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Abstract— We define an Aloha type access control mechanism for large mobile, multihop, wireless networks. The access
scheme is designed for the multihop context, where it is important to find a compromise between the spatial density
of communications and the range of each transmission. More precisely, we optimize the product of the number of
simultaneously successful transmissions per unit of space (spatial reuse) by the average range of each transmission.
The optimization is obtained via an averaging over all Poisson configurations for the location of interfering mobiles in
a model where an exact evaluation of signal over noise ratio is used. The main mathematical tools stem from stochastic
geometry and are spatial versions of the so called additive and max shot noise processes. The resulting MAC protocol
can be implemented in a decentralized way provided some local geographic informations are available to the mobiles.
This MAC protocol shows very interesting properties. First its transport capacity is proportional to the square root
of the density of mobiles and its stability can be shown under mobility conditions discussed in this paper. The delay
provided by this protocol for transporting information from one node to any another node is proportional to the
distance between them and to the square root of the network density. Furthermore this protocol is self adapting to the
network density; more precisely to the best of the authors knowledge, it is the first protocol to reach the Gupta and
Kumar bound that does not require prior knowledge of the node density.

Index Terms— Network design, stochastic process, point process, stochastic geometry, queuing theory, optimization,
transport capacity, signal to interference ratio, interference, collision, multiple access protocol, MAC layer

I. INTRODUCTION

This paper concentrates on the medium access control
(MAC) of wireless networks with several mobile emitters and
receivers sharing a common Hertzian medium, like in e.g.
certain classes of mobile ad hoc networks or sensor networks.
One of the main difficulties for tuning MAC within this context
stems from the mobility and the resulting unpredictability of
the geometrical properties of the emission patterns. Mobility
may in particular lead to random spatial clustering rendering
some sets of simultaneous transmissions impossible due to
high interferences.

Within this context, the MAC protocols aim at defining
policies where mobiles access the shared medium in such
a way that spatial or temporal clustering does not happen
or only rarely happens. This is done by some exclusion
mechanism that prevents mobiles that are close to some
emitting mobile (and also receiving mobile in the case of IEEE
802.11 with the RTS-CTS option) from emitting at the same
time. In wired networks, the MAC algorithm is supposed to
prevent simultaneous transmissions from happening, as often
as possible, since such transmissions are bound to produce
collisions. Another and contradictory requirement is that MAC
protocols should nevertheless allow as many simultaneous and
successful transmissions as possible in different parts of the
network. This ability is known as spatial reuse.

Aloha [1] with TDMA (Time Division Multiple Access)
was one of the first protocol used in radio network. The
work presented in the present paper is an adaptation and an
optimization of Aloha in the context of a multihop network
of mobile nodes. This optimization of Aloha uses various
mathematical tools mainly borrowed from stochastic geometry.
This paper complements previous studies in [2]. In particular,
we relax the mathematical assumption of exponential emitted
powers and discuss stability issues in the case without mobil-
ity. We develop also the implementation issues.

The paper is organized as follows. Section II introduces

∗ ENS-INRIA 45 rue d’Ulm, 75230 Paris, France, Email: Fran-
cois.Baccelli@ens.fr

† ENS-INRIA 45 rue d’Ulm, 75230 Paris, France and Mathematical
Institute University of Wrocław, Email: Bartek.Blaszczyszyn@ens.fr; partially
supported by KBN grant 2 P03A 020 23

‡ INRIA HiPERCOM, Rocquencourt B.P. 105, 78153 Le Chesnay, France,
Email: Paul.Muhlethaler@inria.fr

related works and positions the contributions of this paper
among these works. Section III introduces the mathematical
model. Section IV focuses on SR-Aloha (for spatial reuse
Aloha), namely on the optimization of the Medium Access
Probability (MAP) p when each station expects to make a hop
of length R, or on the best hop length R when p is fixed. As
we shall see, this simple optimization fails to determining the
optimal MAC setting. In § IV-C, we also compare SR-Aloha
with the CSMA (Carrier Sense Multiple Access) technique
which is the basis of the MAC protocol for the WLANs
standards IEEE 802.11 [3] and Hiperlan type 1 [4]. The
main result of the paper is introduced in Section V where the
optimization of MSR-Aloha (for multihop spatial reuse Aloha)
is addressed. In Section VI we discuss capacity and stability
issues for MSR-Aloha. We consider the time dynamic of the
protocol and suppose that each mobile initiates a stationary
flow of packets of intensity τ to be transported to some
random destination. We give arguments showing under some
assumptions concerning the mobility of users, that if τ is
smaller than a threshold that is given in closed form, MSR-
Aloha should be dynamically stable and the delay to transmit
a packet between any o-d pair should be proportional to the
distance between origin and destination. We will comment also
on the particular case where nodes have no mobility at all.
In this case, the previous dynamic stability result does not
hold anymore. However, under mild assumptions the protocol
nevertheless provides a positive throughput to any node of the
network and is still optimal in some sense. Implementation
issues are briefly discussed in Section VII, with a particular
emphasis on a decentralized implementation of the protocol.
Appendix gathers proofs of two technical results concerning
the Poisson shot-noise process used in the main stream.

