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Markov Decision Process

Formalism and notation [3]

A collection of objects (X ,A,p(y |x ,a), c(x ,a)) where:

X — state space,
X = {1, . . . ,S} × {1, . . . ,N} ∪ {(0,1)},
∀(x , k) ∈ X x — replenishment, k — phase,
A— set of actions,
A = {0,1},
1 — acceptance, 0 — rejection,

p(y |x ,a) — probability of moving to state y from state x
when action a is triggered,

c(x ,a) — instantaneous cost in state x when action a is triggered.
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Optimal control problem

Policy

A policy π is a sequence of decision rules that maps the information
history (past states and actions) to the action set A.

Markov deterministic policy

A Markov deterministic policy is of the form (a(·),a(·), . . .) where a(·)
is a single deterministic decision rule that maps the current state to a
decision (hence, in our case a(·) is a function from X to A).
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Optimal control problem — optimality criteria

Minimal long-run average cost

v̄∗ = min
π

lim
n→∞

1
n
Eπy

(
n−1∑
`=0

C(y`,a`)

)

Policies π∗ optimising some optimality criteria are called optimal
policies (with respect to a given criterion).

Goal: characterise optimal policy π∗ that reaches v̄∗.
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Optimal control problem — optimality criteria

Minimal (expected) n-stage total cost

Vn(y) = min
π(n)

Eπ(n)y

(
n−1∑
`=0

C(y`,a`)

)
, y ∈ X , y0 = y

Convergence results [2], [3, Chapter 8]

The minimal n-stage total cost value function Vn does not converge
when n tends to infinity.
The difference Vn+1(y)− Vn(y) converges to the minimal long-run
average cost (v̄∗).

Relation between different optimality criteria [2], [3, Chapter 8]

The optimal n-stage policy (minimizing Vn) tends to the optimal
average policy π∗ (minimizing v̄∗) when n tends to infinity.
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Cost value function

Bellman equation

Vn+1 = TVn where T is the dynamic programming operator:

(Tf )(y) = min
a

(T̂ f )(y ,a) = min
a

C(y ,a) +
∑

y ′∈X
P (y ′|(y ,a)) f (y ′)

 ,

Decomposition of T

The dynamic programming equation is:

Vn(x , k) = Tunif

( J∑
i=1

piTCA(i)(Vn−1),TD(Vn−1)
)
, (1)

where V0(x , k) ≡ 0 and Tunif , TCA(i) and TD are the different event
operators.
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Description of operators

S

Stock

μ1 μ2 ... μN

N phases

λ

p1 (cost c1)
p2 (cost c2)

pJ (cost cJ)
... J classes of customers (increasing costs)

Controlled arrival operator of a customer of class i , TCA(i)

TCA(i)f (x , k) =

{
min{f (x + 1, k), f (x , k) + ci} if x < S,
f (x , k) + ci if x = S.
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Description of operators

Let µ′k = µk/α.

Departure operator, TD

TDf (x , k) = µ′k

{
f (x , k + 1) if (k < N) and (x > 0),

f ((x − 1)+,1) if (k = N) or (x = 0 and k = 0)

+ (1− µ′k )f (x , k).

Uniformization operator, Tunif

Tunif (f (x , k),g(x , k)) =
λ

λ+ α
f (x , k) +

α

λ+ α
g(x , k).

A. Wieczorek, A. Bušić, E. Hyon
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Critical level policies

Definition (Critical level policy)

A policy is called a critical level policy if for any fixed k and any
customer class j it exists a level tk,j in x , depending on phase k and
customer class j , such that in state (x , k):
- for all 0 ≤ x < tk,j it is optimal to accept any customer of class j ,
- for all x ≥ tk,j it is optimal to reject any customer of class j .
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Structural properties of policies

Assume a critical level policy and consider a decision for a fixed
customer class j .

Definition (Switching curve)

For every k , we define a level t(k) = tk,j such that when we are in
state (x , k) decision 1 is taken if and only if x < t(k) and 0 otherwise.
The mapping k 7→ t(k) is called a switching curve.

Definition (Monotone switching curve)

We say that a decision rule is of the monotone switching curve type if
the mapping k 7→ t(k) is monotone.
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Example — critical levels, switching curve
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Figure: Acceptance points for different customer classes. Blue circle — all
classes are accepted, green triangle — classes 2 and 3 are accepted, pink
square — only class 3 is accepted, red asterisk — rejection of any class.
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Properties of value functions

Definition (Convexity)

f is convex in x (denoted by Convex(x)) if for all y = (x , k):

2f (x + 1, k) ≤ f (x , k) + f (x + 2, k) .

Definition (Submodularity)

f is submodular in x and k (denoted by Sub(x , k )) if for all y = (x , k):

f (x + 1, k + 1) + f (x , k) ≤ f (x + 1, k) + f (x , k + 1) .

Theorem (Th 8.1 [2])

Let a(y) be the optimal decision rule:
i) If f ∈ Convex(x), then a(y) is decreasing in x.
ii) If f ∈ Sub(x , k), then a(y) is increasing in k.
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Properties of the value function of the model

Let Vn be a n-steps total cost value function satisfying the definition of
the model. Vn(x , k) = Tcost

(
Tunif

[∑J
i=1 piTCA(i)(Vn−1),TD(Vn−1)

])
,

Lemma

For all n ≥ 0, Vn is in Incr(�) ∩ AConvex(x) ∩ Convex(x).

Lemma

For all n ≥ 0 Vn is in Sub(x , k) ∩ BSub(x , k).

f ∈ AConvex(x) means that ∀k ∈ {1, .., N} f (0, 1) + f (2, k) ≥ 2f (1, k)

f ∈ BSub(x, k) means that ∀0 < x < S f (x, 1) + f (x, N) ≤ f (x − 1, 1) + f (x + 1, N)

Proofs are done by checking the preservation of all the properties by
all the operators.
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Main structural results

Theorem

The optimal policy is a critical level
policy.

Theorem

For any critical level policy, if the
rejection costs are nondecreasing
(c1 ≤ · · · ≤ cJ ), then the levels tk,j
are nondecreasing with respect to
customer class j, i.e. tk,j ≤ tk,j+1.

Proofs: convexity (+ convergence).
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Main structural results

Theorem

The optimal policy defines an
increasing switching curve.

Proof: submodularity
(+ convergence).
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Hyperexponential model
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Figure: Acceptance points for different customer classes. Blue circle — all
classes are accepted, green triangle — classes 2 and 3 are accepted, pink
square — only class 3 is accepted, red asterisk — rejection of any class.
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Holding costs

The addition of holding costs breaks similarities between queueing
models and inventory systems.

Holding cost operator, Tcost

Tcost f (x , k) =
x

λ+ α
+ f (x , k)

Universality of the approach

The same reasoning can be applied to queueing models with holding
costs resulting in the same properties of optimal policies.
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