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OUTLINE

Yesterday:

“Germ-grain” coverage models in stochastic geometry,

SINR (or shot-noise) coverage model,

Palm and stationary coverage characteristics.

Today:

Poisson-Dirichlet processes,

Relations to SINR coverage.
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Poisson-Dirichlet processes
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Size-biased permutations

Consider a sequence of numbers (Pn) = (Pn)
∞
n=1, with

∑

n Pn = 1, 0 ≤ Pn ≤ 1. In fact (Pn) is a distribution on
N = {1, 2, . . .}.
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∑

n Pn = 1, 0 ≤ Pn ≤ 1. In fact (Pn) is a distribution on
N = {1, 2, . . .}.
A size-biased permutation (SBP) (P̃n) of (Pn), is a random
permutation of the sequence (Pn) with distribution

P{P̃1 = Pk} = Pk...
P{P̃n = Pj|P̃i, i≤n−1} =

Pj

1 −
∑n−1

i=1 P̃i

Pj 6= P̃1 . . . , P̃n−1

n ≥ 1 .
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n Pn = 1, 0 ≤ Pn ≤ 1. In fact (Pn) is a distribution on
N = {1, 2, . . .}.
A size-biased permutation (SBP) (P̃n) of (Pn), is a random
permutation of the sequence (Pn) with distribution

P{P̃1 = Pk} = Pk...
P{P̃n = Pj|P̃i, i≤n−1} =

Pj

1 −
∑n−1

i=1 P̃i

Pj 6= P̃1 . . . , P̃n−1

n ≥ 1 .

We say (Pn) is invariant with respect to SBP (ISBP) if
(Pn) =distr. (P̃n). Clearly (Pn) needs to be a random.

Also, ( ˜̃Pn) is ISBP for any (Pn).

ISBP is a notion of stochastic equilibrium. Appears naturally in models of
genetic populations that evolve under the influence of mutation and random
sampling.
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Stick-braking (SB) model

Consider the following “stick braking” (SB) model, also
called residual allocation model:

P1 = U1, Pn = (1 − U1) . . . (1 − Un−1)Un, n ≥ 2 ,

for some independent U1, U2, . . . ∈ (0, 1). Note {Pn} is a
distribution.
Again, such constructions appear naturally in population models.
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Stick-braking (SB) model

Consider the following “stick braking” (SB) model, also
called residual allocation model:

P1 = U1, Pn = (1 − U1) . . . (1 − Un−1)Un, n ≥ 2 ,

for some independent U1, U2, . . . ∈ (0, 1). Note {Pn} is a
distribution.
Again, such constructions appear naturally in population models.

When (for what distribution of (Un)) (Pn) is ISBP?
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Kingman’s Poisson-Dirichlet process

THM Consider SB model (Pn) with independent, identically
distributed (Un). Then (Pn) is ISBP iff Un ∼ Beta(1, θ) for
some θ > 0.
Mc Closky (1965)

Recall, Beta(α, β) ∼ Γ(α+ β)/Γ(α)Γ(β)tα−1(1 − t)β−1dt, t ∈ (0, 1).

– p. 6



Kingman’s Poisson-Dirichlet process

THM Consider SB model (Pn) with independent, identically
distributed (Un). Then (Pn) is ISBP iff Un ∼ Beta(1, θ) for
some θ > 0.
Mc Closky (1965)

Recall, Beta(α, β) ∼ Γ(α+ β)/Γ(α)Γ(β)tα−1(1 − t)β−1dt, t ∈ (0, 1).

Distribution of (Pn) is called Poisson-Dirichlet PD(0, θ)

distribution.

– p. 6



Kingman’s Poisson-Dirichlet process

THM Consider SB model (Pn) with independent, identically
distributed (Un). Then (Pn) is ISBP iff Un ∼ Beta(1, θ) for
some θ > 0.
Mc Closky (1965)

Recall, Beta(α, β) ∼ Γ(α+ β)/Γ(α)Γ(β)tα−1(1 − t)β−1dt, t ∈ (0, 1).

Distribution of (Pn) is called Poisson-Dirichlet PD(0, θ)

distribution.

THM Let Θθ be Poisson process on (0,∞) of intensity
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, Yi ∈ Θθ

}

. Then the

SBP (Ṽi) of {Vn} has PD(0, θ) distribution.
Kingman (1975)

{Vi} (considered as a point process on (0,∞)) is called
Poisson-Dirichlet PD(0, θ) point process.
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Two-parameter Poisson-Dirichlet process

THM Consider SB model (Pn) with independent, (not
necessarily identically distributed) (Un). Then (Pn) is ISBP
iff Un ∼ Beta(1 − α, θ + nα) for some α ∈ [0, 1), θ > −α.
Pitman (1996)
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Two-parameter Poisson-Dirichlet process

THM Consider SB model (Pn) with independent, (not
necessarily identically distributed) (Un). Then (Pn) is ISBP
iff Un ∼ Beta(1 − α, θ + nα) for some α ∈ [0, 1), θ > −α.
Pitman (1996)

Distribution of (Pn) is called Poisson-Dirichlet PD(α, θ)

distribution.