II. STATE OF THE ART AND RELATED WORKS

Aloha is a widely deployed and studied access protocol. The
initial paper presenting Aloha has been published in 1970 [1]
and Aloha is now used in most cellular networks to request
access. A lot of both theoretical and practical studies have been
carried out to improve Aloha. Initial studies [5], [6] sought
methods to stabilize the protocol. The first paper studying
Aloha in a multihop context is [7]. In this work Nelson and
Kleinrock computed the probability of successful transmission



in a random planar Aloha packet radio network with a simple
model where interferences only propagate two hops away.
In 1988 Ghez, Verdu and Schwartz introduced a model for
slotted Aloha with multipacket reception capability in a widely
referenced paper [8]. To the best of the authors knowledge,
this paper introduced a widely accepted model for Aloha in a
network with spatial reuse.

The present article revisits the spatial reuse Aloha MAC
mechanism in the context of multihop mobile wireless net-
works. Compared to [8], our main contributions are

• an exact representation of the signal to interference ratio
for each transmission and hence of the collisions of the
Aloha scheme, taking into account all interferers;

• various optimizations of the Aloha protocol: SR-Aloha,
which concerns the case where some predefined range of
transmission is set; MSR-Aloha, which is meant for the
multihop context.

The routing protocol that will be considered here is close
to MFR (most forward with radius). In this greedy routing
protocol introduced by Takagi and Kleinrock [9], a node
selects the neighbor with the shortest projected distance to
the receiver. The main new step in the present paper is the
merging of the geometric routing notion of ”most forwarding”
with the MAC notion of ”transmission success” into a unique
geometric function to optimize.

For this, we introduce an abstract geometric model allowing
one to address the key concerns outlined above concerning
MAC, namely spatial reuse and range of transmission can
be simultaneously addressed as properties of simple random
geometrical objects. To simplify the considerations we have
assumed a slotted Aloha model. All interferences are taken into
account in an exact way and the success of some transmission
will be decided in function of the Signal to Interference Ratio
(SIR) at the receiver, as it would be the case under the classical
Gaussian channel model of information theory.

Keeping the “random access” spirit of the Aloha protocol,
numerous works tried to design more efficient protocols. Two
main ways have been investigated; the first one consists in
taking advantage of the history of the channel in order to
adopt a better retransmission strategy than the blind Aloha re-
emission strategy. The second one consists in improving the
control of the channel by carrier sensing: that is the CSMA
(Carrier Sense Multiple Access) technique. In [10] it is shown
that CSMA actually outperforms Aloha in wired networks.
However Tobagi points out in [11] that CSMA protocol may
suffer from hidden collisions and numerous papers mostly in
the 90s proposed dedicated protocols to cope with this problem
[12], [13], [14], [15]. Actually these protocols can be seen as
enhanced CSMA protocols where the carrier sense effect is
also used around the receiver to protect its reception. As a
byproduct of the proposed analytical model, the present article
offers a tentative comparison between Aloha and CSMA in
a multihop network under the general SIR model. This is a
pertinent comparison sine one may question the benefit of
CSMA in adhoc network which suffers from hidden nodes.

In 2000 Gupta and Kumar published a now widely refer-
enced article [16] in which it is shown how the throughput
of multihop adhoc networks scales with the node density. If
one uses the material produced by Gupta and Kumar in the
part dedicated to the derivation of the lower bound, it is very

easy to show that an ad hoc network using a CSMA scheme
with a fixed carrier sense range will not be able to scale its
throughput in O(

√
λ√

log(λ)
) (the maximum achievable scaling

law for the throughput of a random ad hoc network as found
by [16]) but rather in O(1). Thus for a CSMA ad hoc network
to reach its maximum throughput scaling, an adaptation of
the carrier sense range to the node density is required. Gupta
and Kumar give access and routing protocols allowing the
network to reach the lower bound throughput proposed in
their paper; however, the proposed solution does not allow one
to derive implementable protocols to reach this bound. The
present paper proposes an access scheme reaching the Gupta
and Kumar bound which does not require prior knowledge of
the network density. It shows that MSR-Aloha gives a density
of progress (notion related to Gupta and Kumar’s transport
capacity) of the form K(p)

√
λ; we give a closed form for

K(p), allowing for an optimization with respect to p, which
is one of the main results of the paper.

