Separation Results on the “One-More” Computational Problems

Emmanuel Bresson (DCSSI, France),
Jean Monnerat (UC San Diego, USA),
Damien Vergnaud (ENS, France)

RSA Conference 2008
Road Map

One-More Computational Problems

Overview of Our Separation Results

More Technical Details

Cryptographic Applications

Conclusion
Road Map

One-More Computational Problems

Overview of Our Separation Results

More Technical Details

Cryptographic Applications

Conclusion
Let P a computational problem.

One-More Computational Problem

n-P problem: being allowed to see the solutions of n instances, solve $n + 1$ instances
One-More Computational Problems

Introduction in 2001 by Bellare et al.
- Analysis of Chaum’s blind signatures

Several subsequent work
- One-more unforgeability (Pointcheval-Stern 00)
- GQ and Schnorr identifications (Bellare-Palacio 02)
- Blind BLS signatures (Boldyreva 03)
- RSA-based transitive signatures (Bellare-Neven 05)
- Schnorr signature vs Discrete Log (Paillier-Vergnaud 05)

Which confidence should we have?
Chaum’s blind signature

- Classical RSA parameters: \((N, e)\) and \(d\) with \(de = 1 \mod \varphi(N)\)
- To sign a message \(M\), ask for the \(e\)-th root of \(r^e M\)
 - Then extract \(M^d\) from the answer
- After having asked \(q\) signing queries, forge a new signature
Remarks on n-Problems

Chaum’s blind signature can be proven under some one-more RSA assumption (the q-RSA)

- can one do better? (weaker assumption)
- can we relate the one-more RSA to RSA?

If $n > m$, the n-P problem is easier than m-P

- the $(n+1)$-P assumption is stronger than the n-P
- computational hierarchy 0-P \geq 1-P \geq \cdots \geq n-P
Our contributions

Evidences that some one-more problems may be easier than standard ones

More precisely:

- \((n + 1)\text{-P}\) is strictly easier than \(n\text{-P}\), or \(n\text{-P}\) is easy
- computational hierarchy:
 \[0\text{-P} > 1\text{-P} > 2\text{-P} > \cdots > n\text{-P} = (n + 1)\text{-P} = \ldots\]

Chaum’s blind signature cannot be proven under the RSA assumption

- unless RSA is easy...

- **Warning**! No concrete weakness on the \(n\text{-P}\) problem were found! (non-BB reductions may exist!)
Problem P is defined via two algorithms
- Parameter generator
- Instance generator

\[
\text{param} = PG(1^k)
\]
\[
\text{ins} = IG(\text{param})
\]
\[
\Pr[\text{Verif}(\text{param}, \text{ins}, \text{sol})] = 1
\]
Experiment: the One-More n-P problem

Algorithm A is now an oracle machine, with access to a P-oracle

$$\text{param} = PG(1^k)$$

$$\text{ins}_i = IG(\text{param})$$

$$\text{ins}_i, i \in [0, n]$$

$$\Pr[\forall i, \text{Verif}(\text{param}, \text{ins}_i, \text{sol}_i)] = 1$$
Our separation results must be understood as follows:

1. Either there is a strict hierarchy:

 \[n-P > (n+1)-P \]

 this holds if \(n-P \) is hard

2. Or there is an equivalence:

 \[n-P = (n+1)-P \]

 this holds if \(n-P \) is easy (then both are easy)
Reduction: algorithm \(A \) can be used to solve problem \(P \)
- We exhibit the **reduction** \(R \)
- \(R \), using \(A \) as subroutine, is a \(P \)-solver
- *If \(P \) is hard*, then \(A \) **cannot exist:** security

Separation: reduction \(R \) can be used to solve problem \(Q \)
- We exhibit a **meta-reduction** \(M \)
- \(M \), using \(R \) as a subroutine, is a \(Q \)-solver
- *If \(Q \) is hard*, then \(R \) **cannot exist:** separation
R provides inputs to A, and uses its output to solve P.

\[
\text{instance of } P \quad \downarrow \quad R \quad \downarrow \quad \text{solution} \quad \rightarrow \quad A
\]
R can be seen as an oracle Turing machine!
A plays the role of an oracle for R
If A is itself an oracle machine, R must be able to simulate that oracle in order to properly use A.

instance of P

solution
A (meta) reduction can use R, provided the oracle for R (i.e. A) is simulated.
The interactions

