
Comparison of different classes of service

curves in Network Calculus

Anne Bouillard ∗ Laurent Jouhet ∗∗ Éric Thierry ∗∗

∗ ENS Cachan (Bretagne) / IRISA, Rennes, France (e-mail:
anne.bouillard@bretagne.ens-cachan.fr).

∗∗ LIP, ENS Lyon, France, (e-mail:
laurent.jouhet,eric.thierry@ens-lyon.fr)

Abstract: In envelope-based models for worst-case performance evaluation like Network
Calculus or Real-Time Calculus, several types of service curves have been introduced to quantify
some deterministic service guarantees. This paper studies the expressiveness of those different
definitions of service curves. We revisit the hierarchy ranging from the most restrictive definition
linked to variable capacity nodes to the most general definition of simple service curves. We
state the conditions when the different definitions overlap and discuss the existence of canonical
descriptions for systems specified through those definitions.

Keywords: Network Calculus, (min,+)-algebra, service curves

1. INTRODUCTION

Network Calculus (NC) is a theory of deterministic queu-
ing systems encountered in communications networks. It is
based on (min, +) algebra and it can be seen as a (min, +)
filtering theory by analogy with the (+,×) filtering the-
ory used in traditional system theory. More than just a
formalism, it enables to analyze complex systems and to
prove deterministic bounds on delays, backlogs and other
Quality-of-Service (QoS) parameters. The analysis usu-
ally focuses on worst-case performances. The information
about the system is stored in functions such as arrival
curves shaping the traffic or service curves quantifying
the service guaranteed at the network nodes. These func-
tions can be combined together thanks to special Network
Calculus operations, in order to analyze the system and
compute bounds on local performances (i.e. maximum
buffer size at a node) or on end-to-end performances (i.e.
maximum end-to-end delay). At the present time, the
theory has developed and yielded accomplished results
which are mainly recorded in two reference books: Chang
(2000) and Le Boudec and Thiran (2001). A nice survey of
NC including recent results can be found in Fidler (2010).

Nevertheless it remains difficult to draw the exact borders
of Network Calculus at the time being. One of the main
obstacles comes from the apparent variety of service curve
definitions in the literature which might lead to different
types of models. Readers are often warned to stick to the
definition chosen in each paper in order to ensure the
relevance of the model and the validity of its analysis.
However it is rarely questioned whether another choice
may lead to the same model or at least to the same
performance evaluation.

Our general objective is to unveil the differences be-
tween models yielded by the different definitions of service

⋆ ONERA (CNRS 038361)/ ANR PEGASE SEGI 009 02

curves. As a first step, we study their expressiveness. Such
comparisons exist as folklore in the Network Calculus
literature, but they are scattered, some proofs are missing
and some comparisons are unset. Moreover the question of
canonical service specifications has not been tackled. Given
a system constrained by a family of service curves of a fixed
type, is it possible to reduce or transform this family into
a canonical one? Is it possible to translate it into a family
of another type of service curves? We investigate those
key issues in this paper. Those are necessary premises to
present NC as an unified theory.

Section 2 introduces the NC framework and the service
curve definitions we wish to classify: variable capacity node
service, strict service, weakly strict service, simple service.
In Section 3, we compare those different definitions which
fit into each other but with some large gaps. We fully
characterize the cases when they are equivalent and for
instance we show that the equivalence between variable
capacity node service and strict service, often quoted as
a folklore result, is often true but not always. We also
state several results about the translation of service curve
families into other families of the same type or of a
different type. As soon as simple services are involved,
these are mainly impossibility results. Section 4 concludes
the paper with first assessments about those comparisons
and discusses future works required to complete the big
picture.

Note that the study also concerns alternative theories like
Real-Time Calculus (RTC - Thiele et al. (2000); Wan-
deler (2006) or Sensor Calculus (SC - Schmitt and Roedig
(2005)) that use extremely close formalisms (envelope-
based models, (min, +) algebra). In particular, RTC mod-
els are described as a combination of RTC Greedy Process-
ing Components which have exactly the same behavior as
NC Variable Capacity Nodes, as shown in Bouillard et al.
(2009).

2. DEFINITIONS AND NOTATION

2.1 NC functions and operations

Network Calculus’ primal objective is the performance
analysis of communication networks. Flows and services
in the network are modelled by non-decreasing functions
t 7→ f(t) where t is time and f(t) an amount of data. There
are different models depending on whether t (resp. f(t))
takes discrete or continuous values, e.g. in N or R+. In this
paper, we will present the results in a fluid model where
time and data quantities belong to R+, but it can be easily
checked that they directly apply to models where time or
data are discrete. Note also that we do not exactly use
the term fluid as in Le Boudec and Thiran (2001) where
the fluid model adds the condition that the manipulated
functions are continuous.

