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1
MEAN FIELD INTERACTION MODEL



Mean Field Interaction Model

B Time is discrete B “Occupancy measure”

MN(t) = distribution of object
B N objects, N large statesattimet |
B Object n has state X, () ] E)jvample |Khouzani 2010 |:

N e M (t) = (S(0), 1(t), R(t), D()

| (XY (t) .. XV\(t))is Markov with

S(t)+ I(t) + R(t) + D(t) =1
B Objects are observable only S(t) = proportion of nodes in

through their state state 'S’




Mean Field Interaction Model

B Time is discrete

B N objects, N large
B Object n has state X, (t)
(X (), .. X"\ (t)is Markov

B Objects are observable only
through their state

B “Occupancy measure”
MN(t) = distribution of object
states at time ¢

B Theorem |[Gast (2011)]
MN(t) is Markov

B Called “Mean Field
Interaction Models” in the
Performance Evaluation
community
[McDonald(2007), Benaim
and Le Boudec(2008)]



Intensity /(N)

B /(N) = expected number of transitions per object
per time unit

B A mean field limit occurs when we re-scale time by

I(N)
i.e. we consider XV(t/I(N))

B I(N) =0(1): mean field limit is in discrete time
|Le Boudec et al (2007)]

[(N) =0(1/N): mean field limit is in continuous time
|Benaim and Le Boudec (2008)]



Virus Infection [Khouzani 2010]

B N nodes, homogeneous, pairwise
meetings
B One interaction per time slot,
[(N) = 1/N; mean field limit is an ODE
B Occupancy measure is
M(t) = (S(B), I(t), R(t), D(t)) with
S(t)+ I(t) + R(t) + D(t) =1
S(t) = proportion of nodes in state 'S’
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The Mean Field Limit

B Under very general conditions (given later)
the occupancy measure converges, inlaw, to a
deterministic process, m(t), called the mean

field limit ,
MN (I(N)) — m(t)

B Finite State Space => ODE



Sufficient Conditions for Convergence

B [Kurtz 1970], see also [Bordenav et al 2008], [Graham 2000]
B Sufficient conditon verifiable by inspection:

[Benaim and Le Boudec(2008), loannidis and Marbach(2009)]

o Let WN(k) be the number of objects that do a transition in
time slot k. Note that E (WN(k)) = NI(N), where

I(N) Hintensity. Assume
E(WN(k)E) < B(N) with lim I[(N)3(N) =0
N— oo

Example: [(N) =1/N
Second moment of number of objects
affected in one timeslot = o(N)

B Similar result when mean field limit is in discrete time
|Le Boudec et al 2007]
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MEAN FIELD INTERACTION MODEL
WITH CENTRAL CONTROL

10



Markov Decision Process

B Central controller

B Action state A (metric,

compact)

B Running reward depends on

state and action

B Goal: maximize expected
reward over horizon T

(m) = E

(" ]

B Policy m selects action at
every time slot

B Optimal policy can be
assumed Markovian
(XN, (t), ..., XN\ (t)) -> action

B Controller observes only
object states

=> 1 depends on M"(t) only

> N (MY (k). 7 (MY (k) | MY(0) = m

k=0
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Example

Policy m: set a=1 when R+S >0 W~ 0=0.68
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Optimal Control

Optimal Control Problem

B Find a policy r that
achieves (or approaches)
the supremum in

VN (m) = sup Vf (m)

*

m is the initial condition of
occupancy measure

B Can be found by iterative
methods

B State space explosion
(for m)
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Can We Replace MDP By Mean
Field Limit ?

B Assume the mean field
model converges to fluid
limit for every action

» E.g. mean and std dev of

transitions per time slot is
0(1)

B Can we replace MDP by
optimal control of mean field
limit ?
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Controlled ODE

B Mean field limit is an ODE

B Control =
action function a(t)

B Example:

Ift>tyo(t) =1 else a(t) =0

95 = —BIS—qS

O = BIS —bl —a(t)]
%—? = a(t)!

%—jf = bl +¢qS.

B Goal is to maximize

U (mg) d—ef/[} r(ps(mo, ), afs)) ds

vy (o) = sup v, (mg)
¥

m, is initial condition
r(S,I,R,D,a) =D

B Variants: terminal values,
infinite horizon with

discount
15



Optimal Control for Fluid Limit

B Optimal function a(t) Can be
obtained with Pontryagin’s
maximum principle or
Hamilton Jacobi Bellman
equation.
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CONVERGENCE,
ASYMPTOTICALLY OPTIMAL POLICY
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Convergence Theorem

B Theorem |Gast 2011]

Under reasonable regularity and scaling assumptions:

lim VY (MYN(0)) = v, (mg
« (MY(0)) = vs (mo)

N—}DD 7\

\

/

Optimal value for system
with N objects (MDP)

\

Optimal value for fluid
limit
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Convergence Theorem

B Theorem |Gast 2011]
Under reasonable regularity and scaling assumptions:

lim V.Y (M N(O)) = v, (Mmy)

N—oo

1

B Does this give us an ol
asymptotically optimal policy ? s}

Optimal policy of system with N
objects may not converge

|
0.8
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Asymptotically Optimal Policy

B Let ™ be an optimal policy
for mean field limit

B Define the following control
for the system with N objects

» At time slot k, pick same action
as optimal fluid limit would
take attimet =k I(N)

B This defines a time
dependent policy.

B Let Vajf = value function
when applying o* to system
with N objects

B Theorem |Gast 2011]
lim Vi =V, =0

N—o00 /\

Optimal value for system
with N objects (MDP)

Value of this policy
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Expected value
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Asymptotic evaluation of policies
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Control policies exhibit discontinuities

> Dﬁﬁm@/

.

Station 2
—> DD B N servers, speed 1-p
' L= |
: [ Lo @/ B One central server, speed pN
. ervice
Station N » serves LQF
— [ L2

(taken from Tsitsiklis, Xu 11)

The drift is:

: _ _ _ | | —p if x; >0and x; =0 forj > i
f;(X) - MJFQ _ p)(X;H_X;lJr{ p if X117 >0 and x; =0 for j > i 1

v

arrivals departures distrib

Discontinuity arrises because of the strategy LQF.
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Differential inclusions as good approx.

B Discontinuous ODE: [] Replace b_V differential
» Here : no solution inclusion x ¢ F(X)
conv(vy, vs)
V2
T~ ~ h F(x) = convexhull( lim f(XN))
~_ 1 ~~ L

B Theorem [Gast-2011b] Under reasonnable scaling assumptions
(but without regularity)

* The differential inclusion has at least one solution
* As N grows, X(t) goes to the solutions of the DI.

* [funique attractor x*, the stationary distribution
concentrates on x*.




B In (Tsitsiklis,Xu 2011), they use an ad-hoc argument to show
that as N grows, the steady state concentrates on

5| =

Tail Prob. {:f}

Y .
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with A = .99.

Easily retrieved by solving the equation 0 € F(x)



Conclusions

B Optimal control on mean field
limit is justified

B A practical, asymptotically
optimal policy can be derived

B Use of differential inclusion to
evaluate policies.
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Questions ?
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