Security Proofs for an Efficient Password-Based Key Exchange

Emmanuel Bresson Olivier Chevassut
CELAR – France LBNL – DOE - USA

David Pointcheval
CNRS-ENS – France

ACM CCS
Washington DC
October 29th 2003

Summary

- Authenticated Key Exchange
 - Security Model
 - Example
- Password-Based Authentication
 - EKE and AuthA
 - Security Results
- Conclusion
Summary

- Authenticated Key Exchange
 - Security Model
 - Example
- Password-Based Authentication
 - EKE and AuthA
 - Security Results
- Conclusion

Authenticated Key Exchange

Two parties (Alice and Bob) agree on a common secret key sk, in order to establish a secret channel

- Intuitive goal: implicit authentication
 - only the intended partners can compute the session key
- Formally: semantic security
 - the session key sk is indistinguishable from a random string r, to anybody else
Further Properties

- **Mutual authentication**
 - They are both sure to **actually** share the secret with the people they think they do

- **Forward-secrecy**
 - Even if a long-term secret data is corrupted, previously shared secrets are **still** semantically secure

Semantic Security

- For breaking the semantic security, the adversary asks one **test**-query which is answered, according to a random bit \(b \), by
 - the actual secret data \(sk \) (if \(b=0 \))
 - a random string \(r \) (if \(b=1 \))

\[\Rightarrow \text{the adversary has to guess this bit } b \]
The Leakage of Information

- The protocol is run over a public network, then the transcripts are public:
 - an `execute`-query provides such a transcript to the adversary
- The secret data sk may be misused (with a weak encryption scheme, ...):
 - the `reveal`-query is answered by this secret data sk

Passive/Active Adversaries

- **Passive adversary**: history built using
 - the `execute`-queries \rightarrow transcripts
 - the `reveal`-queries \rightarrow session keys
- **Active adversary**: entire control of the network
 - the `send`-queries
 - active, adaptive adversary on concurrent executions
 - to send message to Alice or Bob (in place of Bob or Alice respectively)
 - to intercept, forward and/or modify messages
Security Model

As many **execute**, **send** and **reveal** queries as the adversary wants

![Diagram showing interaction between Alice and Bob]

But one **test**-query, with \(b \) to be guessed...

Diffie-Hellman Key Exchange

The most classical key exchange scheme has been proposed by Diffie and Hellman:

\[G = \langle g \rangle, \text{ cyclic group of prime order } q \]

- Alice chooses a random \(x \in \mathbb{Z}_q \), computes and sends \(X = g^x \)
- Bob chooses a random \(y \in \mathbb{Z}_q \), computes and sends \(Y = g^y \)
- They can both compute the value \(K = Y^x = X^y \)
Properties

- Without any authentication, no security is possible: man-in-the-middle attack
 ⇒ some authentication is required
- If flows are authenticated (MAC or Signature), it provides the semantic security of the session key under the DDH Problem
- If one derives the session key as $sk = H(K)$, in the random oracle model, semantic security is relative to the CDH Problem

Replay Attack

No explicit authentication ⇒ replay attacks
- The adversary intercepts “Alice, X, Auth(Alice, X)”
- He can initiate a new session with it
Bob believes it comes from Alice
 - Bob accepts the key, but does not share it with Alice ⇒ no mutual authentication
 - The adversary does not know the key either ⇒ still semantic security
Mutual Authentication

Adding key confirmation rounds: mutual authentication

[Bellare-Pointcheval-Rogaway Eurocrypt ‘00]

\[k_1 = H_1(Alice, Bob, SK) \]

\[k_2 = H_2(Alice, Bob, SK) \]

\[sk = H(Alice, Bob, X, Y, SK) \]

Summary

- Authenticated Key Exchange
 - Security Model
 - Example

- Password-Based Authentication
 - EKE and AuthA
 - Security Results

- Conclusion
Authentication

- **Asymmetric**: (sk_A, pk_A) and possibly (sk_B, pk_B)
 - they authentify to each other using the knowledge of the private key associated to the certified public key
- **Symmetric**: common (long – high-entropy) secret
 - they use the long term secret to derive a secure and authenticated ephemeral key sk
- **Password**: common (short - low-entropy) secret
 let us assume a 20-bit password

Password-based Authentication

Password (short – low-entropy secret – say 20 bits)

- exhaustive search is possible
- basic attack: **on-line exhaustive search**
 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure \Rightarrow it erases the password from the list
 - and restarts…

after 2^{20} attempts, the adversary wins
Dictionary Attack

- The on-line exhaustive search
 - cannot be prevented
 - can be made less serious (delay, limitations, …)

We want it to be the best attack…

- The off-line exhaustive search
 - a few passive or active attacks
 - failure ⇒ erasure of MANY passwords from the list

this is called dictionary attack

Security

One wants to prevent dictionary attacks:

- a passive trial (execute + reveal)
 - does not reveal any information about the password

- an active trial (send)
 - allows to erase at most one password from the list of possible passwords
 (or maybe 2 or 3 for technical reasons in the proof)
Example: EKE

The most famous scheme EKE: Encrypted Key Exchange

Flows are encrypted with the password.
Must be done carefully: no redundancy

- From X’, for any password π
 - decrypt X’
 - check whether it begins with “Alice”

EKE - AuthA

AuthA

Bellovin-Merritt 1992
Two-flow Encrypted Key Exchange

OEKE = One-flow Encrypted Key Exchange

- EKE: security claimed, but never fully proved
- OEKE and AuthA: security = open problem
OEKE: New Security Result

- Assumptions
 - the ideal-cipher model – for \(E, D \)
 - the random-oracle model – for \(H \) and \(H_1 \)
- Notations
 - \(q_s \), the number of send-queries (active and adaptive)
 - \(q_h \), the number of hash-queries to \(H \) and \(H_1 \)
 - \(N \), the number of passwords

Semantic security of OEKE:

\[
\text{advantage} \geq 3 \frac{q_s}{N} + \varepsilon,
\]

\(\Rightarrow \text{CDH problem} : \) probability \(\geq \varepsilon/8q_h \)

(within almost the same time)

Further Security Results

- Forward-secrecy is considered:
 - provably secure but with a worse reduction
- Verifier-based (included in some version of AuthA):
 - Alice knows a password \(\pi \),
 - Bob just knows a verifier of the password \(f(\pi) \),
 - it is enough to check whether Alice really knows \(\pi \)
 - it does not immediately lead to \(\pi \) (off-line exhaustive search)
Summary

- Authenticated Key Exchange
 - Security Model
 - Example
- Password-Based Authentication
 - EKE and AuthA
 - Security Results
- Conclusion

Conclusion

OEKE and other AuthA variants are
- provably secure
 - semantic security
 - unilateral or mutual authentication
- more efficient than EKE
 - only one flow is encrypted
- more suitable for client-server schemes
 - the server can first send a generic flow not encrypted, and thus independent of the client