graphs have been used for numerous applications,
and explicit constructions are known for constant-degree ex-
panders [24]. We consider here undirected graphs in which the
maximum degree of any vertex is a constant. For a set of ver-
tices in a graph , let be the set of
edges with one endpoint in and the other endpoint in . The
edge expansion of the graph is denoted by and defined as

In a family of expander graphs of various different sizes,
, the edge expansion is bounded from below by
for each graph , where is a positive constant.

For a graph in such a family, the communication matrix
satisfies for all such that , from
which we obtain . When and are constants,
this leads to a similar conclusion as in the case of the complete
graph: for any constant and , the computa-
tion time is .

C. Grid

We now consider a -dimensional grid graph on nodes,
where is an integer. Each node in the grid can be
represented as a -dimensional vector , where

for . There is one node for each distinct
vector of this type, and so the total number of nodes in the graph
is . For any two nodes and , there is an edge

in the graph if and only if, for some
, and for all .

In [25], it is shown that the edge expansion of this grid graph
is

By the definition of the edge set, the maximum degree of a node
in the graph is . This means that for all
such that , and it follows that .

Hence, for any and , the -com-
puting time of the algorithm for computing separable functions
is .

D. Comparison With Iterative Averaging

We briefly contrast the performance of our algorithm for com-
puting separable functions with that of the iterative averaging
algorithms in [6] and [2]. As noted earlier, the dependence of
the performance of our algorithm on the communication matrix

is in proportion to , which is a lower bound for the
iterative algorithms based on a stochastic matrix .

In particular, when our algorithm is used to compute the av-
erage of a set of numbers (by estimating the sum of the num-
bers and the number of nodes in the graph) on a -dimensional
grid graph, it follows from the analysis in Section V-C that
the amount of time required to ensure the estimate is within
a factor of the average with probability at least
being, up to constant factors, at most

for any and . So, for a con-
stant and , the computation time scales as

with the size of the graph . The algorithm
in [2] requires time for this computation. Hence,
the running time of our algorithm is (for fixed , and up to log-
arithmic factors) the square root of the running time of the it-
erative algorithm. This relationship holds on other graphs for
which the spectral gap is proportional to the square of the con-
ductance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel algorithm for computing
separable functions in a fully distributed manner. The algorithm
is based on properties of exponential random variables and the
fact that the minimum of a collection of numbers is an order-
and duplicate-insensitive statistic.

Operationally, our algorithm makes use of an information-
spreading mechanism as a subroutine. This led us to the analysis
of a randomized gossip mechanism for information spreading.
We obtained an upper bound on the information-spreading time
of this algorithm in terms of the conductance of a matrix that
characterizes the algorithm.

In addition to computing separable functions, our algorithm
improves the computation time for the canonical task of aver-
aging. For example, on graphs such as paths, rings, and grids,
the performance of our algorithm is of a smaller order than that
of a known iterative algorithm.

We believe that our algorithm will lead to the following fully
distributed computations: 1) an approximation algorithm for
convex minimization with linear constraints; and 2) a “packet
marking” mechanism in the Internet. These areas, in which
summation is a key subroutine, will be topics of our future
research.
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[25] M. C. Azizoğlu and Ö. Eğecioğlu, “The isoperimetric number of �-di-
mensional �-ary arrays,” Int. J. Foundations Comput. Sci., vol. 10, no.
3, pp. 289–300, 1999.

[26] M. Enachescu, A. Goel, R. Govindan, and R. Motwani, “Scale free
aggregation in sensor networks,” in Int. Workshop Algorithmic Aspects
Wireless Sensor Netw., 2004, pp. 71–84.


