Modèles et algorithmes des réseaux

Allocation de ressources et protocole TCP

Ana Busic
Inria Paris - DI ENS

http://www.di.ens.fr/~busic/

Paris, Novembre 2017
Motivating example: Distributed control of data transport in the Internet

- How to assign bandwidth in networks
 - Understanding TCP, the protocol regulating most Internet traffic
 - Still an active research topic, in the context of datacenter networks (see « DC-TCP »)
Other application scenarios of current interest

- Allocation of \{storage, bandwidth, CPU\} resources in cloud computing

![A Google datacenter](image)

- Allocation of energy to consumers in the smart grid, under demand-response scenarios

![Smart Grid](image)
TCP in one slide

Source dynamics:
- Maintain Nb of (sent¬ acked pkts)=cwnd (congestion window)
- Update cwnd
 \[\text{cwnd} + 1/cwnd \text{ upon receipt of pkt ack} \]
 \[\text{cwnd}/2 \text{ upon detection of pkt loss} \]
- "Congestion avoidance" alg introduced in 1993
- After Internet congestion collapse
Network model

- Resources, or links, $\ell \in \mathcal{L}$, each with capacity $C_\ell > 0$
- Users, or transmissions, or flows, $s \in S$
- User s uses same rate at all $\ell \in s$ ($s \leftrightarrow$ subset of \mathcal{L})
Allocations

- **max-min fairness**: feasible x^{mm} such that $orall s \in S, \exists \ell \in s$ with $\sum_{t \in \ell} x_{t}^{mm} = C_\ell$ and $x_{s}^{mm} = \max_{t \in \ell} x_{t}^{mm}$ ("no envy": each s can find competing t at least as poor as s)

- **Proportional fairness**: feasible x^{pf} such that for all feasible y, $\sum_{s} \frac{y_{s}-x_{s}^{pf}}{x_{s}^{pf}} \leq 0$

Alternative characterization:
Unique maximizer of $\sum_{s} \ln(x_{s})$ among feasible x

Notion introduced by F. Kelly (Cambridge University) in 1997
Allocations

Alternative characterization: Nash’s bargaining solution

i.e. unique vector \(\phi(C) \) in feasible convex set \(C \subset \mathbb{R}_+^S \)

s.t.

- Pareto efficiency: \(\phi(C) \leq x \in C \Rightarrow x = \phi(C) \)
- independence of irrelevant alternatives:
 \(\phi(C) \in C' \subset C \Rightarrow \phi(C) = \phi(C') \)
- symmetry: \(C \) symmetric \(\Rightarrow \phi(C)_i \equiv \phi(C)_1 \)
- scale invariance: for diagonal \(D \) with \(D_{ii} > 0 \),
 \(\phi(DC) = D\phi(C) \)
Allocations

Network Utility Maximization x^*: solution of

$$\begin{align*}
\text{Max} & \quad \sum_s U_s(x_s) \\
\text{Over} & \quad x_s \geq 0 \quad (P) \\
\text{Such that} & \quad \forall \ell, \sum_{s \in \ell} x_s \leq C_\ell
\end{align*}$$

for concave, increasing utility functions $U_s : \mathbb{R}_+ \rightarrow \mathbb{R}$

\rightarrow A concave optimization program

Examples

Proportional fair x^{pf}: $U_s = \ln$

For $w, \alpha > 0$, (w, α)-fair $x = x(w, \alpha)$: $U_s(x_s) = w_s \frac{x_s^{1-\alpha}}{1-\alpha}$
Allocations

Network Utility Maximization x^*: solution of

$$\text{Max} \quad \sum_s U_s(x_s)$$
$$\text{Over} \quad x_s \geq 0 \quad (P)$$
$$\text{Such that} \quad \forall \ell, \sum_{s \in \ell} x_s \leq C_\ell$$

for concave, increasing utility functions $U_s : \mathbb{R}_+ \rightarrow \mathbb{R}$

→ A concave optimization program

Examples
Proportional fair x^{pf}: $U_s = \ln$
For $w, \alpha > 0$, (w, α)-fair $x = x(w, \alpha)$: $U_s(x_s) = w_s \frac{x_s^{1-\alpha}}{1-\alpha}$

[Exercise: $\lim_{\alpha \rightarrow 1} x(1, \alpha) = x^{pf}$ and $\lim_{\alpha \rightarrow +\infty} x(1, \alpha) = x^{mm}$]
Relaxed problem and primal algorithm

Relaxed problem: \[
\text{Max } \sum_s U_s(x_s) - \sum_\ell C_\ell(y_\ell) \\
\text{Over } x_s \geq 0 \quad \text{(RP)}
\]
with \[y_\ell = \sum_{s \in \ell} x_s\]

for concave increasing utility functions \(U_s\) and convex increasing cost functions \(C_\ell\).