THM Let Θα be Poisson process on (0,∞) of intensity

θt−1−α dt, with α ∈ [0, 1). Let
{

Vi :=
Yi∑
j Yj
, Yi ∈ Θα

}

. Then

the SBP (Ṽi) of {Vn} has PD(α, 0) distribution.
Pitman, Yor (1997)

{Vi} (considered as a point process on (0,∞)) is called
Poisson-Dirichlet PD(α, 0) point process.
Similar construction of Poisson-Dirichlet PD(α, θ) point
process? Slightly more involved. – p. 7



PD(α, 0) vs PD(0, θ)

FACT

For PD(0, θ),
∑

j Yj has Gamma(θ) distribution and is

independent of {Vi =
Yi∑
j Yj

}.
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PD(α, 0) vs PD(0, θ)

FACT

For PD(0, θ),
∑

j Yj has Gamma(θ) distribution and is

independent of {Vi =
Yi∑
j Yj

}.

For PD(α, 0),
∑

j Yj has a stable law (LT of the form

e−Γ(1−α)ξα

) and it is a deterministic function of
{Vi =

Yi∑
j Yj

}.

Indeed,
∑

j Yj = L−1/α, where L is Pα,0-almost surely
existing limit

L := lim
n→∞

nV α
(n)

with V(1) > V(2) > . . . order statistics of {Vi}.
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Proof of the existence ofL := limn→∞ nV α
(n)

Recall Vi := Yi/
∑

j Yj where {Yi} = Θα is Poisson process
on (0,∞) with intensity t−1−α dt, α ∈ [0, 1).
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Kingman’s argument: It is easy to see that {Y −α
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∫∞

s−1/α t
−1−α dt = s/α.

Consequently, Y −α
(i+1)

− Y −α
(i)

are iid exponential variables
with mean α and thus by the LLN a.s.
limn→∞ Y −α

(n)
/n = limn 1/n
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i=1(Y

−α
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− Y −α
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s−1/α t
−1−α dt = s/α.

Consequently, Y −α
(i+1)

− Y −α
(i)

are iid exponential variables
with mean α and thus by the LLN a.s.
limn→∞ Y −α

(n)
/n = limn 1/n

∑n
i=1(Y

−α
(i+1)

− Y −α
(i)

) = α.

Finally,

nV α
(n) = n

(

∑

j Yj

Y −α
(n)

)−α

=
n

Y −α
(n)

(

∑

j

Yj

)−α

→
(
∑

j Yj)
−α

α
.
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Change-of-measure representation

Pitman, Yor (1997).

Eα,θ[f({Vi})] = Cα,θEα,0[L
θ/αf({Vi})] ,

where
Cα,θ = 1/Eα,0[L

θ/α] = Γ(1 − α)θ/αΓ(θ + 1)/Γ(θ/α+ 1).
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SINR and Poisson-Dirichlet processes
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STIR process is PD(0, θ = 2/β)

Denote SINR process Ψ := {Zi}, with
Zi :=

Si/ℓ(|Xi|)
W+

∑
j 6=i Sj/ℓ(|Xj|)

= Yi

W+
∑

j 6=i Yj
.
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STIR process is PD(0, θ = 2/β)

Denote SINR process Ψ := {Zi}, with
Zi :=

Si/ℓ(|Xi|)
W+

∑
j 6=i Sj/ℓ(|Xj|)

= Yi

W+
∑

j 6=i Yj
.

Recall Θ = {Yi} is Poisson pp of intensity
2a/βt−1−2/β dt, on (0,∞), equal (modulo irrelevant in
this context constant 2a/β) to this of Θα, with α = 2/β.
Recall, Θα gives rise to PD(α, 0) via similar (to SINR)
points’ normalization Vi =

Yi∑
j Yj

.

Recall SINR process Ψ := {Zi} can be easy related to
STINR process Ψ′ := {Z′

i :=
Yi

W+
∑

j Yj
} via Z′

i =
Zi

1+Zi
.

Consequently, in case of no noise (W = 0),
STIR Ψ′ is PD(0, α = 2/β).
Many distributional characteristics of PD(0, α) are
developed in Pitman, Yor (1997)! – p. 12



A few consequences

Denote by Z′
(1) > Z′

(2) > . . . the ordered points of the
STINR process Ψ′.
FACT For the STINR process Ψ′ (W ≥ 0), the random
variables

Ri :=
Z′

(i+1)

Z′
(i)

=
Y(i+1)

Y(i)

, i ≥ 1

have, respectively, Beta(2i/β, 1) distributions. Moreover,
{Ri} are mutually independent.

