Two Formal Views of Authenticated Group Diffie-Hellman Key Exchange

E. Bresson1, O. Chevassut2,3, O. Pereira2, D. Pointcheval1 and J.-J. Quisquater2

1\'{E}cole normale sup\'erieure, 75230 Paris Cedex 05, France, \{Emmanuel.Bresson, David.Pointcheval\}@ens.fr
2UCL Crypto Group, B-1348 Louvain-la-Neuve, Belgium, \{pereira, quisquater\}@dice.ucl.ac.be
3Lawrence Berkeley National Lab., Berkeley, CA 94720,USA
OChevassut@lbl.gov

June 28, 2007

Abstract

We recently presented several papers introducing various models and techniques for group key agreement protocols analysis. Such protocols are designed to be executed by a pool of players, possibly dishonest, and the security analysis often raises technical difficulties. Typical example is the group Diffie-Hellman key exchange. The aim of this talk would be to synthesize our results, and discuss the benefits and shortcomings of the applied methods.

The first theoretical concepts of public-key cryptography go back to Diffie and Hellman in 1976 \cite{Diffie76} and the first public-key cryptosystem only two years later to Rivest, Shamir and Adelman \cite{Rivest78}. In their seminal paper \textit{New Directions in Cryptography}, Diffie and Hellman provided a method whereby two principals communicating over an insecure network can agree on a secret value. A value that a computationally bounded adversary can not recover by eavesdropping on flows exchanged between the two principals. Nowadays with the advance of multicast communication infrastructures come the need to extend this method to allow a pool of principals to agree on a secret value. We refer to this extension as the group Diffie-Hellman protocol \cite{Pointcheval98}.

In its original publication, the Diffie-Hellman protocol and the group Diffie-Hellman protocol were designed to protect against a (passive) adversary that only eavesdrop on messages however when it comes to use it in practice a much stronger adversary need to be considered. In the real-world
the adversary has complete control over all the network communications: it may choose to relay, reschedule, inject, alter messages between players; it may choose to impersonate a player and so on. One way to prevent these attacks is to add authentication services to the Diffie-Hellman protocol however despite of the superficial simplicity of this task many protocols have later found to be flawed [4,9]. Some flaws even took years before to be discovered. One way to avoid many of the flaws is to complete formal proofs of security.

Recently formal treatments of the authenticated group Diffie-Hellman problem have been completed [6,5,7,14,15,18]. In [6,5] we analyze this cryptographic problem in the framework of complexity theory by building on the work of Bellare et al. [3]. In our formalization, a process referred to as an oracle running on some machine is modeled as an instance of a player and the capabilities of the adversary are modeled through queries to these oracles. The notion of semantic security captures what it means to securely exchange a session key. We prove protocols secure by constructing a successful algorithm from a well-define “hard” computational problem that uses the adversary as a subroutine. This is what the notion of reduction is all about. Unfortunately, reductions are usually difficult to carry out and barely systematic.

Another trend is to verify cryptographic protocols using “logical” approaches [1,12,13,17,11,18]. The model we presented in [18,19] belong to these ones. Theses methods typically assume perfect cryptography and consider the messages exchanged as the assembly of symbolic elements (identifiers, keys, nonces, . . .). These simplifications make protocol analysis much more systematic and often automatic (typically through the use of model checkers or theorem provers). Security proofs carried out in these models have often been criticized by the cryptographic community because of to the more abstract model of the adversary. Nevertheless, these methods permitted the analysis of more important and diversified systems and the discovery of attacks against numerous practical protocols. Furthermore, several works have been recently carried out in order to bridge the gap between the logic and the complexity approaches [2,16,10,20], by showing the computational soundness of logical models.

In our two complementary approaches of the authenticated group Diffie-Hellman key exchange we identified models and security properties. By pursuing two formal treatment in parallel we were able to discover attacks against published protocols and modified them to achieve provable security. The structure of these proofs depicts quite well the main benefits and drawbacks of each technique. The complexity-based cryptography allowed us to determine which part of the security of the group Diffie-Hellman decision problem is injected in the analyzed protocols, what gives indications about the security parameters to be used in the practice. However, to be more manageable, this analysis does not capture attacks scenarios implying
simultaneous and concurrent sessions of the protocol. These last attacks schemes are precisely the ones for which logical techniques have shown their great efficiency. By applying techniques of this category, we were able to discover systematically several unpublished attacks scenarios, and prove security properties for slight variants of other ones. However, these proofs were constructed in the abstraction of the involved cryptographic primitives characteristics.

This talk is a first attempt to evaluate the benefits and shortcomings of two formal models for the authenticated group Diffie-Hellman key exchange. We will first highlight the security goals for the authenticated group Diffie-Hellman key exchange to achieve and then show how these goals can be meet in both models. Our goal in this talk is to show how to take advantage of both approaches and also to fill out the gap between two “views” in cryptography [2, 16, 10, 20]).

References