In Network Calculus, one must distinguish two kinds of
objects: the real movements of data and the constraints
that these movements satisfy. The real movements of data
are mainly modeled by cumulative functions: a cumulative
function f(t) counts the total amount of data that has
achieved some condition up to time t (e.g. the total
amount of data which has gone through a given place
in the network). In all the paper, we make the usual
assumption that cumulative functions are left-continuous.
This is not a huge restriction for the modeler. This
assumption has nevertheless a technical importance in
the Network Calculus edifice (e.g. when defining the start
of backlogged periods). On the contrary, no assumption
of (left- or right-)continuity is imposed to the constraint
functions.

In the paper, Network Calculus functions will belong to F
the set of functions from R+ into R = R ∪ {−∞, +∞}.
Cumulative functions usually belong to F↑ = {f ∈
F | f non-decreasing, left-continuous, f(0) = 0}.

Beyond usual operations like the minimum or the addition
of functions, Network Calculus makes use of several classi-
cal operations which are the translations of (+,×) filtering
operations into the (min, +) setting, as well as a few other
transformations. Here is a sample of operations that can
be encountered: let f, g ∈ F , ∀t ∈ R+,

• (Inf-)convolution: (f∗g)(t) = inf0≤s≤t(f(s)+g(t−s)).
• Sup-convolution: (f∗g)(t) = sup0≤s≤t(f(s)+g(t−s)).
• (Inf-)deconvolution: (f ⊘ g)(t) = supu≥0(f(t + u) −

g(u)).
• Sup-deconvolution:(f⊘g)(t) = infu≥0(f(t+u)−g(u)).
• Positive rounding: f+(t) = max(f(t), 0).
• Positive and non-decreasing upper closure: f↑(t) =

max(sup0≤s≤t f(s), 0).

• Sub-additive closure: f∗ = infn∈N f (n) where f (n) =
f ∗ · · · ∗ f , n times, and f (0) = 0 at 0 and = +∞
elsewhere.

• Super-additive closure: f∗ = supn∈N f (n) where

f (n) = f∗ · · · ∗f , n times, and f (0) = 0 at 0 and = −∞
elsewhere.

Such operations have interesting algebraic properties (e.g.
see Baccelli et al. (1992)). Network Calculus formulas use
such operations to combine the curves constraining the

traffic and the services in the network, in order to output
worst-case performance bounds.

2.2 NC input/output systems

An NC model for a communication network usually con-
sists in a partition of the network into subsystems which
may have different scales (from elementary hardware like
a processor to large sub-networks), a description of data
flows, where each flow follows a path through a specified
sequence of subsystems and where each flow is shaped by
some arrival curve just before entering the network, a de-
scription of the behavior of each subsystem, that is service
curves bounding the performances of each subsystem, as
well as service policies in case of multiplexing (several flows
entering the same subsystem and thus sharing its service).

Systems or sub-systems are described as input/output
systems (where the number of inputs is the same as the
number of outputs). An (acceptable) trajectory for a sys-
tem crossed by p flows is a set of cumulative functions
(Ak)1≤k≤p and (Bk)1≤k≤p in F↑ (where Ak and Bk re-
spectively correspond to the cumulative functions of flow k
at the input and the output of the system). For now, a
system S over p flows will be simply defined as the set
of all its acceptable trajectories, that is S ⊆ Fp

↑ × Fp
↑ .

Such a black boxed view is usual in classical filtering
theory and enables to deal with any scale of system. Note
also that this definition allows to consider deterministic
dynamics (one output for one input) and non-deterministic
dynamics (several possible outputs for one input).

2.3 NC main performance measures: backlog & delay

Let (A, B) be an input/output trajectory for a flow
in a system. Then the global backlog of the flow at
time t is b(t) = A(t) − B(t) and the delay (under
the FIFO policy assumption) endured after z input bits
is d(z) = B(−1)(z) − A(−1)(z) where for all f ∈ F ,
f (−1)(z) = inf{t ≥ 0 | f(t) ≥ z} (pseudo-inverse). Now
for a system S, the worst-case backlog over S is bmax =
sup(A,B)∈S supt≥0 A(t) − B(t) and the worst-case delay

over S is dmax = sup(A,B)∈S supz≥0 B(−1)(z) − A(−1)(z).

Given a trajectory (A, B) ∈ F↑ × F↑, a backlogged period
is an interval I ⊆ R+ of time during which the backlog
is non-null, i.e. ∀u ∈ I, A(u) > B(u). Let t ∈ R+, the
start of the backlogged period of t is start(t) = sup{u ≤
t|A(u) = B(u)}. Since the cumulative functions A and B
are assumed left-continuous, we also have A(start(t)) =
B(start(t)). If A(t) = B(t), then start(t) = t. For
any t ∈ R+,]start(t), t[is a backlogged period (]start(t), t]
if A(t) > B(t)).