As we will see, although it allows the transmission of
packets over time from any node to any other node, MSR
Aloha does not require connectivity at any given time. This
explains why the scaling that it provides is in O(

√
λ) instead

of the expected O(
√

λ√
log(λ)

). In ad hoc networks, connectivity

is usually enforced via complex neighborhood management
algorithms which lead to significant overhead (see e.g. [17],
[18], [19], [20]). The fact that connectivity is not required by
MSR Aloha can thus be thought of as an important argument
in favor of this access protocol.

III. A STOCHASTIC GEOMETRY MODEL

We consider an infinite planar network. Let Φ =
{(Xi, (ei, Si, Ti))} be a marked Poisson point process with
intensity λ on the plane R

2, where

• Φ = {Xi} denotes the locations of stations,
• {ei}i the medium access indicator of station i; ei = 1 for

the stations which is allowed to emit and ei = 0 means
the station is (a potential) receiver. Here, the random
variables ei are independent, with P(ei = 1) = p.

• {Si} denote powers emitted by stations (stations for
which ei = 1); the random variables {Si} will always
be assumed independent and identically distributed with
mean 1/µ. If not otherwise specified, the Sis have
a general distribution. Under this general distribution
assumption, we will be able to prove our qualitative
results. An important special case, in which a quantitative
analysis is possible, is that with exponential powers.

• {Ti} are the SINR thresholds corresponding to some
channel bit rates or bit error rates; here, for simplicity,
we will take Ti ≡ T constant.

In addition to this marked point process, the model is based on
a function l(x, y) that gives the attenuation (path-loss) from y
to x in R

2. We will assume that the path-loss depends only on
the distance; i.e, with a slight abuse of notation l(x, y) = l(|x−
y|); As an important special case of the simplified attenuation
function we will take

l(u) = (Au)−β for A > 0 and β > 2. (3.1)

Note that such l(u) explodes at u = 0, and thus in particular
is not correct for a small distance r and large intensities λ.



We also consider an independent of Φ, external noise (e.g.
thermal) and denote it (at a given location) by W .

Note first that Φ can be represented as a pair of independent
Poisson p.p. representing emitters Φ1 = {Xi : ei = 1}, and
receivers Φ0 = {Xi : ei = 0}, with intensities, respectively,
λp and λ(1 − p).

Suppose there is a station located at x that emits with power
S and requires SINR T . Suppose there is a user located at
y ∈ R

2. The station can establish a channel to this user with
a given bit-rate (which will be taken as the unit throughput in
what follows) iff

Sl(|x− y|)
W + IΦ1(y)

≥ T , (3.2)

where IΦ1 is the shot-noise process of Φ1: IΦ1(y) =
∑

Xi∈Φ1 Sil(|y − Xi|). Denote by δ(x, y,Φ1) the indicator
that (3.2) holds. Note that by stationarity of Φ1, the probability
E[δ(x, y,Φ1)] depends only on the distance x− y and not on
the specific locations of (x, y); so we can use the notation
p|x−y|(λp) = E[δ(x, y,Φ1)], where λp is the intensity of
the emitters Φ1. The following lemma is the basis of our
quantitative analysis of the model.

Lemma 3.1: For exponential S with mean 1/µ,

pR(λ) = exp

{

− 2πλ

∫ ∞

0

u

1 + l(R)/(T l(u))
du

}

×ψW (µT/l(R)) , (3.3)

where ψW (·) is the Laplace transform of W .
Proof: Note by (3.2) that

pR(λ) = P(S ≥ T (W + IΦ)/l(R))

=

∫ ∞

0

e−µsT/l(R) d Pr(W + IΦ ≤ s)

= ψIφ
(µT/l(R))ψW (µT/l(R)) ,

where ψIΦ
(·) is the Laplace transform of IΦ = IΦ(0). Note

that ψW does not depend on λ, whereas it is known that for
a general Poisson shot-noise