R has to interact with A: reminds that A plays the role of an oracle to R

We identify several types of queries

- **Launch**: starts a new execution of A with inputs and a fresh random tape (unknown to R)
- **Rewind**: starts an execution of A with a previously used random tape but a new input
- **Relaunch**: starts an execution with a previously used random tape and the corresponding input
- **Stop**: definitely stops the interaction
Preliminaries: the setting we are considering

The basic problem P must be **verifiable**
- exhaustive search is possible (in long time...)
- RSA, $DLog$ fall in this category

The problem P must be **random self-reducible**
- **blinding algorithm** applied to instances
- **unblinding algorithm** applied to solutions

\[
\begin{align*}
1^k & \xrightarrow{PG} \text{param} & \xrightarrow{IG} \text{ins} \\
\downarrow \text{Blind} & & \downarrow \text{Unblind} \\
\text{ins'} & \rightarrow \text{sol'} & \rightarrow \text{sol}
\end{align*}
\]
Our Main Theorem

Theorem — Main Result

If R is a parameter-invariant reduction from n-P to $(n + 1)$-P, then M is a n-P solver
Basic case with One “Launch” Execution

Theorem — Main Result

If R is a parameter-invariant reduction from n-P to $(n+1)$-P, then M is a n-P solver.
Basic case with One “Launch” Execution

M starts R and must answer two types of queries
First deal with P-oracle queries

\[\text{M starts R and must answer two types of queries} \]
\[\text{First deal with P-oracle queries} \]
How to deal with “Launch” queries?
We will \textbf{exploit} the P-oracle simulated by \(R \) . . .

\(n + 1 \text{ inputs} \)

\(\text{M} \)

\(\text{A} \)

\(\text{P-oracle} \)

\(\text{R} \)

\(n + 1 \text{ inputs} \)

\(n + 2 \text{ inputs} \)

\(n + 1 \text{ queries} \)

\(\text{Safely abort A} \)

\(\text{We don’t need R to terminate} \)
What happens if R cheats (in the simulation of P-oracle)?

M makes A to fail and hopes for an “made in R” solution.
R can ask many “Launch” queries of A
How M must take care of this (how to blind its \(n + 1\) inputs)?

\[A^{(i)}\]

Not a big deal:
each new execution of A allows \(n + 1\) new P-queries to R!
What about the **Rewind**? (rerun A with same random tape)
How M must simulate A?

\[n + 1 \text{ inputs} \]

Not a big deal:
Queries asked by A depends only on M’s inputs!
The Discrete Logarithm is:

- Verifiable
- Self-Reducible

The “parameters” of an instance consist in:

- The group
- The **generator**: (basis) relative to which discrete log should be computed, and relative to which a DL-oracle is available

We assumed R was “parameter-invariant”...
Extension to Algebraic Reductions

We extend our main result (applied to one-more Discrete Log) to group invariant reductions:

- R receive inputs in a group \mathbb{G}, relative to a basis $g \in \mathbb{G}$
- R can launch A with inputs in \mathbb{G}, but relative to $g' \neq g$
- R will answer A’s DLog queries in that basis g'

The price to pay for that extension:

- R is an algebraic reduction: for any $Y \in \mathbb{G}$ output by R, we can extract integers a_i such that:

$$Y = g_1^{a_1} g_2^{a_2} \cdots g_k^{a_k}$$

where the g_i are the inputs of R
If R is algebraic, we use the extract feature to retrieve information relative to the second base

\[G, g, y_0, \ldots, y_n \]

\[(g')^{r_i} y_i \]

\[\text{All } x_i = \log_g y_i \]
Road Map

One-More Computational Problems

Overview of Our Separation Results

More Technical Details

Cryptographic Applications

Conclusion
Cryptographic Applications

The one-more unforgeability of Chaum’s signature can be reduced to the one-more RSA [BNPS03]

- The signing oracle is a RSA-inversion oracle
- Here: RSA cannot be reduced to one-more RSA
- Thus: RSA cannot be reduced to Chaum’s unforgeability

The one-more unforgeability of blind BLS is equivalent to the (verifiable) one-more CDH problem [Bol03]

- Here: the CDH does not reduce to one-more CDH
- Thus: the CDH cannot be reduced to blind BLS security
Road Map

One-More Computational Problems
Overview of Our Separation Results
More Technical Details
Cryptographic Applications
Conclusion
It **seems difficult** to prove one-more problems as hard as their classical counterparts.

This would require **non black-box** techniques.

Relying security on one-more problems does **not offer** the same security guarantees.