In the definition of backlogged period, the interval I can
be closed, semi-closed or open. Such a flexible definition
is convenient in some future definitions or proofs where
the precise description of trajectories requires a particular
type of intervals, e.g. semi-closed rather than open (see
the consequences of such choices in Section 2.6). Note that
in the literature, backlogged periods have been sometimes
defined for open intervals only Bouillard et al. (2008) (page
885) or without worrying about this question Le Boudec
and Thiran (2001) (Definition 1.3.2, page 21).

2.4 NC arrival curves: one definition

Given a data flow traversing a network, let A ∈ F↑ be
its cumulative function at some point in the network, i.e.
A(t) is the number of bits that have gone through this
point until time t, with A(0) = 0. A function α ∈ F is
an arrival curve for A if ∀ s, t ∈ R+, 0 ≤ s ≤ t, we have
A(t) − A(s) ≤ α(t − s).

The set of all arrival curves for A ∈ F↑ admits a minimum
which remains an arrival curve: it is α = A⊘A and it can
be called the canonical arrival curve for A.

2.5 NC service curves: several definitions

In the literature, the definitions of service curves usually
concern:

• minimum service curves which are lower bounds on
the service provided in a system (useful for upper
bounds on worst case performances).

• single flow systems S, that is S ⊆ F↑ × F↑.

Note that in NC models with multiplexing, the aggregation
of all the flows entering the system is often considered as
a single flow to which the minimum service is applied.

A B
S

Fig. 1. A single flow input/output system.

For each type T of service curve, we define for any β ∈ F
and for any input/output trajectory (A, B) ∈ F↑ ×F↑ the
conditions so that β is a T -service curve for (A, B) (we
also say that (A, B) admits β as a T -service curve). We
then define for all β ∈ F , ST (β) the set of all trajectories
admitting β as a T -service curve. We say that a system S
admits β as a T -service curve if it is true for all its
trajectories, i.e. S ⊆ ST (β).

• Simple service curve: Ssimple(β) = {(A, B) ∈ F↑×
F↑ | A ≥ B ≥ A ∗ β}.

• Strict service curve (weak sense): Swstrict(β) =
{(A, B) ∈ F↑ × F↑ | A ≥ B, and ∀t ≥ 0, B(t) ≥
B(start(t)) + β(t − start(t))}.

• Strict service curve: Sstrict(β) = {(A, B) ∈ F↑ ×
F↑ | A ≥ B, and ∀ backlogged period]s, t], B(t) ≥
B(s) + β(t − s)}.

• Variable capacity node: Svcn(β) = {(A, B) ∈ F↑×
F↑ | ∃C ∈ F↑, ∀t ≥ 0, B(t) = inf0≤s≤t

[

A(s)+C(t)−

C(s)
]

and ∀0 ≤ s ≤ t, C(t) − C(s) ≥ β(t − s)}.

Two classical functions used as service curves are:

• Pure delay T ∈ R+∪{+∞}: δT (t) = 0 if t ≤ T , = +∞
otherwise.

• Constant rate r ∈ R+∪{+∞}: λr(t) = rt (if r = +∞,
we set λr = δ0).

Nothing prevents us from using some service curves which
are not in F↑, e.g. with negative values, decreasing parts
or left-discontinuities. Nevertheless note that it is usually
required that at least β(0) ≤ 0, otherwise β(0) > 0 implies
that B(0) > A(0) and thus Ssimple(β) = Swstrict(β) =
Sstrict(β) = Svcn(β) = ∅.

2.6 Remark on strict service curves

The definition of strict service curves presented here is
the one used by Schmitt and Zdarsky (2006); Schmitt
et al. (2006). Some papers do not choose exactly the same
definition for strict service curves Bouillard et al. (2007,
2008): they replace the backlogged interval]s, t] in the
definition by]s, t[(both definitions allow B(s) = A(s),
but this variant also allows B(t) = A(t)). For β ∈ F , let
us denote S′

strict(β) the set of trajectories satisfying this
variant of our definition. How do those slightly different
definitions compare? It is clear that ∀β ∈ F , S′

strict(β) ⊆
Sstrict(β) and the equality holds if β is left-continuous. If
β is not left-continuous we may have a strict inclusion
as illustrated by Figure 2 where A(t) = 1/2 if t > 0
and = 0 if t = 0, B(t) = min(t/2, 1/2), β(t) = ⌊t⌋, and
(A, B) ∈ Sstrict(β) but (A, B) 6∈ S′

strict(β) (see Bouillard
et al. (2009) for details).

