Securing Group Key Exchange against Strong Corruptions

Emmanuel Bresson
DCSSI Crypto Lab
Paris, France

Mark Manulis
UCL Crypto Group
LLN, Belgium

ASIACCS 2008, 18-20 March, Tokyo, Japan
Group Key Exchange (GKE)

long-lived keys for authentication (\(sk_i, pk_i\)) or \(pw_i\)

secret contributions/ephemeral secrets/internal states

session group key

state_i

communication channel
Security Requirements for GKE

- **Authenticated Key Exchange (AKE)** \([\text{BCPQ01, BCP02, KY03}]\)
 - indistinguishability of the key from a random
 - known-key security (keys from other sessions leak)
 - forward secrecy (leakage of LLs in the future)

- **Mutual Authentication (MA)** \([\text{BCPQ01, BMS07}]\)
 - assurance of participation
 - prevention of unknown key share attacks
 - key confirmation/agreement

- **Contributiveness** \([\text{AST98, BM07}]\)
 - unpredictability of the group key, no enforcement of the key
 - prevention of key replication attacks \([\text{K05}]\)
Session Parameters

• unlimited number of instances $\Pi(i,s)$ for U_i

• every instance is associated with
 – partner id $\text{pid}(i,s) = U_1|...|U_n$
 – session id $\text{sid}(i,s)$
 – internal state/ephemeral secrets $\text{state}(i,s)$
 – session group key $k(i,s)$

• session instances share sid and pid $^{[KS05,BMS07]}$
Modeling Attacks via Queries

• passive/active attacks
 – Execute(U_1, \ldots, U_n) gives execution transcript
 – Send($\Pi(i,s), m$) sends m to $\Pi(i,s)$ and receives the output message of $\Pi(i,s)$

• leakage of session keys
 – RevealKey($\Pi(i,s)$) returns $k(i,s)$
 – answered if $\Pi(i,s)$ has successfully completed the session

• weak/strong corruptions
Corruptions in GKE

- weak corruption model in GKE[BCPQ01,KY03]
 \text{Corrupt}(U_i) \text{ reveals } LL_i

- strong corruption model in GKE[BCP02,KS05]
 \text{Corrupt}(\Pi(i,s)) \text{ reveals } LL_i \text{ and } \text{state}(i,s)

What about revealing \text{state}(i,s) without \text{LL}_i?
Look in 2-Party Key Exchange

- 2 queries: $\text{Corrupt}(U_i)$ and $\text{RevealState}(\Pi(i,s))$ [CK01]

- weak corruption model in 2-KE
 $\text{Corrupt}(U_i)$ but not $\text{RevealState}(\Pi(i,s))$

- strong corruption model in 2-KE
 $\text{Corrupt}(U_i)$ and $\text{RevealState}(\Pi(i,s))$

allows $\text{RevealState}(\Pi(i,s))$ without $\text{Corrupt}(U_i)$
Opening Attacks

- adversary opens $\Pi(i,s)$ through $\text{RevealState}(\Pi(i,s))$
 \rightarrow $\Pi(i,s)$ remains honest

- adversary corrupts U_i through $\text{Corrupt}(U_i)$
 \rightarrow all $\Pi(i,s)$ become malicious

- opening attacks make instances transparent
 all ephemeral secrets used to derive $k(i,s)$ become visible

- can be used for finer and stronger requirements/models
Stronger Security Requirements

• Strong AKE-security
 – no malicious participants in attacked session
 – no opened participants in attacked session
 – opening attacks before the session starts and after it finishes

• Strong MA-security
 – at least 2 session participants honest (uncorrupted)
 – up to n-2 participants malicious (corrupted)
 – no restrictions on the number of opened participants

• Strong Contributiveness
 – at least 1 participant honest (uncorrupted)
 – up to n-1 participants malicious (corrupted)
 – no restrictions on the number of opened participants
Tree Diffie-Hellman Keys

- used in GKE protocols [SSDW88,BW96,P99,KPT00,KPT01]
Requirements on $G = \langle g \rangle$

- cyclic group $G = \langle g \rangle$ of prime order q
- DDH is believed to be hard in G

x is uniform and random in \mathbb{Z}_q

g^x is uniform and random in \mathbb{Z}_q

Solution:

- efficient bijective mapping from \mathbb{Z}_q to G, and
- efficient bijective mapping from G to \mathbb{Z}_q (not log!)
Suitable $G=\langle g \rangle^{[KPT00]}$