Primal algorithm: for \(U_s\) and \(C_\ell\) differentiable, and positive gain function \(\kappa_s: \mathbb{R}_+ \to \mathbb{R}_+\), let

\[
\frac{d}{dt} x_s = \kappa_s(x_s) \left(U'_s(x_s) - \sum_{\ell \in s} C'_\ell(y_\ell) \right) \quad \text{“gradient ascent”}
\]
Stability via Lyapunov functions

Criterion for convergence of ODE $\dot{x} = F(x)$ with trajectories in $O \subset \mathbb{R}^n$

Theorem

Assume F continuous on O, and $\exists V : O \to \mathbb{R}$ such that:

(i) V continuously differentiable

(ii) $\forall a \leq A$, $\{x \in O : V(x) \leq A\}$ and $\{x \in O : V(x) \in [a, A]\}$

either compact or empty

(iii) $\forall x \in O \setminus B$, $\nabla V(x) \cdot F(x) < 0$, where $B = \text{argmin}_{x \in O} \{V(x)\}$

Then $\lim_{t \to \infty} V(x(t)) = \inf_{x \in O} V(x)$, $\lim_{t \to \infty} d(x(t), B) = 0$.

If $B = \{x^*\}$ then $\lim_{t \to \infty} x(t) = x^*$.
Application to gradient ascent/descent dynamics

\[
\frac{d}{dt} x_s = \kappa_s(x_s) \left(U'_s(x_s) - \sum_{\ell \in s} C'_\ell(y_\ell) \right)
\]

Let \(W(x) = \sum_s U_s(x_s) - \sum_\ell C_\ell(y_\ell) \) (system welfare)
and \(V(x) = -W(x) \)

Then: \(\nabla V(x) \cdot F(x) = -\sum_s \kappa_s(x_s) \left[\frac{\partial}{\partial x_s} W(x) \right]^2 \)

Theorem

For \(U_s \) strictly concave, differentiable with \(U'_s(0^+) = +\infty \),
\(C_\ell \) convex, continuously differentiable,
[\(\Rightarrow \) strict concavity and continuous differentiability of \(W \)]
\(\kappa_s > 0 \), continuous [\(\Rightarrow \) continuity of \(F \)]
\(\exists x_s > 0 \) s.t. \(U'_s(x_s) < \sum_{\ell \in s} C'_\ell(x_s) \)
[\(\Rightarrow \) Max of \(W \) achieved at single point \(x^* \in O := (0, \infty)^S \)]

Then “primal” dynamics converge to unique maximizer \(x^* \) of \(W \)
TCP allocation

Approx. \(x_s \approx \frac{cwnd_s}{T_s} \) where \(T_s \): packet round-trip time

Approx. \(\frac{d}{dt} cwnd_s \approx x_s \left(\frac{1}{cwnd_s} \right) - x_s p(s) \left[\frac{cwnd_s}{2} \right] \)
where \(p(s) \): packet loss probability along path of \(s \)

Approx. \(p(s) \approx \sum_{\ell \in s} p_\ell(y_\ell) \) for link packet loss prob. \(p_\ell(y) \)
[e.g. \(p_\ell(y) = \max(0, 1 - C_\ell/y) \)]

\[\Rightarrow \dot{x}_s = \left(\frac{x_s^2}{2} \right) \left[\frac{2}{(x_s T_s)^2} - \sum_{\ell \in s} p_\ell(y_\ell) \right] \]

TCP implicitly runs primal alg. with utility function:
\(U_s(x) = w_s x^{1-\alpha} / (1 - \alpha) \) with \(\alpha = 2, w_s = 2 / T_s^2 \)
→ Leads to \((w, \alpha)\)-fairness with suitable parameters
Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C^0, convex functions $J, f_\ell : C^0 \to \mathbb{R}$,

\[
\begin{align*}
\text{Min} & \quad J(x) \\
\text{Over} & \quad x \in C^0 \quad \quad (P) \\
\text{Such that} & \quad \forall \ell \in \mathcal{L}, f_\ell(x) \leq 0
\end{align*}
\]

Associated Lagrangian
\[
L(x, \lambda) := J(x) + \sum_\ell \lambda_\ell f_\ell(x), \\
\text{where } x \in C^0, \lambda \geq 0
\]

λ: Lagrange multipliers of (P)'s constraints

Dual problem (D): Max $D(\lambda)$ Over $\lambda \geq 0$
where $D(\lambda) := \inf_{x \in C^0} L(x, \lambda)$
Kuhn-Tucker theorem and strong duality

Def: \(\lambda^* \geq 0 \) a Kuhn-Tucker vector iff \(\forall x \in C^0, L(x, \lambda^*) \geq J^* \)

where \(J^* \): optimal value of \((P)\).