β

B

A

0 1 t

1

0

1/2

bits

Fig. 2. Beware of the definition of strict service curves.

2.7 Remark on variable capacity nodes

Lemma 1. Let A, C ∈ F↑ and B ∈ F such that ∀t ≥ 0,
B(t) = inf0≤s≤t

[

A(s) + C(t) − C(s)
]

. Then B ∈ F↑ and
∀t ≥ 0, B(t) = A(start(t)) + C(t) − C(start(t)).

The proof of that result is a bit technical and can be found
in Bouillard et al. (2009).

3. COMPARISON OF NC SERVICE CURVES

3.1 Monotony

All the definitions from the literature share the same
natural monotonic behavior about trajectories.

Proposition 1. (Monotony). For any type T of service
curve in the literature, for all β, β′ ∈ F (not necessarily
in F↑), if β ≤ β′ then ST (β) ⊇ ST (β′).

Moreover, for variable capacity node, strict and weakly
strict service curves, one can replace service curves by some
of their closures.

Proposition 2. Let β ∈ F , then Swstrict(β) = Swstrict(β↑),

Sstrict(β) = Sstrict(β↑), Sstrict(β) = Sstrict(β
∗). Svcn(β) =

Svcn(β↑) and Svcn(β) = Svcn(β∗).

The previous result is considered as folklore and the proof
is rather simple.The next theorem is new.

Theorem 1. (Monotony refined). Let β, β′ ∈ F ,

(1) Ssimple(β) ⊇ Ssimple(β
′) ⇐ β ≤ β′.

(2) Ssimple(β) ⊇ Ssimple(β
′) ; β ≤ β′.

(3) Ssimple(β) ⊇ Ssimple(β
′) ⇒ β↑ ≤ β′

↑.

(4) Ssimple(β) ⊇ Ssimple(β
′) : β↑ ≤ β′

↑.

(5) Ssimple(β↑) ⊇ Ssimple(β
′
↑) if and only if β↑ ≤ β′

↑.

(6) Swstrict(β) ⊇ Swstrict(β
′) if and only if β↑ ≤ β′

↑.

(7) Sstrict(β) ⊇ Sstrict(β
′) if and only if (β↑)

∗ ≤ (β′
↑)

∗.

(8) Svcn(β) ⊇ Svcn(β′) if and only if (β↑)
∗ ≤ (β′

↑)
∗.

Proof. (1) Proposition 1.

(2) Take β′(t) = 0 if t = 0 or t ∈]1, 2] and β′(t) = +∞
otherwise and β(t) = 0 if t ∈ [0, 1] or t ∈]2, +∞[and
β(t) = +∞ otherwise. Then, β � β′ but, ∀A ∈ F↑,
(A ∗ β′)↑(t) = A(t) if t ∈ [0, 1], = A(1) if t ∈]1, 2] and
= max(A(1), A(t − 2)) otherwise, whereas (A ∗ β)↑(t) =
A(0) = 0 if t ∈ [0, 1], = A(t − 1) if t ∈]1, 2] and = A(1)
otherwise. Then, (A ∗ β′)↑ ≥ (A ∗ β)↑ and Ssimple(β) ⊇
Ssimple(β

′). Figure 3 illustrates this construction.

+∞+∞ +∞

A A

(A ∗ β)↑

0 1 1t2 0 2 t

bits bits

(A ∗ β′)↑

Fig. 3. Ssimple(β) ⊇ Ssimple(β
′) ; β ≤ β′.

(3) (δ0, β
′
↑) ∈ Ssimple(β

′), so (δ0, β
′
↑) ∈ Ssimple(β) and

then β′
↑ ≥ (δ0 ∗ β)↑ = β↑.

(4) Take β′(t) = 0 if t = 0 or t ∈]1, +∞[and β′(t) =
+∞ otherwise, and β = β′

↑ = δ0. We have β↑ ≤ β′
↑

and Ssimple(β) = {(A, A) | A ∈ F↑}, but ∀A ∈ F↑,
(A, A(min(., 1)) ∈ Ssimple(β

′). Figure 4 illustrates this
construction.

(A ∗ β′)↑

A
+∞+∞

A

(A ∗ β)↑
=

0

bits

1 0t t

bits

Fig. 4. Ssimple(β) ⊇ Ssimple(β
′) : β↑ ≤ β′

↑.

(5) ⇒: idem (3); ⇐: Proposition 1.

(6-8) Proposition 2 and ⇒: idem (3); ⇐: Proposition 1.

2

3.2 Families of service curves

We now discuss the fact that a system may admit several
service curves of one or several types. Let (βi)i∈I be a
(possibly infinite) family of functions from F , let T be a
particular type of service curve. The fact that a system S
admits all the functions βi as T -service curve can be also
written S ⊆

⋂

i∈I ST (βi).