BB, Keeler (2014) using Pitman, Yor (1997)
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A few consequences, cont’d

Denote for i = 1, 2, . . .

Ai : =
Z′

(1) + · · · + Z′
(i)

Z′
(i+1)

=
Y(1) + · · · + Y(i)

Y(i+1)

. (1)

Σi : =
Z′

(i+1) + Z′
(i+2) + . . .

Z′
i

=
Y(i+1) + Y(i+2) + · · ·

Y(i)

. (2)
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Observe that Σ−1
i corresponds to SIR with

successive-interference cancellation in case W = 0.;
cf. Zhang, Haenggi (2013).
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Denote for i = 1, 2, . . .

Ai : =
Z′

(1) + · · · + Z′
(i)

Z′
(i+1)

=
Y(1) + · · · + Y(i)

Y(i+1)

. (1)

Σi : =
Z′

(i+1) + Z′
(i+2) + . . .

Z′
i

=
Y(i+1) + Y(i+2) + · · ·

Y(i)

. (2)

Observe that Σ−1
i corresponds to SIR with

successive-interference cancellation in case W = 0.;
cf. Zhang, Haenggi (2013).
Similarly,
(1 +Ai−1)/Σi = (Y(1) + · · · + Y(i))/(Y(i+1) + Y(i+2) + · · · )

corresponds to SIR with signal combination in case W = 0.;
cf. BB, Keeler (2015).
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A few consequences, cont’d

For γ ≥ 0 let

φβ(γ) :=
2

β

∫ ∞

1

e−γxx−2/β−1dx, (3)

ψβ(γ) := Γ(1 − 2/β)γ2/β + φβ(γ). (4)

– p. 15



A few consequences, cont’d

For γ ≥ 0 let

φβ(γ) :=
2

β

∫ ∞

1

e−γxx−2/β−1dx, (3)

ψβ(γ) := Γ(1 − 2/β)γ2/β + φβ(γ). (4)

FACT Consider the STINR process Ψ′ (W ≥ 0). Then Ai−1

is distributed as the sum of i− 1 independent copies of A1,
with the characteristic function E[e−γAi−1] = (φβ(γ))

i−1; Σi

is distributed as the sum of i independent copies of Σ1, with
the characteristic function E[e−γΣi] = (ψβ(γ))

−i; and Ai−1

and Σi are independent.

using Pitman, Yor (1997)
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A few consequences, cont’d

FACT The inverse of the k th strongest STIR (W = 0) value,
1/Z′

(k), has the Laplace transform

E[e−γ/Z′
(k)] = e−γ(φβ(γ))

k−1(ψβ(γ))
−k.

using Pitman, Yor (1997)

cf BB, Karray, Keeler (2013).
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A few consequences, cont’d

FACT The inverse of the k th strongest STIR (W = 0) value,
1/Z′

(k), has the Laplace transform

E[e−γ/Z′
(k)] = e−γ(φβ(γ))

k−1(ψβ(γ))
−k.

using Pitman, Yor (1997)

cf BB, Karray, Keeler (2013).

Observe, 1/Z′
(k) ≤ 1/t (t ≤ 1) is equivalent to Z′

(k) ≥ t, and
further equivalent to Z(k) ≥ t/(1 − t) (relation between
STINR and SINR). Consequently, the above result gives
alternative approach to calculate the stationary SIR (W = 0)
k-coverage probabilities pk with τ = 1/1 − t.
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A few consequences, cont’d

FACT For the STINR process (W ≥ 0),

W/I =
(

∑∞
i=1 Z

′
(i)

)−1

− 1, and W + I = (L/a)−β/2, with

L := limi→∞ i(Z′
(i))

2/β existing almost surely.
Thus, (theoretically) one can recover the values of the
received powers and the noise from the SINR
measurements.

using Pitman, Yor (1997)
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“Introducing W > 0 to Poisson-Dirichlet”
from STIR to STINR
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Factorial moments of the SINR process

Very much as for E[N (n)] = E[
∑

(Z′
1,...,Z′

n)∈(Ψ′)×n

distinct

1(0 ∈
⋂

iCi)],

M ′(n)(t′1, . . . , t
′
n) := E

[

∑

(Z′
1,...,Z′

n)∈(Ψ′)×n

distinct

n
∏

j=1

1(Z′
j > t′j)

]
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Factorial moments of the SINR process

Very much as for E[N (n)] = E[
∑

(Z′
1,...,Z′

n)∈(Ψ′)×n

distinct

1(0 ∈
⋂

iCi)],

M ′(n)(t′1, . . . , t
′
n) := E

[

∑

(Z′
1,...,Z′

n)∈(Ψ′)×n

distinct

n
∏

j=1

1(Z′
j > t′j)

]

We have

M ′(n)(t′1, . . . t
′
n)

=n!

