Séries d'approximation et simulation.

Chap. 10: [Hilfsweise: Übung]

1.

\[(E, S)\text{ approximation.}\]

\[P\text{ un problème qui a une solution de valeur } V.\]

\[A\text{ un algorithme qui renvoie } X, \text{ une variable aléatoire.}\]

\[A\text{ et une }(E, S)\text{ approximation pour la valeur } V \text{ si:}\]

\[P(C(X-V) \leq S) \geq 1-S.\]

**Exemple: approximation de } T.\]

\[\text{On place un point au hasard uniformément sur la courbe, indép.}\]

\[\text{si } Z_i = 1 \text{ on le ième pt est dans le cercle } \text{ et}\]

\[\text{si } Z_i = 0 \text{ on le ième pt est hors du cercle } \text{ et}\]

\[\text{on pose } Z = \sum_{i=1}^{n} Z_i.\]

\[E[Z] = \frac{m \pi}{4} \quad \text{et}\quad \text{on pose } Z(1-W) .\]

\[\text{Pour avoir une }(E, S)\text{ approx, il faut que } \text{ et}\]

\[\text{et donc } m \geq \frac{16 \text{ Var}(Z)}{\pi S^2}.\]

2.

Schéma d'approximation polynomial

\[P\text{ un problème de sortie } P(x)\text{ la solution par cette sortie.}\]

\[A\text{ un algorithme de sortie } A(x).\]

\[\text{On va approcher par l'algo pour cette sortie.}\]

\[\text{FPRAS: fully polynomial randomized approximation scheme pour un pb } P\]

\[\text{est un algo aléatoire } A \text{ par lequel } P(x, S), \text{ où } S \text{ est un}\]

\[\text{aléatoire.} \]

\[A(x) \text{ est une }(E, S)\text{ approx de } P(x)\text{ et se calcule en un temps polynomial}\]

\[\text{en } \mathcal{O}(1), \text{ où } \mathcal{O}(1) \text{ est le temps de calcul de } x.\]

\[\text{Exemple utile: } S_i: X_1, \ldots, X_m \text{ iid, } E[X_i] = \mu.\]

\[\text{Si } m \geq \frac{3 \text{ Var}(Z)}{\mu^2} \text{ alors}\]

\[P(\frac{1}{m} \sum_{i=1}^{m} X_i - \mu) \leq S.\]

\[\text{Application au pb de couplage}\]

\[\text{Ex: formule en DNF (forme normale disjonctive)} F = C_1 \lor C_2 \lor \cdots \lor C_k.\]

\[\text{Problème: combien d'attribution des variables autant faut } F?\]

\[\text{Le problème de résolution associé est: existe-t-il une attribution des variables}\]

\[\text{qui satisfait } F?\]

\[\text{problème facile: il suffit qu'une clause soit satisfaisable et donc}\]

\[\text{une clause ne soit pas contrediction.}\]

\[\text{Le problème difficile qui est associé est: CNF (forme normale conjonctive)}\]

\[\text{qui est NP-complet}\]

\[\text{le problème de couplage associé à CNF est aussi difficile.}\]

\[\text{Mais alors le pb de couplage par DNF est facile:}\]

\[\text{CNF } \rightarrow \text{ DNF}\]

\[\text{en utilisant les lois de De Morgan}\]

\[(x_1 \lor \bar{x}_2 \land x_3) \lor (x_5 \land x_6 \land x_7) \lor \cdots \rightarrow (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_5 \lor x_6 \lor x_7)\]

\[\text{et}\]

\[\text{and}\]

\[\text{or}\]

\[\text{not}\]

\[\text{implies}\]

\[\text{De Morgan}\]

\[\text{and}\]

\[\text{or}\]

\[\text{not}\]

\[\text{implies}\]
Algorithme mai 2007

Entrée : Formule F

X, C, F

Pour M allant de 1 à m

- générer une affectation des variables de manière uniforme
- cette affectation satisfait F alors $X = X + 1$

Remarque : $Y = X / m$

On note $C(F)$ le nombre d'affectations qui satisfait F.

