Constant Round Authenticated Group Key Agreement

Emmanuel BRESSON
CELAR, France

Dario CATALANO
ENS, France

Outline

■ Introduction
 ● Security definition
 ● Efficiency issues
■ Proposed scheme
 ● Description of the scheme
 ● Security theorem
■ Conclusion
Group Key Agreement

Communications

- Efficiency
 - Considering a network with one single low connection
Security Goals

- Privacy
 - nobody outside the group should learn the key

- Authentication
 - nobody should fool the others
 - everybody is sure to obtain the right info from the right partner

Other Issues

- Provable security issues:
 - To be based on alternative schemes than DH Key Exchange
 - A line of basic research
 - Both theoretical ...
 - Security and complexity point of view
 - ... and practical importance
 - Efficiency and implementation issues
Our Results

- An alternative solution to DH schemes
- An efficient protocol running in constant rounds
- A provably secure scheme (in the standard model)

Players and Network

- Players have certified public keys
 - A trusted PKI is assumed
 - Messages are authenticated via signatures
- Network is under adversary's control
 - Modification, delay, insertion of messages
 - Players are available through queries made by the adversary
Security Model

Security Notions

- Completeness
 - If no adversary is active, the protocol establishes a common key for all P_i

- Semantic security of the key
 - The session key should be undistinguishable from a random string

- Authentication
 - A key confirmatory mechanism

- Perfect-forward secrecy
 - Security of past session keys even if corruption
Our Main Idea

- Each player sends a contribution nonce
 - A rushing player might wait for other contributions before choosing its own
- Use polynomial secret sharings to distribute information-theoretically hidden masks
 - Separate in two rounds
 - Contributions are sent before getting the masks
 - Masks are sent and interpolated in the second round only
 - A “so far, so good” behavior
 - Protects against “honest-but-curious” only

The Proposed Scheme

- Round 1
 - Each P_i chooses a contribution a_i
 - Each P_i chooses an $(n-1)$-degree polynomial f_i such that $f_i(0)=r_i$: player's randomizer
 - Each P_i sends $f_i(j)$ and an encryption of a_i to P_j
- Round 2
 - Each P_i decrypts the contributions to get a_i
 - Each P_i computes its share of the global polynomial $f=\sum_k f_k$ and sends it (signed)
- Round 3: session key is defined $= g^{f(0)\prod a_k}$
The Scheme

Compute $f(1)$

Receive all $f_i(1), i > 1$

Sends ElG(a_1) + shares of $f_i(0)$, for $i > 1$

$$sk = g^{f(0)} \prod a_i$$

The Polynomial Shares

<table>
<thead>
<tr>
<th>P_i</th>
<th>$f_i(1)$</th>
<th>$f_i(2)$</th>
<th>$f_i(3)$</th>
<th>$f_i(\ldots)$</th>
<th>$f_i(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>$f_2(\ldots)$</td>
<td>$f_2(n)$</td>
</tr>
<tr>
<td></td>
<td>$f_3(1)$</td>
<td>$f_3(2)$</td>
<td>$f_3(\ldots)$</td>
<td>$f_3(\ldots)$</td>
<td>$f_3(n)$</td>
</tr>
<tr>
<td></td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td></td>
<td>$f_n(1)$</td>
<td>$f_n(2)$</td>
<td>$f_n(\ldots)$</td>
<td>$f_n(\ldots)$</td>
<td>$f_n(n)$</td>
</tr>
</tbody>
</table>

$f(1)$ | $f(2)$ | $f(\ldots)$ | $f(\ldots)$ | $f(n)$
Security Theorem

- The scheme establishes a semantically secure session key, provided the underlying encryption scheme is so.

- The session key remains uniformly distributed in the key space, as soon as one player chooses its nonces uniformly.

- Authentication can be done using PRFs.

Efficiency of the Scheme

- Basic version
 - Each player sends (with signatures)
 - n ciphertexts
 - $n+1$ polynomial shares
 - Computations
 - $2n+2$ exponentiations

- With pre-processing
 - All exponentiations in the first round can be precomputed.
Generalization

- Security is still based on Diffie-Hellman...
 - El Gamal has nice homomorphic properties
 => Increases the efficiency
- Can be based on more general complexity assumptions
 - Any semantically secure encryption scheme can be used
 - ... but less efficient construction

Conclusion

- A new efficient scheme
 - Constant number of rounds
 - Provably secure
 - Without Random Oracle (or for confirmation)
- Can be based on more general assumptions
 - Work in progress
 - Soon available on
 http://www.di.ens.fr/~{bresson,catalano}