ψIΦ
(ξ) = exp

{

− λ

∫

R2

1 − E

[

e−ξSl(|x|)
]

dx

}

. (3.4)

Since S is exponential with mean 1/µ

ψIΦ
(ξ) = exp

{

−λ
∫

R2

1 − µ

µ+ ξl(|x|) dx

}

= exp

{

− 2πλ

∫ ∞

0

u

1 + µ/(ξl(u))
du

}

that concludes the proof.
Corollary 3.2: For exponential S, W ≡ 0 and the simpli-

fied attenuation function (3.1) we have pR(λ) = e−λR2T 2/βC ,
where

C = C(β) =
(

2πΓ(2/β)Γ(1 − 2/β)
)

/β (3.5)

and Γ(z) =
∫ ∞
0
tz−1e−t dt is the Gamma function.

For general power distribution, we do not know any explicit
form of pR(λ). However, the following scaling result will be
useful.Denote by p̄r the value of pr(1) calculated for the model
with the simplified attenuation function (3.1), T ≡ 1,W ≡ 0
and normalized emitted powers S̄i = µSi.

Lemma 3.3: For general power distribution and the simpli-
fied attenuation function (3.1), when the external noise W ≡ 0,
we have pR(λ) = p̄RT 1/βλ1/2 .
Note that p̄r does not depend on any parameter of the model
other than the distribution of the normalized emitted power S̄.

Proof: The Poisson point process Φ with intensity λ > 0
can be represented as {X ′

i/
√
λ}, where Φ′ = {X ′

i} is Poisson
with intensity 1. Due to this the Poisson shot-noise with
simplified attenuation function admits the following represen-
tation: IΦ = λβ/2IΦ′ . Thus for W = 0

pR(λ) = Pr(S ≥ T (AR)βIΦ)

= Pr
(

µS ≥ µ(ART 1/βλ1/2)βIΦ′

)

= p̄RT 1/βλ1/2 .

IV. SPATIAL DENSITY OF SUCCESSFUL TRANSMISSIONS

In this section we suppose that each mobile Xi ∈ Φ attempts
to transmit to one receiver Yi located at a distance R = |Xi −
Yi| to it via a channel based on the principle (3.2).

A. SR-Aloha: Best MAP Given Some Range

The first question that we investigate assumes that the range
of all transmissions is given and looks for the value of MAP p
that maximizes the mean number of emitters (and thus emitter-
receiver pairs) that can successfully transmit, per unit area.
The main result is that there exists an optimal MAP and thus
a way to optimize Aloha once transmission range is fixed. The
associated protocol will be referred to as SR-Aloha in what
follows.

In fact, we don’t ask here whether there is a receiver Yi

located at a distance R as we will do in the next section. This
is why there is actually only one point process of intensity
λ1 = λp in the model of this section, and the optimization
in p can actually be seen as that in λ1. In order to simplify
notation, we will drop the upper index 1 in this section and
call here Φ the point process of emitters with intensity λ and
look for the optimal λ.

We have the following simple formula for the spatial density
of successful transmissions in the network.

Proposition 4.1: The mean number of emitters per unit area
that can successfully transmit at range R is λpR(λ).

Proof: The respective mean number of emitters per unit
area set B ⊂ R

2 is equal to

E

[

∑

Xi∈Φ

1I(Xi ∈ B)δ(Xi, Yi,Φ)

]

= λ

∫

R2

1I(x ∈ B)pR(λ) dx = λpR(λ) .

Now we look for λmax = maxargλ≥0{λpR(λ)} that maximizes
the spatial density of successful transmissions in the network.
We will see that for S exponential λmax is well defined. For
general S, we have the following technical result in this matter.

Lemma 4.2: If Pr(S > 0) > 0 then pr(λ) is continuous in
λ. If moreover E[S3/β ] < ∞ then limλ→∞ λpr(λ) = 0 for
any r > 0.
The proof is forwarded to the Appendix. As a consequence of
the above lemma, the function λ 7→ λpr(λ) attains it maximum
in (0,∞). Define λmax to be the smallest λ for which the



spatial density of successful transmissions is maximal. Then
0 < λmax <∞.

Proposition 4.3: For a general S, the simplified attenuation
function (3.1) and W ≡ 0 we have λmax = c1/(R

2T 2/β),
and λmaxpR(λmax) = c2/(R

2T 2/β), where the constants c1, c2
do not depend on R, T, µ, provided λmax is well defined. For
exponential S, c1 = 1/C and c2 = 1/(eC) with C defined in
(3.5).