Theorem 2. (Families of curves). (1) Let I and J be fi-
nite sets and (βi)i∈I and (β′

j)j∈J be two families

in F↑. Then,
⋂

i∈I Ssimple(βi) =
⋂

j∈J Ssimple(β
′
j) iff

{β ∈ F | ∃i ∈ I, β ≤ βi} = {β ∈ F | ∃j ∈ J, β ≤ β′
j}.

(2)
⋂

i∈I Swstrict(βi) = Swstrict((supi∈I βi)↑).

(3)
⋂

i∈I Sstrict(βi) = Sstrict((supi∈I βi)
∗).

(4)
⋂

i∈I Svcn(βi) = Svcn((supi∈I βi)
∗).

Proof. (1) First set I = {0, . . . , k} and consider
∩i∈ISsimple(βi) such that functions βi are pairwise non-
comparable. Then, there exists t1, . . . , tk such that ∀i ∈ I \
{0}, β0(ti) > βi(ti) and one can assume without loss of
generality that 0 < t1 ≤ · · · ≤ tk. Set

A(t) =

{

0 if t = 0,
β0(tk) − β0(ti) if ti ≤ tk − t < ti+1,
+∞ if t > tk−1.

Now, for all i ∈ I, A ∗ βi(tk) = infj βi(tj) + A(tk −
tj) = infj βi(tj)+β0(tk)−β0(tj). Then, A∗β0(tk) = β0(tk)
and ∀i ∈ {1, . . . , k}, A ∗ βi(tk) ≤ βi(ti) + β0(tk)− β0(ti) <
β0(tk). Then, ∩i∈ISsimple(βi) (∩i∈I/{0}Ssimple(βi). Fig-
ure 5 illustrates this.

t1 t2 − t1t2 t2t t

bits bits

β2

β0
A ∗ β0(t2)

A ∗ β1(t2)

A ∗ β2(t2)

β1

β0(t2) − β0(t1)

Fig. 5. Non-inclusion of families of curves.

Come back to ∩i∈ISsimple(βi) = ∩j∈JSsimple(β
′
j) where

the βi’s are pairwise non comparable and so are the β′
j’s.

We also have for all j ∈ J , ∩i∈ISsimple(βi)
⋂

Ssimple(β
′
j) =

∩i∈ISsimple(βi). Then, by the contraposition of the previ-
ous paragraph, ∃i ∈ I, such that β′

j ≤ βi. By symmetry,

∀i ∈ I, ∃j such that βi ≤ β′
j . As functions in I and J are

not two-by-two comparable, then this means that ∀i ∈ I,
∃j ∈ J such that βi = β′

j and the symmetric.

(2) ∀i ∈ I, Swstrict(βi) ⊇ Swstrict(supi∈I βi), thus
⋂

i∈I Swstrict(βi) ⊇ Swstrict(supi∈I βi). Let (A, B) ∈
⋂

i∈I Swstrict(βi). Then, ∀t ∈ R+, ∀i ∈ I, B(t) ≥
A(start(t)) + βi(t − start(t)), so B(t) ≥ A(start(t)) +
supi∈I βi(t − start(t)) and (A, B) ∈ Swstrict(supi∈I βi) =
Swstrict((supi∈I βi)↑).

(3) Idem 2., except: Let (A, B) ∈
⋂

i∈I Sstrict(βi). Then,
∀s < t ∈ R+, ∀i ∈ I, B(t) ≥ B(s) + βi(t − s), so B(t) ≥
B(s) + supi∈I βi(t − s) and (A, B) ∈ Swstrict(supi∈I βi) =

Swstrict((supi∈I βi)
∗).

(4) Idem 3., replacing B by C. 2

3.3 Hierarchy

The next hierarchy between the different notions of service
curves is often considered as folklore, but the cases of
equality have never been investigated (e.g. Svcn(β) =
Sstrict(β) is claimed with no assumption on β in Le Boudec
and Thiran (2001) and Wandeler (2006)).

Theorem 3. (Hierarchy). For all β ∈ F , we have the
following inclusions:

Svcn(β) ⊆ Sstrict(β) ⊆ Swstrict(β) ⊆ Ssimple(β).

The equalities require:

• Svcn(β) = Sstrict(β) iff β ⊘ β has only finite values.
• Sstrict(β) = Swstrict(β) iff β↑ = δT , T ∈ R+ ∪ {+∞}.
• Swstrict(β) = Ssimple(β) iff β↑ = δ0 or 0.

Proof. We suppose that β(0) ≤ 0, otherwise all the sets
are empty.