Remark: \(J^* \geq D^* \) where \(D^* \) optimal value of \((D)\)

Theorem

Assume there exists \(\lambda^* \) a Kuhn-Tucker vector. Then

(i) \(\lambda^* \) solves \((D)\), and \(J^* = D^* \) (a.k.a. **strong duality**)

(ii) \(x^* \in C^0 \) if optimal for \((P)\) then achieves \(\min_{x \in C^0} L(x, \lambda^*) \)

(iii) For \(x^* \in \text{int}(C^0) \) an optimum of \((P)\) at which \(\exists \nabla J, \nabla f_\ell \), then

\[
\forall \ell, \lambda^*_\ell f_\ell(x^*) = 0 \quad \text{(complementarity)}
\]

\[
\nabla J(x^*) + \sum_\ell \lambda^*_\ell f_\ell(x^*) = 0 \quad \text{(stationarity)}
\]

Reciprocally assume stationarity + complementarity for some \(\lambda^* \geq 0 \) and some \(x^* \) feasible for \((P)\),
Then \(\lambda^* \): Kuhn-Tucker and \(x^* \) optimal for \((P)\)
Sufficient conditions for KT

Lemma

Assume $J^* > -\infty$ and $\exists \hat{x} \in C^0$ such that $\forall \ell, f_\ell(\hat{x}) < 0$. Then a Kuhn-Tucker vector λ^* exists.

In practice: verify Lemma’s conditions + existence of optimum $x^* \in \text{int}(C^0)$ at which $\exists \nabla J, \nabla f_\ell$. Then characterize x^* that verifies complementarity + stationarity (now guaranteed to exist)
Solving original problem: dual algorithm

Lagrangian: $L(x, \lambda) = \sum_s U_s(x_s) + \sum_{\ell} \lambda_{\ell}[C_{\ell} - \sum_{s \supset \ell} x_s]$

Dual: $D(\lambda) = \sum_s U_s(g_s(\lambda^s)) + \sum_{\ell} \lambda_{\ell}[C_{\ell} - \sum_{s \supset \ell} g_s(\lambda^s)]$

where $\lambda^s := \sum_{\ell \in s} \lambda_{\ell}$ and $g_s := (U'_s)^{-1}$

$\Rightarrow \frac{\partial}{\partial \lambda_{\ell}} D(\lambda) = C_{\ell} - \sum_{s \supset \ell} g_s(\lambda^s)$

Dual algorithm:

$x_s \equiv g_s(\lambda^s)$,
$\dot{\lambda}_{\ell} = \kappa_{\ell} \left[\sum_{s \supset \ell} x_s - C_{\ell} \right]_{\lambda_{\ell}}^+$

where $[a]_b^+ = a$ if $b > 0$, $\max(a, 0)$ if $b \leq 0$
Solving original problem: dual algorithm

Theorem

Under suitable conditions

\(U_s \) strictly concave, twice differentiable, \(U'_s(0^+) = +\infty \),
\(U'_s(\infty) = 0 \)

Trajectories \(x_s \) of dual algorithm converge to unique maximizer \(x^ \) of primal problem.*

[Proof: involved, in particular to show existence and uniqueness of ODE’s solution. "Quasiproof" of convergence: Lyapunov function argument]

Potential implementation: multiplier dynamics \(\equiv \) queue dynamics

⇒ Let \(\lambda^e = \) queueing delay of packets and instantaneously let \(x_s \) to \(g_s(\lambda^s) \)

⇒ Principle underlying TCP-Vegas, an alternative to default TCP (TCP Reno)
Takeaway messages

- For unconstrained convex minimization, gradient descent converges to optimizer [Lyapunov stability]
- Admits distributed implementation in network optimization setting
- TCP implicitly achieves \((w, \alpha)\)-fair allocation by running gradient descent
- Kuhn-Tucker Theorem: Complementarity + Stationarity characterization of (P)'s optima
- Queue dynamics implicitly perform gradient descent for multipliers of constrained program