Proof: Suppose λmax = maxargλ≥0{λpR(λ)} is well
defined. By Lemma 3.3 c1 = maxargλ≥0{λp̄λ1/2} and c2 =
maxλ≥0{λp̄λ1/2}, which completes the proof for general S.
For exponential S, general attenuation function and general
distribution of W ≥ 0, by Lemma 3.1, and the differentiation
of the function λpR(λ) w.r.t. λ, it is easy to see that its unique
maximum is attained at

λmax =

(

2π

∫ ∞

0

u

1 + l(R)/(T l(u))
du

)−1

and the maximal value is given by λmaxpR(λmax) =
e−1λmax ψW (µT/l(R)) . Plugging in the simplified attenuation
function (3.1) and W ≡ 0 and evaluating the integral

2π

∫ ∞

0

u

1 + l(R)/(T l(u))
du =

2πR2T 2/β

β
Γ(2/β)Γ(1−2/β) ,

we get the result.
Note that under this optimal choice of λ, the mean distance

progressed by transmissions per unit space, for exponential
S and simplified attenuation function, is RλmaxpR(λmax) =
c2/(RT

2/β), which is maximal for R = 0. The apparent
conclusion is here that the smallest the range, the best the
network operates. We will come back to this in § V.

B. Spatial Reuse

We can also interpret the last results in terms of the so-
called spatial reuse factor defined as the distance to the
receiver R divided by the (mean) distance between adjacent
emitters. For this last quantity, we take the mean distance
between neighboring points in Poisson-Voronoi tessellation
(more precisely, the mean edge length of the typical triangle
in the Poisson-Delaunay triangulation; see e.g. [21]), which
is 32/(9π

√
λmax). Thus we get, for exponential S Spatial

reuse=T−1/β 9π
32

√
C

. For the network based on the perfect
triangular mesh spatial reuse is analyzed in [22] and is given
by the formula 1/2T−1/β

√
3/(6ζ(β − 1))1/β , where ζ(s) =

∑∞
n=1 1/ns is the Riemann zeta function. Figure 1 compares

the values of spatial reuse in these two cases for T = 10dB
and different β. Note that in FDMA hexagonal networks with
super-hexagonal frequency reuse, spatial reuse would range
from 1/6 = 0.133 to

√
3/12 = 0.144 (depending on whether

we take the receiver to be located in the middle of hexagonal
cell edge or at its end.

C. Tentative comparison of SR-Aloha and CSMA

The aim of this section is a tentative comparison between
SR-Aloha and a generic CSMA protocol. By this latter we
understand the model where each communication with a
targeted transmission range R is protected by the exclusion
disc centered at the transmitter with radius Rcs > R, within
which other transmissions are inhibited. Note that our SR-
Aloha can be seen as model with random exclusion areas.

Spatial reuse
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Regular triangular network
SR-Aloha

β

Fig. 1. Comparison of the spatial reuse factor for Poisson (lower curve)
and perfect triangular network (upper curve) for T = 10dB and different β.
In hexagonal TDMA networks, with super-hexagonal frequency reuse, this
parameter is between 0.133 and 0.144 regardless of β.

Throughout the section, we assume a random Poisson
network, the simplified attenuation function (3.1) and W = 0.
We suppose that the radius of the carrier sense range Rcs

is set at Rcs = RT 1/β 2(6ζ(β−1))1/β

√
3

, where R denotes the
targeted transmission range. According to [22] we are sure
that with this value, there will be no collision for a receiver
in a radius of range R if the transmitters in the network are
on a triangular regular network with neighboring transmitters
separated by Rcs. It is in a triangular regular network that
the density of nodes being at least at Rcs away is maximum.
Thus, whatever the pattern of simultaneous emitters respecting
the CSMA rule with Rcs, a transmission to a receiver within
radius R will always be collision free.

In order to compare SR-Aloha to CSMA protocol, we
have to compute the intensity of an extracted point process
satisfying the CSMA exclusion rule. Of course the intensity
of this process will depend on the selection algorithm. An
intuitive algorithm consists in picking nodes randomly and
adding them to the CSMA transmission set if they are not
in the carrier sense range of an already selected node. This
algorithm is close to the effective behavior of a simple CSMA
system. However this model does not seem to be easily
tractable mathematically. Another selection algorithm is that
based in the Matern hard core process [23], [21]. This process
is a thinning of the initial Poisson point process in which
points are selected according to random marks. A point of
the process is selected if its mark is larger than all marks in
a radius of range Rcs. It is easy to check that the selected
points follow the CSMA rule. The spatial intensity λRcs

of
the Matern hard-core process can be obtained in function of
the spatial intensity of the initial Poisson point process by the
formula: λRcs

= (1 − e−πλR2

cs)/(πR2
cs); see [21].