The inclusion Sstrict(β) ⊆ Swstrict(β) is clear, since for all
t ∈ R+, either]start(t), t] is a backlogged period and thus
B(t) − B(start(t)) ≥ β(t − start(t)), or]start(t), t[is a
backlogged period and B(t) = A(t) but then start(t) = t
and B(t) − B(start(t)) = 0 ≥ β(t − start(t)) = 0.

The inclusion Swstrict(β) ⊆ Ssimple(β) comes from the
remark that if (A, B) ∈ Swstrict(β), then B(t) ≥
B(start(t)) + β(t − start(t)) = A(start(t)) + β(t −
start(t)) ≥ inf0≤s≤t(A(s) + β(t − s)).

Now let us show that Svcn(β) ⊆ Sstrict(β). Let (A, B) ∈
Svcn(β), there exists C ∈ F↑ such that ∀t ≥ 0, B(t) =
inf0≤s≤t

[

A(s)+C(t)−C(s)
]

and ∀0 ≤ s ≤ t, C(t)−C(s) ≥
β(t−s). Consider a backlogged period]s, t] for (A, B), then
by definition start(s) = start(t) = p. From Lemma 1, we
have B(t) = B(p)+C(t)−C(p) and B(s) = B(p)+C(s)−
C(p). Thus B(t) − B(s) = C(t) − C(s) ≥ β(t − s) and we
have proved that β is a strict service curve for (A, B).

Conditions of equality:

• Svcn(β) = Sstrict(β): As Svcn(β) = Svcn(β∗) and
Sstrict(β) = Sstrict(β

∗), one can consider that β is super-
additive. Then, one has β(t − s) ≤ β ⊘ β(t) − β ⊘ β(s)
and

∑n
i=1 β ⊘ β(ti) + β(t0) ≥ β(

∑n
i=0 ti). Suppose that

β⊘β < ∞. Let (A, B) ∈ Sstrict(β). This trajectory can be
seen as a succession of “idle” periods (intervals of length
≥ 0 during which the backlog is 0) and backlogged period
of positive length. Let (ti)i≥0 be the increasing sequence
of the start of those periods (t2i are the start of idle
periods and t21+1 are the start of backlogged periods).
Set ℓi = ti+1 − ti and

C(t) =

A(ti) + β ⊘ β(ti) +

i
∑

j=0

β ⊘ β(ℓj) if t = ti

A(t) + β ⊘ β(t) +

2i
∑

j=0

β ⊘ β(ℓj) if t2i < t < t2i+1

B(t) − B(t2i+1) − C(t2i+1) if t2i−1 < t < t2i

Then, ∀s < t,

• if t2i−1 ≤ s < t < t2i, then C(t) − C(s) = B(t) −
B(s) ≥ β(t − s);

• if t2i ≤ s < t < t2i+1 then C(t) − C(s) = β ⊘ β(t) −
β ⊘ β(s) + A(t) − A(s) ≥ β(t − s);

• if tj ≤ s < tj+1 ≤ t2i+1 ≤ t ≤ t2i+2, then C(t) −
C(s) = C(t) − C(t2i+1) + C(t2i+1) − C(s) ≥ β(t −

t2i+1) +
∑2i+1

k=j+1 β ⊘ β(ℓj) ≥ β(t − t2i+1 + t2i+1 −

tj) ≥ β(t − s);
• if tj ≤ s < tj+1 ≤ t2i ≤ t ≤ t2i+1, then C(t) −

C(s) ≥ C(t) − C(t2i) + C(t2i) − C(s) ≥ β(t − t2i) +
∑2i

k=j+1 β ⊘ β(ℓj) ≥ β(t − t2i + t2i − tj) ≥ β(t − s);

Moreover, B(t) = A(start(t)) + C(t) − C(start(t)), ∀s ∈
[start(t), t], B(t) ≤ A(s)+C(t)−C(s), and ∀s < start(t),

C(s)−A(s) ≥ C(start(t))−A(start(t)) so B(t) ≤ A(s) +
C(t) − C(s). Then, (A, B) ∈ Svcn(β).

On the other hand, if β ⊘ β(t0) = ∞, take (δt0 , β ∗ δt0) ∈
Sstrict(β). In order to make the computations possible,
C(t0) must be finite. But, one must have C(t + t0) −
C(t0) = β(t) and C(t + t0) − C(0) ≥ β(t + t0). Then,
∀t ∈ R+, C(t0) = C(t0) − C(0) ≥ β(t + t0) − β(t) and
C(t0) ≥ β ⊘ β(t0) = +∞.

• Sstrict(β) = Swstrict(β): if β↑ = δT , T ∈ R+ ∪ {+∞},
then let (A, B) ∈ Swstrict(β). Let s < t in the same
backlogged period. Then, t − s < T and B(t) ≥ B(s) =
B(s) + β↑(t − s). Then (A, B) ∈ Sstrict(β).

