Provably Authenticated Group Diffie-Hellman Key Exchange:

The Dynamic Case

Olivier Chevassut
(Université Catholique de Louvain - Lawrence Berkeley National Lab)

Emmanuel Bresson and David Pointcheval
(École normale supérieure)

Outline

- Motivation
- The Problem
- Related Work
- Security Model
- Security Definitions
- A Secure Authenticated Group Diffie-Hellman Protocol
- Security Theorem
- Conclusion
Motivation

- An increasing number of distributed applications need to communicate within groups, e.g.
 - collaboration and videoconferencing tools
 - replicated servers
 - stock market and air traffic control
 - distributed computations (Grids)
- An increasing number of applications have security requirements
 - privacy of data
 - protection from hackers (public network)
 - protection from viruses and trojan horses
- Group communication must address security needs

The Problem

- Group Diffie-Hellman Characteristics
 - group relative small (up to 100 members)
 - no centralized server
 - members have similar computing power
 - membership is dynamic (members join and leave the group at any time)

- Goals for Group Key Exchange
 - Authenticated Key Exchange (AKE)
 - implicit authentication: only the intended partners can compute sk
 - semantic security: a session key is indistinguishable from a random string
 - Mutual Authentication (MA)
Prior Work: The Static Case

• “Provably Authenticated Group DH Key Exchange”, ACM CCS’01
 — static membership (all the members join the group at once)
 — model of computation in the Bellare-Rogaway style
 • players are modeled via oracles
 • adversary controls all interactions among the players
 • adversary’s capabilities are modeled by queries to the oracles
 • adversary plays a game against the players
 — an authenticated group Diffie-Hellman key exchange protocol

Model of Communication

• A set of n players
 — each player is represented by an oracle
 — each player holds a long-lived key (LL)
• A multicast group consisting of a set of players

Multicast Group with sk
Modeling the Adversary

- Adversary’s capabilities modeled through queries
 - setup: initialize the multicast group
 - remove: remove players from multicast group
 - join: add players to the multicast group

Freshness Related Queries

sk is Fresh if it is known by the players but not the adversary

(\texttt{LL})

\texttt{corrupt}

(\texttt{sk})

\texttt{reveal}
A Secure Authenticated Group Diffie-Hellman Protocol

- The session key is
 \[sk = H(g^{x_1 x_2 \ldots x_n}) \]

- Ring-Based with flows

- Defined by three algorithms
 - SETUP
 - REMOVE
 - JOIN

- Many details abstracted out
The SETUP Algorithm

- Up-flow: U_i raises received values to the power of x_i and forwards to U_{i+1}
- Down-flow: U_n processes the last up-flow and broadcasts

$sk = H(g^{x_1 x_2 x_3})$

The REMOVE Algorithm

- Down-flow of the SETUP algorithm

$sk = H(g^{x_1 x_2 x_3})$
The JOIN Algorithm

- SETUP initiated by player with highest index in group (U_{gc})

\[sk = H(g^{x_1x_2x_3x_4}) \]

Security Theorem (AKE)

- Random-oracle assumption
- Theorem
\[\text{Adv}_{\text{ake}}(T,Q,q_s,q_h) \leq 2 \cdot n \cdot \text{Succ}_{\text{ema}}(T') + 2 \cdot Q \cdot (n_s) \cdot s \cdot q_h \cdot \text{Succ}_{\text{goh}}(T') \]
\[T', T'' \leq T + (Q+q_s) \cdot n \cdot T_{\text{exp}}(k) \]

- Adversary breaks AKE in two ways:
 1. Assume that the adversary forges a signature w.r.t some player's LL-key => it is possible to build a forger
 2. Assume that the adversary is able to guess the bit b involved in the Test-query
 => it is possible to come up with an algo that solves an instance of the Group Diffie-Hellman problem
Conclusion and Future Work

- Summary
 - A security model for the dynamic case
 - A secure protocol
 - A proof of security in the random-oracle model
- Limitations
 - sequential executions only
 - random-oracle assumption
- "Concurrent Executions for Authenticated Dynamic Group DH Key Exchange using Crypto-Devices", Work in Progress
 - concurrent executions
 - standard model
 - weak-corruption and strong-corruption models