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A well-known result

e Single queue, Poisson arrivals, a fast and a slow server
e Control: when to assign customer to slow server
e Result: threshold optimality (Lin & Kumar '84)

e Method: dp (K '95)
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Another well-known result

e Two parallel (heterogeneous) queues, Poisson arrivals
e Control: where to assign an arriving customer

e Result: switching curve

e Method: dp (Hajek '84)
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Yet another well-known result

e Two queues in tandem, Poisson arrivals
e Control: server speeds

e Result: monotone server speeds

e Method: dp (Weber & Stidham '87)
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Method

e Formulate dp value function
e Write down equations needed for anticipated result
e try to propagate value functions

e add equations as needed
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Example (Hajek model)

e Value function: ,
Voa(o) = fol + X mmin {Va(w+ e} + ) maVal(@ = e)™)
e monotonicity: if route to Q2 in x, then also in = + e
e routeto Q2inx = Vy(z+e3) — Viy(z+e1) <0
e monotonicity if V,(z+e1+e2) — Vy(z+2e1) < Vp(x+e2) —Vi(z+eq)
e thus propagate V,,(z+e1+e2)+ Vo (z+e1) < V(x4 2e1) + Vi (z+ €2)
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Example (Lin-Kumar model)

e Value function: Vj,,1(z) = || + AV (z + e1) +ZW’ ((z—e)™)

Vi(zr) =min{V,(x —e; + e3), Vi (x)} if z1 >0, V () otherwise
e monotonicity: if route to server 2 in x, then also in z + e
e route toserver 2 inx = Vy(x+e3) — Viu(r+e) <0
e monotonicity if V,,(z+e1+es)—Viu(z+2e) < Vy(z+es)—V,(x+eq)
e thus propagate V,,(z +e1+e2)+ Vy(x+er) < Vy(x+2e1) + Vi (x+e2)
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Same equations

e "Conclusion”: Lin-Kumar model = Hajek model = Weber-Stidham
model

e Central role to set of equations

e For each set of equations a set of "operators” that propagate (Operators:
things that happen in system such as arrivals, departures, environment
changes,...)

e Dp equation = concatenation of operators
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Example (Hajek model)

Value function:

Vn—l—l(x) — Tcosts (TCC(TR7 TD17 TD2))Vn(ZU)

with
Tcostsf() ()+f()
ch(fla---afm szfz
TRf(x) le_lnf( _|_ ez)
Tpif(x) = f((x —ei) ")
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My contribution

e |dentified many interesting operators
e |dentified relevant (in)equalities
e Matched them

e Wrote an overview about it
(Foundations and Trends on Stochastic Systems 1:1-73, 2006)
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(controlled) environment

Operators

arrivals, admission control, routing

single server, multiple servers, assignable server

tandem server

Ger Koole
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Classes of inequalities

e First-order (e.g., f(x +e1) < f(x + €2))
e Schur convexity (z < y if  more balanced than y)

e Convexity (componentwise convex, sub/supermodular, sub/superconvex,
multimodular)
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Typical results

e First-order: optimality of pc rule (single server) and LEPT (multiple
servers)

e Schur convexity: optimality of join the shortest queue

e Convexity in 1 dimension: monotonicity and optimality of threshold
policy for concave service rates

e Convexity in multiple dimensions: monotonicity of control tandem model
(W & S), convexity of value function of multi-server tandem system

e Convexity in two dimensions: results of Lin & Kumar, Hajek
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First-order example: server assignment

e Two parallel queues, 1 server

e service rates (1, uo, holding costs cq, ¢
e Inequalities (fi; = p — p; with g = max;{u;}):

pif(z —e1) + puf(x) < pof(z — e2) + paf(x)
flx—e1) < f(z), [flz—e2) < f(x)
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Allowable cost functions

e Fillin C(x) = c1z1 + coxs

e Conclusion: pic1 > pacs, c1,c0 > 0 = puc rule
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Environment

e New feature: environment

— Add dimension 0, and operator T,,,,

= Teno(f1,---5 fi)(x) = Zy Ao, y) Zj ¢’ (wo,y) fi(*), x5 =y, ] =
zi, 1 >0

— ¢’ is used to model arrivals and server speed

— Arrival process is closed in set all arrival processes (Asmussen & K

1993)

e Extension: controlled environment

= Teeno(f1, -, i) (@) = ming {35, A(wo, a,y) 3, ¢’ (20, a, ) f(27)}
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Results

e Environment without control: uc rule
e Environment with control: pc rule and w1 < o
e Counterexamples to 1 > o

e Application: 2 " uc” nodes in tandem
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Further use

e Comparison of systems (on-off vs. Poisson)

e Monotonicity in parameters (convexity in arrival rate)
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Example: Comparison of arrival processes

o Taf(x) = flz+er), Thf(x) = 0.5f(x) + 0.5 (x + 2e1)

o n—l—l(aj) — Tcosts(ch(TA7 TDl)Vn(x).
7;—#1(37) — Tcosts(ch(qua TDl)Vri(x)

e All our operators: f< f/ = Tf <Tf
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Example (continued)

e Result: f< f/, feCx = Taf <T,f

o Proof: Tuf(z) = f(z+e1) < 0.5f(z) +05f(x + 2e1) = T, f(z) <
T)f'(z)

e Conclusion: V,, < V!if Vi < Vj

e Thus: costs (such as average queue length) are higher with batch arrivals
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"Big” open problems

e Hysteresis

— dim 1: queue length, dim 2: server speed

— server costs, holding costs, switching costs

— optimal switching rule = hysteresis?

— Lu & Serfozo '84 (again '84!l): hysteresis optimal

— Hipp & Holzbauer '88: counterex. to a condition in L&S

— Kitaev & Serfozo '99: "repairs” error without going into detail
— My opinion: "clean” proof needed

e > 2 servers in Lin-Kumar model = Hajek model

ke

Ger Koole Two is easy, three is hard

20



Switching curve with > 2 servers

e Hajek model (2 dim) with multi-server queues

e Switching curve: f(x +e1+e2)+ f(x+e1) < f(x+ 2e1) + f(z + e2)
= Superconvexity required
e In recursion needed:

— Componentwise convexity (apply Tp2 to SuperC for x5 = 0)
— Supermodularity = f(x +e1) + f(x + e2) < f(x) + f(x + e1 + e2)
(apply Tr to CC)
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Switching curve with > 2 servers (continued)

e Towards a contraction: apply multi-server operator to SuperC (x5 = 0)
o flxt+er+e)+ flxt+er) < flx+2)+ f(z+e) =

o fleteiter)+ f(ate)+ fxter)+f(x) <2f(x+er)+2f(x+er)
o & f(x+ei+ex)+ f(x) < f(x+e1)+ f(x+ ea) = Submodularity

e Contradiction with supermodularity
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Switching curve with > 2 servers (continued)

e failure method confirmed in literature (de Véricourt & Zhou '06)

e Other approaches

— Weaker inequalities? Recursion for CC and SuperM and certain
operators including multi server, no switching curve

— > 2 single-server queues: no results

— Other type of methodology?
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