Otherwise β↑ is not a delay: let A = δ0. There exists s > 0
such that 0 < β↑(s) < ∞. Let t0 = sup{t ≥ 0 | β↑(t) =
0} ≤ s. Define B(t) = β↑(t) in t < (s − t0)/2 or t > s,
= β↑(s) if t ∈ [(s−t0)/2, s]. We have (A, B) ∈ Swstrict(β)\
Sstrict(β). Indeed, B(s) − B((s − t0)/2) = 0 < β↑((s +
t0)/2).

• Swstrict(β) = Ssimple(β): Ssimple(0) = Swstrict(0) =
{(A, B) ∈ F2

↑ | A ≥ B}; Ssimple(δ0) = Swstrict(δ0) =

{(A, A) | A ∈ F2
↑}. If β /∈ {0, δ0}, we consider three cases:

let t0 = inf{t ≥ 0 | β(t) > 0}. If t0 > 0, take s such that
β(s) > 0 and A(t) = (β(s)/s) t. As ∀t > 0, A∗β(t) ≤ A(t−
t0) < A(t), the trajectory (A, A ∗ β) ∈ Ssimple(β) has only
one infinite backlogged period, but A(0) + β(s) = A(s),
then the first backlogged period of a server offering a
weakly strict service curve must be of length at most s:
(A, A ∗ β) /∈ Swstrict(β).

If t0 = 0, if there exists ρ such that A(t) = ρt and
there exists s > 0 with ∀t ∈ [0, s], A(t) > β(t) and
β−1(A(s)) > s. Let B defined by B(t) = β(t) if t < s,
= A(s) if t = s, max(β(t), A(s)) otherwise. We have
A ≥ B ≥ β ≥ A∗β, then (A, B) ∈ Ssimple(β), but there is
a backlogged period beginning at s, and nothing is served
between s and β−1(A(s)). Then (A, B) /∈ Swstrict(β).

Otherwise, t0 = 0 and there exist ρ, u ∈ R+, A(t) = ρt
such that A � β but ∀t ∈]0, u[, A(t) > β(t). Then,
A∗β ≤ min(A, β) < A, but (A, B) ∈ Swstrict(β) ⇒ B = A.
Then (A, A ∗ β) /∈ Swstrict(β). 2

The equality cases between strict and vcn curves is not
very restrictive, as most of the time, service curves have
a finite asymptotic growing rate, and thus have finite
auto-deconvolution. An important family of service curves
where the equality does not hold is the pure delays δT , T ∈
R+.

The other equality cases seem very restrictive. Neverthe-
less, if one considers the equality of the output process
when the service is exact (that is when the last inequality
are replaced by an equality in the definition of ST (β),
T ∈ {simple, wstrict, strict}) for any arrival process,
equality cases are more frequent: for simple and weakly
strict service curves, the equality holds for any λr, r ∈ R+∪
{+∞} and for weakly strict and strict service curves, the
equality holds for any super-additive function.

Finally, the following theorem states that in the case where
the equality does not hold, there is no chance to express

one type of service curve as a combination of service curves
of another type.

Theorem 4. (No translation with families). Let T and T ′

be two different types of service curves among vcn, simple,
strict (weak), strict. Then

∄(βi)i∈I ∈ FI , (β′
j)j∈J ∈ FJ ,

⋂

i∈I

ST (βi) =
⋂

j∈J

ST ′(β′
j),

except for the equality cases defined in Theorem 3.

Proof. Translation between variable capacity node and
strict, and between weakly strict and strict service
curves: one only need to consider the case where I and
J are singletons, due to Theorem 2.With (T , T ′) =
{(strict, vcn), (wstrict, strict)}, Suppose that ST (β) =
ST (β′). Then, from Theorem 3, ST ′(β) ⊆ ST ′(β′) and
from Theorem 1, β′ ≤ β. Now, (δ0, β

′) ∈ ST ′(β′) = ST (β),
then β′ ≥ β. In conclusion, one must have β = β′.

Between simple and weakly strict service curves: con-
sider (βi)i∈I and β′, and suppose that ∩i∈ISsimple(βi) =
Swstrict(β

′). From Proposition 1 and Theorem 3, one has:
Swstrict(supi∈I βi) ⊆ Ssimple(supi∈I βi) ⊆ ∩i∈ISsimple(βi)
= Swstrict(β

′). Then, β′ ≤ (supi∈I βi)↑. On the other
hand, (δ0, β

′) ∈ Swstrict(β
′) = ∩i∈ISsimple(βi), then β′ ≥

supi∈I(δ0 ∗ βi)↑ = (supi∈I βi)↑ and β′ = (supi∈I βi)↑.
Moreover, Swstrict((supi∈I βi)↑) = Swstrict(supi∈I βi) ⊆
Ssimple(supi∈I βi) ⊆ ∩i∈ISsimple(βi) = Sstrict(β