On a $E(Y) = \frac{2^{2m}E(C)}{m} = C(F)$. (E65 : $\frac{2^{2m}}{m}$

- pour avoir une $E(S)$ approx, il faut $m \geq \frac{32 \cdot \log(\frac{1}{\delta})}{\varepsilon^2 C(F)}$ pas polynomial.

En FPRAS pour $\delta / 2$

$F = C_1 \cup C_2 \cup \ldots \cup C_r$. On suppose qu'aucune clause ne contient x et $\neg x$. (Prenons pour

- supposer cette clause)

- si C_i a 1 clause, alors exactement 2^{m-1} affectations satisfait C_i

- On note $S_i = \{x \in F(i) \mid F(i) = 1\}$ et $U = \{x \in F(i) \mid F(i) = 1\}$

- $|S_i| = 2^{m-1}$, $\frac{|S_i|}{|U|} \leq 101$ et $C(F) = I_{101}$

- $S = \bigcap_{C_i} S_i$ tels que $x \in S_{C_i}$. (Puisque chaque x et $\neg x$ $F(i) = 1$, on prend la C_i clause qui est satisfait unique

- Donc $|S| = C(F)$.

$|S| = 101$ est connu, donc on peut estimer $C(F)$ en estimant 101

- comme $\frac{|S|}{101} \geq 1$, S est au moins le sous de la que l'ens des solutions, donc

- existe des affectations.

Algo : FPRAS pour $\delta / 2$

CHOISIR i avec proba $\frac{1}{2}$. $\frac{|S_i|}{|S|}$ = $\frac{|S_i|}{101}$

- Choix x aux hasard dans S_i.

- Verifier $F(x)$

- Remarque $Y = (\frac{X}{m})$, $\frac{|S_i|}{101}$
On a déjà montré que $PC(c_i, x) \text{chain} = PC(\text{chain}) \frac{1}{m} \text{chain}$.

\[E_1 = \frac{E(1)}{m} \text{SCI,1} = \frac{m \cdot E(1)}{Z \text{SCI,1}} \]

D'où,

\[E(1) = \frac{m \cdot E(1)}{Z \text{SCI,1}} \]

De plus, on peut choisir $m = \left[\frac{\varepsilon}{\varepsilon^2 \cdot \ln \left(\frac{2}{\varepsilon} \right)^2} \right]$ car $E(1) \geq \varepsilon^2$.

c

L'intersection échantillonnage et approximation du comptage

Déf.: L'un échantillonnage é-équiprobable est un algorithme qui génère un échantillon é-équiprobable qui s'exécute en temps polynômial en $O(n)$ et en la taille de ε.

But: construire un EPIAS ou un EPIAS.

Exemple: démontrer les indépendances d'un graphe.

$G = (V, E)$ graphe monocoupé

$E = \{e_1, \ldots, e_m\}$

$\text{Gim} = G$, $\text{Gim} = G_i - \{e_i\}$

SCi est indépendant de G_i.

\[\text{Gim} = \frac{\text{SCi} \times \text{SCi} \times \ldots \times \text{SCi}}{\text{SCi} \times \text{SCi} \times \ldots \times \text{SCi}} = \frac{\text{SCi}^m}{\text{SCi}^m} = 1. \]

On cherche à estimer $\rho_i = \frac{\text{SCG}_{i} \times \text{SCG}_{i}}{\text{SCG}_{i} \times \text{SCG}_{i}}$. ρ_i est un estimateur de SCG_{i}. On est né par $2^n \text{NOR}_i = \varepsilon^2$.

L'événement de $R_i = \frac{\text{SCG}_{i}}{\text{SCG}_{i}}$. On veut obtenir $PC(R_i - 1 \leq SCG_{i}) = PC (\frac{\rho_i}{\text{SCG}_{i}} - 1 \leq \varepsilon) = PC \left(\text{Ri} - 1 \leq \varepsilon \right) \geq 1 - \delta$.