- $p = 2q+1$ for a large prime q
- Let $\hat{G} = \langle g \rangle$ be $\text{QR}(p)$ //quadratic residues mod p
- mapping $u : \hat{G} \rightarrow \mathbb{Z}_q$

$$u(z) = \begin{cases}
 z \mod q & \text{if } z \leq q \\
 p - z \mod q & \text{if } q < z < p
\end{cases}$$

- Let $G = \{u(g^i) \mid i \in \mathbb{Z}_q\}$. It can be shown that $G = \mathbb{Z}_q$

- g^x defined as $u(g^x)$ is a bijection from \mathbb{Z}_q to G
Tree Decisional Diffie-Hellman

- **TDDH problem**

 For any *full* binary tree with \(n \) leaves, any suitable \(G \)

\[
g^{x_{1,0}x_{1,1}} \approx g^r
\]

- **TDDH \iff DDH**

 \[
 \text{Adv}^{\text{DDH}} \leq \text{Adv}^{\text{TDDH}} \leq (2n-3)\text{Adv}^{\text{DDH}}
 \]
TDH1 Key Structure

- unauthenticated GKE by Kim-Perrig-Tsudik 2001

- Round 1
 choose random x_{i,v_i}
 U_i broadcasts $y_{i,v_i} = g^{x_{i,v_i}}$

- Round 2
 U_1 at position $<n-1,0>$ broadcasts
 $Y = \{ g^{x_{n-2,0}}, \ldots, g^{x_{1,0}} \}$

- Key Computation
 U_i computes $X = \{ x_{i-1,0}, \ldots, x_{0,0} \}$
 key material is $x_{0,0}$
Adding Authentication

- almost based on the compiler by Katz-Yung 2003

- Round 1
 - U_i chooses nonce r_i
 - computes σ_i on $0|y_{i,v_i}|r_i|\text{pid}_i$
 - broadcasts $0|y_{i,v_i}|r_i|\sigma_i$

- Round 2
 - U_i verifies all σ_j
 - computes $\text{sid}_i = r_1|...|r_n$
 - U_1 computes σ'_1 on $1|Y|\text{sid}_1|\text{pid}_1$
 - broadcasts $1|Y|\sigma'_1$

- Key Computation
 - U_1 verifies σ'_1 and computes $x_{0,0}$
Replay Attack against AKE

session A

σ'_3

$y_{1,0}$

r_3

$y_{2,0}$

σ_3

U_3

sk_3

pk_3

sk_4

pk_4

$x_{0,0}$

U_4

$y_{1,1}$

r_6

σ_6

U_6

sk_6

pk_6

session B

σ'_2

$y_{1,0}$

r_5

$y_{2,0}$

σ_2

U_5

sk_5

pk_5

sk_4

pk_4

$x_{0,0}$

$y_{1,1}$

U_4

$y_{2,1}$

r_4

σ_4

U_2

sk_2

pk_2

attack is feasible due to interleaved nonces
Opening Attack against AKE

- all users accept → session is finished
- asks RevealState(U_i)
- learns x_{i,v_i}, x_{i-1,0}
- can recompute x_{0,0}

attack against strong forward secrecy
Replay Attack against MA

unknown key-share attack
Malicious Participants against MA

- Malicious U sends $y_{1,0}$ to U_2
- Malicious U sends $y_{1,0}$ to U_3

- U_2 computes $x_{0,0}$
- U_3 computes $x_{0,0}$

No agreement on $x_{0,0}$ between U_2 and U_3
Collusion against Contributiveness

\[g^{x_{2,0}x_{2,1}} = x_{1,0} \]

\[x_{1,1} = \frac{x_{1,0}x_{1,1}}{x_{1,0}} \]

\[x_{0,0} = g^{x_{1,0}x_{1,1}} \]

group key is independent of honest user's contribution
Opening Attack against Contributiveness

- wishes to enforce $x_{0,0} = g^r$ for some r of own choice
- U_1 and U_2 send their first messages
- asks RevealState(U_1) and RevealState(U_2)
- learns $x_{2,0}$, $x_{2,1}$ and computes $x_{1,0}$
- computes $x_{1,1} = r_{x_{1,0}}$

adversary can enforce some chosen value as the group key
Achieving Strong Contributiveness

- opening attacks may reveal all ephemeral secrets
 \(\rightarrow \) contributiveness should not rely on secrets