′). Then,
all inequalities are in fact equalities and then one must
have Ssimple(supi∈I βi) = ∩i∈ISsimple(βi) and β′ =
supi∈I βi = δ0 or 0. 2

4. CONCLUSION

We hope that this study casts new light on the main service
curve definitions used in envelope-based models. We have
shown that there exist strong gaps in the hierarchy, like
the impossibility to express a strict service as a family
of simple services, even if we allow infinite families. As
a consequence, providing an unified framework to achieve
tight performance analyses for all the corresponding mod-
els, may turn out to be very difficult. As a matter of fact,
while some tight analyses of simple curve models exclu-
sively rely on (min, +) algebra (window flow control or
multimedia traffic smoothing in Chang (2000); Le Boudec
and Thiran (2001)), some tight analyses of strict curve
models completely avoid any reference to (min, +) (worst
case performances in some acyclic networks in Bouillard
et al. (2010)).

Nevertheless further research is required about the notion
of service curves in order to fill those gaps or take into
account additional features.

One can investigate the possibility to mix different defini-
tions, as suggested with adaptative service curves (mixing
strict service and simple service) in Le Boudec and Thiran
(2001), or try to introduce a full range of intermediate
definitions between the classical definitions exposed in the
article.

One should also include maximum service curves in the
study, like maximum simple service curves defined in Net-
work Calculus (Le Boudec and Thiran, 2001, Chapter 1,
pages 42-48) or upper service curves intensively used in

Real-Time Calculus (Wandeler (2006)). Their use intro-
duces new connections between the different notions. For
instance, a constant rate server can be seen as a server with
a minimum and a maximum simple service curves both
equal to λr(t) = rt. In this case, it is easy to check that
this server admits λr as a strict service curve. In contrast
a system defined exclusively by minimum service curves
can only ensure either λ0 or δ0 as strict services.

Beyond the expressiveness issue, other important aspects
include the robustness of the definitions with regard to flow
multiplexing. For instance, a server with fixed priorities
offering a simple minimum service, does not guarantee any
non null simple service to the flow with lowest priority.

Ultimately such studies will be useful to adjust both the
modeling power (to be relevant) and the computational
complexity of analyses (to be effective), in Network Cal-
culus and its extensions.

REFERENCES

Baccelli, F., Cohen, G., Olsder, G., and Quadrat, J. (1992).
Synchronization and linearity. Wiley.

Bouillard, A., Gaujal, B., Lagrange, S., and Thierry, E.
(2007). Optimal routing for end-to-end guarantees: the
price of multiplexing. In Proceedings of Valuetools’07.

Bouillard, A., Gaujal, B., Lagrange, S., and Thierry, E.
(2008). Optimal routing for end-to-end guarantees using
network calculus. Performance Evaluation, 65(11-12),
883–906.

Bouillard, A., Jouhet, L., and Thierry, E. (2010). Tight
performance bounds in the worst-case analysis of feed-
forward networks. In Proceedings of Infocom’2010.

Bouillard, A., Jouhet, L., and Thierry, E. (2009). Service
curves in Network Calculus: dos and don’ts. Research
Report RR-7094, INRIA.

Chang, C.S. (2000). Performance Guarantees in Commu-
nication Networks. TNCS, Springer-Verlag.

Fidler, M. (2010). A survey of deterministic and stochastic
service curve models in the network calculus. IEEE
Communications Surveys & Tutorials, 12(1).

Le Boudec, J.Y. and Thiran, P. (2001). Network Calculus:
A Theory of Deterministic Queuing Systems for the
Internet, volume LNCS 2050. Springer-Verlag, revised
version 4, may 10, 2004 edition.

Schmitt, J.B. and Roedig, U. (2005). Sensor network
calculus: A framework for worst case analysis. In Pro-
ceedings of 1st International Conference on Distributed
Computing in Sensor Systems.

Schmitt, J.B. and Zdarsky, F.A. (2006). The disco net-
work calculator: a toolbox for worst case analysis. In
Proceedings of Valuetools’2006.

Schmitt, J.B., Zdarsky, F.A., and Martinovic, I. (2006).
Performance bounds in feed-forward networks under
blind multiplexing. Technical Report 349/06, University
of Kaiserslautern, Germany.

Thiele, L., Chakraborty, S., and Naedele, M. (2000). Real-
time calculus for scheduling hard real-time systems. In
Proceedings of ISCAS’2000.

Wandeler, E. (2006). Modular Performance Analysis
and Interface-Based Design for Embedded Real-Time
Systems. Ph.D. thesis, ETH Zurich.