Lemme: si ρ_i^2 est une (E(m, 1, 8/m) - approximation de ρ_i, alors $PC \left(\text{Ri} - 1 \leq \varepsilon \right) \geq 1 - \delta$.

Dém.: On sait que $\text{PC} (\text{Ri} - 1 \leq \frac{\varepsilon}{2^2 m} \text{Ri}) \geq 1 - \frac{8}{m}$. Donc $PC (\text{Ri} - 1 \leq \frac{\varepsilon}{2^2 m} \text{Ri}) \geq 1 - \delta$.

Union binaire: $PC (\text{Ri} \leq \frac{\varepsilon}{2^2 m} \text{Ri}) \geq 1 - \delta$ et donc $PC (\text{Ri} - \frac{\varepsilon}{2^2 m} \text{Ri}) \geq 1 - \delta$.

On $PC (\text{Ri} \leq \frac{\varepsilon}{2^2 m} \text{Ri}) \leq PC (1 - \frac{\varepsilon}{2^2 m} \text{Ri}) \leq PC \left(1 - \frac{\varepsilon}{2^2 m} \text{Ri} \right) \leq 1 - \delta$.

D'où $PC (\text{111 - 1} \leq \text{Ri}) \geq 1 - \delta$.

Algorithmes: estimant n, O(supp en d'un EPIAS pour les indépendants).

Ensuite: $G_i \left(\text{Gim, } V - i \right)$, $G_i = (V, E_i)$

Ensuite: n_i

On $x = 0$

Répéter $x = \left[\frac{2 \rho_i \ln \left(\frac{2}{\rho_i} \right)^2 \ln \left(\frac{2}{\rho_i} \right)^2 \rho_i} {2} \right]$

a) générer un échantillon de G_i en x

b) x', G_i est un indépendant de G_i alors $x = x + 1$

Renouveler $x = x + 1$.
Le lemme : cet algorithme converge une (E(m), \delta_m) approximation sec_i.

\[\begin{align*}
\text{Déf} : \quad & \frac{1}{2} \leq r_i \leq 1 : \quad P_i(2G_i) = 2G_i \quad (e_i - 3,4,3) \\
\quad & r_i \mapsto 1 - s_i \quad (0_i\text{-}\text{d}) \quad I_i \mapsto \frac{1}{2} I_i \quad \text{si} \quad (s_i, q_i) \equiv 1 \text{mod} 2
\end{align*} \]

| \|P_i(I_i)\| \leq 2 \quad (f_i(0_i) = (1, r_i, 0_i)) |

D'où |L_i(2G_i)| = |L_i(2G_i)|

Soit \(X_i \in \text{E_i} \) de \(k_2 \) colonnent et un indice de \(G_i \) choisi.

\[\begin{align*}
1 & = \frac{1}{2}(X_i - 1) - \frac{1}{2}(2G_i) \\ & \leq \frac{1}{2} \quad \text{d'où} \quad |E(2G_i)| = \frac{1}{2}(2G_i)
\end{align*} \]

\[\begin{align*}
\text{Mais alors} & \quad |E(2G_i)| = r_i \leq |E(2G_i)| = \frac{1}{2} \quad \text{d'où} \quad L_i = \frac{1}{2} G_i \quad \text{alors}
\end{align*} \]

\[\begin{align*}
E_i(2G_i) - r_i \leq |E(2G_i)| - |E(2G_i)| = 12G_i m^2 \quad \text{alors}
\end{align*} \]

\[\begin{align*}
P_i(1) = P_i \leq \frac{1}{2} G_i \quad \text{alors}
\end{align*} \]

\[\begin{align*}
P_i(1, G_i, \frac{1}{2} G_i) \leq 1 \quad \text{alors}
\end{align*} \]

D'où \(P_i \leq \frac{1}{2} G_i \quad \text{alors}
\]

\[\begin{align*}
P \left(1, \frac{1}{2} G_i \right) \leq \frac{1}{2} G_i \quad \text{alors}
\end{align*} \]

\[\begin{align*}
P \left(1, \frac{1}{2} G_i \right) \leq \frac{1}{2} G_i \quad \text{alors}
\end{align*} \]