- **Idea**: use random nonces \(r_1, \ldots, r_n \) and make the value of the derived key depend on each nonce

- not to forget about AKE-security

 - **Attempt 1**: \(K = H(x_{0,0} | r_1 | \ldots | r_n) \)
 AKE-security based on Random Oracles
 the goal is to use standard assumptions

 - **Attempt 2**: \(K = \text{PRF}_{x_{0,0}}(r_1 | \ldots | r_n) \)
 prf collision-resistance wrt. to seeds \textit{and} inputs is undefined
 defined only wrt. to seeds: \(\text{PRF}_{s_1}(v) \neq \text{PRF}_{s_2}(v) \) for any \(s_1 \neq s_2 \)
Iterative PRF execution with embedded nonces

- iterations \(i = 0, \ldots, n \)
- deploys PRF and OWP (one-way premutation)
- public constant input \(v_0 \)
- starts with seed \(x_{0,0} \)
 - iteration 0: \(\rho_0 = \text{PRF}_{x_{0,0}}(v_0) \)
 - iteration \(i \): \(\rho_i = \text{PRF}_{\rho_{i-1} \oplus \text{OWP}(r_i)}(v_0) \)
 - final value: \(K = \rho_n \)

```
input  \( v_0 \)
\downarrow
seed  \( x_{0,0} \) → PRF → \( \oplus \) → PRF → \( \oplus \) → ... → \( \oplus \) → PRF → \( \oplus \) → PRF → K
up    nonces \( r_1 \) → OWP \( r_2 \) → OWP \( r_{n-1} \) → OWP \( r_n \) → OWP
```
Achieving Strong MA and AKE

- based on the compiler by Katz-Shin 2005
- public constants v_1 and v_2
- Round 2 ends with U_1 broadcasts $1|Y|\sigma'_1$

- Round 3
 U_i verifies σ'_1 and computes $x_{0,0}$ and K
 computes $\mu_i = \text{PRF}_K(v_1)$
 computes σ''_i on $2|\mu_i|\text{sid}_i|\text{pid}_i$
 broadcasts $2|\sigma''_i$

- Key Computation
 U_i verifies all σ''_j using own μ_i
 computes final $K = \text{PRF}_K(v_2)$
 erases state and accepts with K
Efficiency and Security Comparison with *Static* GKE Protocols

<table>
<thead>
<tr>
<th>GKE</th>
<th>Efficiency</th>
<th>Security Goals</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comm</td>
<td>Comp</td>
<td>AKE</td>
</tr>
<tr>
<td>Abdalla et al.[^{ABC06}]</td>
<td>O(1)</td>
<td>O(n)</td>
<td>w</td>
</tr>
<tr>
<td>Bresson-Catalano[^{BC04}]</td>
<td>O(1)</td>
<td>O(n)</td>
<td>w</td>
</tr>
<tr>
<td>Bresson et al.[^{BCPQ01}]</td>
<td>O(n)</td>
<td>O(n)</td>
<td>w</td>
</tr>
<tr>
<td>Desmedt et al.[^{DPSW06}]</td>
<td>O(1)</td>
<td>O(n)</td>
<td>w</td>
</tr>
<tr>
<td>Dutta et al.[^{DBS04}]</td>
<td>O(1)</td>
<td>O(n)</td>
<td>w</td>
</tr>
<tr>
<td>Katz-Yung[^{KY03}]</td>
<td>O(1)</td>
<td>O(n)</td>
<td>w</td>
</tr>
<tr>
<td>Katz-Shin[^{KS05}] compiler</td>
<td>O(1)</td>
<td>O(n)</td>
<td>s</td>
</tr>
<tr>
<td>TDH1</td>
<td>O(1)</td>
<td>O(n)</td>
<td>s</td>
</tr>
</tbody>
</table>

- w (weak corruptions)
- h (honest participants)
- s (strong corruptions)
- m (malicious participants)
- no opening attacks in \[^{KS05}\]
Summary

• strong corruptions \rightarrow weak corruptions + opening attacks

• stronger security requirements for GKE protocols
 – Strong AKE
 – Strong MA (up to n-2 malicious + n opened)
 – Strong Contributiveness (up to n-1 malicious + n opened)

• Tree Diffie-Hellman Problem \Leftrightarrow DDH for arbitrary full binary trees

• TDH1 protocol
 – achieves all three strong security requirements
 – 3 rounds, standard assumptions

• techniques general an applicable for 2-KE protocols