(

n
∏

i=1

t̂
−2/β
i

)

In,β((W )a−β/2)Jn,β(t̂1, . . . , t̂n),

when
∑n

i=1 t
′
n < 1 and M ′(n)(t′1, . . . t

′
n) = 0 otherwise,

where t̂i = t̂i(t
′
1, . . . , t

′
n) := t′i

1−
n∑

j=1

t′j

;

Observe factorization of the noise contribution.
– p. 19



Factorial moments of PD processes

Very simple thanks to SB (stick-braking) representation!
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Very simple thanks to SB (stick-braking) representation!

Indeed, for the fist moment measure MPD(dt),

∫ 1

0

f(t)MPD(dt) := E
[

∑

i

f(Vi)
]

= E
[

∑

i

f(Vi)

Vi
Vi

]

= E
[f(Ṽ1)

Ṽ1

]

where {Ṽi} SBP of {Vi}
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Factorial moments of PD processes

Very simple thanks to SB (stick-braking) representation!

Indeed, for the fist moment measure MPD(dt),

∫ 1

0

f(t)MPD(dt) := E
[

∑

i

f(Vi)
]

= E
[

∑

i

f(Vi)

Vi
Vi

]

= E
[f(Ṽ1)

Ṽ1

]

where {Ṽi} SBP of {Vi}

hence MPD(dt) = 1/t× FṼi
(dt) and and we know that

Ṽi = U1 ∼ Beta(1 − α, θ + 1 × α).
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Factorial moments of PD processes, cont’d

Similarly, by the induction, using ISBP representation of PD,
the density µ(n)

PD (t1, . . . , tn) of the n th factorial moment
measure of the PD(α, 0) process can be easily shown to be

µ
(n)
PD (t1, . . . , tn) = cn,2/β,0

(

n
∏

i=1

(t′i)
−(2/β+1)

)(

1−
n
∑

j=1

(t′j)
)2n/β−1

,

where

cn,α,θ =

n
∏

i=1

Γ(θ + 1 + (i− 1)α)

Γ(1 − α)Γ(θ + iα)
;

(related to the Beta distributions of independent {Un} in SB
model of PD).
Handa (2009).
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Relating moments of STINR and PD

For
∑n

i=1 t
′
n < 1, the density of the n th factorial moment

measure of the STINR process is

µ′(n)(t′1, . . . t
′
n) := (−1)n

∂nM ′(n)(t′1, . . . t
′
n)

∂t′1 . . . ∂t
′
n

= Īn,β((W )a−β/2)µ
(n)
PD (t′1, . . . , t

′
n) ,

where Īn,β(x) =
In,β(x)
In,β(0)

.
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General factorial moment expansions

Expansions of general characteristics φ of the STINR
process

E[φ(Ψ′)] = φ(∅) +
∞
∑

n=1

∫

(0,1)n
φt′1,...,t

′
n
µ′(n)(t′1, . . . , t

′
n) dt

′
n . . . dt

′
1 ,

where

φt′1 = φ({t′1}) − φ(∅)

φt′1,t
′
2
=

1

2

(

φ({t′1, t
′
2}) − φ({t′1}) − φ({t′2}) + φ(∅)

)

. . .

φt′1,...,t
′
n
=

1

n!

n
∑

k=0

(−1)n−k
∑

t′
i1

,...,t′
ik

distinct

φ({t′i1, . . . , t
′
ik
}) .

BB (1995).
– p. 23



Numerical examples
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k-coverage probabilities
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Signal combination and interf. cancellation
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Conclusions

We have seen a Poisson-Dirichlet process in some
wireless communication model, where it describes
“fractions” of the SINR spectrum. But Poisson-Dirichlet
processes appear in several apparently different
contexts.
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Conclusions

We have seen a Poisson-Dirichlet process in some
wireless communication model, where it describes
“fractions” of the SINR spectrum. But Poisson-Dirichlet
processes appear in several apparently different
contexts.

“Two-parameter” family of Poisson-Dirichlet processes
appear naturally in genetic population models in
equilibrium ans well as in math/economic models (where
it represents e.g. factions of the market owned by
different companies).
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Conclusions, cont’d

In math/physics “our” PD(α, 0) process appears as the
thermodynamic (large system) limit in the low
temperature regime of Derrida’s random energy model
(REM). It is also a key component of the so-called Ruelle
probability cascades, which are used to represent the
thermodynamic limit of the Sherrington-Kirkpatrick
model for spin glasses (types of disordered magnets).
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Relations to the PD processes give some universality to the
SINR model, initially motivated by wireless communications.
This may hopefully attract some further interest to this
model.

thank you

– p. 29
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