The Group Diffie-Hellman Problems

Emmanuel Bresson
(ENS, France)

Olivier Chevassut (LBNL, USA)
David Pointcheval (ENS, France)

OUTLINE

- Motivation
- Related Work
- Two-party Diffie-Hellman key exchange
- Group Diffie-Hellman key exchange
- Relation between the group DH problems and the DH problems
- Conclusion
Motivation

- An increasing number of distributed applications need to communicate within groups, e.g.
 - collaboration and videoconferencing tools
 - replicated servers and distributed computations
- An increasing number of applications have security requirements
 - privacy of data
 - protection from hackers, viruses and trojan horses
- A method to establish a group session key is needed

Objectives

- Studying algorithmic problems in the discrete logarithm setting
 - Diffie-Hellman problems
 - Group Diffie-Hellman problems
- Why finding reductions between the group DH and the two-party DH problems
 - To get confidence in the group DH problems
 - To correctly choose security parameters for them
 - To securely design group key agreement protocols
Related Work

■ Design methodology
 - based on complexity theory
 - successful at avoiding flaws
 - useful to validate cryptographic algorithms

■ Prior Results
 - « Group DH key exchange under standard assumptions », Eurocrypt ’02
 - « Provably authenticated group DH key exchange - dynamic case », Asiacrypt ’01
 - « Provably authenticated group DH key exchange », ACM CCS ’01

Provable Security Methodology

1. Specification of a model of computation

2. Definition of the security goals

3. Statement of the intractability assumptions
 - computational/decisonal Diffie-Hellman problems (CDH/DDH)
 - group computational/decisonal DH problems (GCDH/DDH)

4. Description of a group DH key exchange scheme and its proof of security
 - proof shows by contradiction that the algorithm achieves the security goals under the intractability assumptions
The Diffie-Hellman protocol [DH76]

- 2-party key exchange protocol

- Establishing a secure channel between two parties is reduced to the problem of generating a session key sk
- The session key is used to achieve data secrecy and integrity

\[sk = g^{x_1 x_2} \]

The Diffie-Hellman problems

- Computational problem (CDH)
 - Given \(g^{x_1}, g^{x_2} \), is the enemy able to compute the shared secret \(g^{x_1 x_2} \)?

- Decisional problem (DDH)
 - Given \(g^{x_1}, g^{x_2} \), is the enemy able to distinguish the shared secret \(g^{x_1 x_2} \) from a given random value \(g^r \)?
Security of the DH protocol

- **CDH assumption (weaker than DDH)**
 - If CDH holds, the key $H(g^{x_1x_2})$ is semantically secure, in the random oracle model
- **DDH assumption**
 - If DDH holds, the key $g^{x_1x_2}$ is semantically secure

Basic reductions to the discrete logarithm problem

- Fix a multiplicative group G, and an element g
- **Discrete logarithm problem (DL)**
 - Given $y \in \langle g \rangle$, find x such that $y = g^x$
- One easily gets
 - DL \Rightarrow CDH \Rightarrow DDH
Group Diffie-Hellman Protocols

- Defined by three algorithms
 - SETUP \((all\ cases) \)
 - REMOVE \((dynamic\ case) \)
 - JOIN \((dynamic\ case) \)

- The session key is
 - \(sk = H(g^{x_1 x_2 \ldots x_n}) \)

The SETUP Algorithm

- Ring-based protocols
- Compute step by step a generalized DH values

\[sk = H(g^{x_1 x_2 x_3}) \]
The **REMOVE** Algorithm

\[sk = H(g^{x_1x_2x_3}) \]

The **JOIN** Algorithm

- Initiated by player with the highest index in group

\[sk = H(g^{x_1x_2x_3x_4}) \]
The Group Computational DH Assumption

- The CDH generalized to the multi-party case
 - given some subsets of indices in $I = \{1, \ldots, n\}$ and all the values $g^{\prod_{i \in J} x_i}$ for every given subset J of I,
 - one has to compute the value $g^{x_1 \cdot \cdot \cdot x_n}$
- Example with four parties ($n=4$ and $I = \{1,2,3,4\}$)
 - given the values g^{x_1}, $g^{x_1 x_2}$, $g^{x_1 x_2 x_3}$, $g^{x_1 x_2 x_3 x_4}$, g^{x_2}, $g^{x_2 x_3}$, $g^{x_2 x_3 x_4}$, g^{x_3}, $g^{x_3 x_4}$, g^{x_4}
 - compute the last value $g^{x_1 x_2 x_3 x_4}$

The Group Decisional DH Assumption

- The DDH generalized to the multi-party case
 - given some subsets of indices in $I = \{1, \ldots, n\}$ and all the values $g^{\prod_{i \in J} x_i}$ for every given subset J of I,
 - one has to distinguish the value $g^{x_1 \cdot \cdot \cdot x_n}$ from a random one
- Example with four parties ($n=4$ and $I = \{1,2,3,4\}$)
 - given the values g^{x_1}, $g^{x_1 x_2}$, $g^{x_1 x_2 x_3}$, $g^{x_1 x_2 x_3 x_4}$, g^{x_2}, $g^{x_2 x_3}$, $g^{x_2 x_3 x_4}$, g^{x_3}, $g^{x_3 x_4}$, g^{x_4}
 - distinguish the last value $g^{x_1 x_2 x_3 x_4}$ from a random one
Reducing GDDH to DDH

- Let \mathcal{F}_n be a collection of subsets of $I_n=\{1,\ldots,n\}$
 - E.g., the above triangular structure (flows)
 - For a « good » type of collection of subsets,
 - $\text{adv}^{\text{gddh}}\mathcal{F}(t) \leq (2n-3)\text{adv}^{\text{ddh}}(t^*)$
 - with $t^* \leq t + t_G \sum \gamma_i$ and where γ_i is the size of \mathcal{F}_i

- We can see GDDH as a standard assumption!

Reducing GCDH to DDH and CDH

- Let \mathcal{F}_n be a collection of subsets of $I_n=\{1,\ldots,n\}$
 - E.g., the above triangular structure (flows)
 - For a « good » type of collection of subsets,
 - $\text{suc}^{\text{gcdh}}\mathcal{F}(t) \leq \text{suc}^{\text{cdh}}(t) + (n-2)\text{adv}^{\text{ddh}}(t^*)$
 - with $t^* \leq t + t_G \sum \gamma_i$ and where γ_i is the size of \mathcal{F}_i

- Can we see GCDH as a (hybrid) standard assumption?
Hierarchy among problems

- GCDH → GDDH
- DL → CDH → DDH
- Theorem 2
- Theorem 1

Conclusion and Future Work

- Contributions
 - Formalizing the group Diffie-Hellman problems
 - Studying the case where a reduction applies
 - Reducing GDH assumptions to DDH or, better, CDH

- Future work
 - Reducing GCDH to CDH only?