Simulations show that the intensity of this process is smaller
than the intensity obtained through the random pick algorithm
alluded to above, while giving results of the same order of
magnitude. We can notice that the Matern hard core process
is a natural model for the access scheme of HiPERLAN type
1. The MAC of HiPERLAN type 1 actually uses an advanced
version of CSMA. A signaling burst is sent before the packet;
the (random) length of this elimination burst will be the mark
which allows one to derive the Matern process.

Since we know Rcs, it is then easy to compute the trans-
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Fig. 2. Left: spatial intensity of successful transmissions for CSMA (Matern
selection model) and for SR-Aloha scheme in function of β, T = 10dB. The
top curve gives the throughput of a regular triangular network. Right: Zoom
of the comparison CSMA-SR-Aloha for β between 2 and 3.

mission density for a CSMA scheme and to compare it with
the spatial density of successful transmission of our SR-Aloha
scheme given by Proposition 4.3.

This comparison is given in Figure 2. Figure 2 (top)
compares the spatial intensity of CSMA (selection of active
nodes as in a Matern hard core process) and the spatial density
of successful transmission of SR-Aloha scheme in function of
β, for T = 10dB. The curve on the top gives the spatial
intensity of CSMA in a regular triangular network. On the
bottom we have a zoom for β between 2 and 3. We see that,
near 2, the optimized Aloha scheme actually outperforms the
CSMA scheme.

Figure 2 shows that under these assumptions, the per-
formance of SR-Aloha is very close to that of the CSMA
scheme. This observation is consistent with [7] ,where a
similar result reports that Aloha and CSMA have close perfor-
mance. However the study in [7] uses a simplified transmission
model (interference is only considered to propagate two hops
away) and the carrier sense range and transmission range are
supposed to be the same. In [24] a convenient tuning of the
carrier sense range is shown to be important for the global
performance of the network.

As a result of this tentative comparison we can conclude
that SR-Aloha and a generic CSMA algorithm will have
comparable result, a better framework and further studies will
be necessary to precise this comparison.

D. Best Range Given Some MAP

Assuming some intensity λ of emitters given, we will use
the following notation and definition:

rmax(λ) = maxarg
r≥0

{rpr(λ)} (4.1)

ρ(λ) = max
r≥0

{rpr(λ)}. (4.2)

We call rmax(λ) the best range attempt for λ and ρ(λ) the
best mean range. For exponential S, by Lemma 3.1, 0 <
rmax <∞, 0 < ρ <∞. For a general S we have the following
technical result.

Lemma 4.4: If Pr(S > 0) > 0 then pr(λ) is continuous in
r. If moreover E[S2/β ] < ∞ then limr→∞ rpr(λ) = 0 for
any λ > 0.
The proof is forward to the Appendix. As a consequence of
the above lemma the function r 7→ rpr(λ) attains it maximum
in (0,∞) and if we take rmax to be, for instance, the largest
r for which the spatial density of successful transmissions is
maximal then 0 < rmax <∞.

By Lemmas 3.1, and 3.3 we have the following result.

e = 0
potential receiver

e = 1
emitter

optimal receiver

used signal

progress D
given emitter

interference

towards destination

Fig. 3. Progress.

Proposition 4.5: For a general S, the simplified attenuation
function (3.1) and W ≡ 0 we have rmax(λ) = c3/(T

1/β
√
λ)

and ρ(λ) = c4/(T
1/β

√
λ), where the constants c3, c4 do

not depend on R, T, µ, provided λmax is well defined. For
exponential S, c3 = 1/

√
2C and c4 = 1/

√
2eC.

Here again, trying to maximize the cumulated mean range
of all transmissions initiated per unit of space w.r.t. λ, namely
trying to maximize λρ(λ) in λ, leads to a degenerate answer
since the maximum is for λ = ∞ which again gives R = 0.

V. MULTIHOP NETWORKS

A. Progress

We now return to the model of Section III with emitters Φ1

and receivers Φ0 and focus on the multihop context. Suppose
an emitter, say X0, located at the origin X0 = 0 has to
send information in some given direction (say along the x
axis) to some destination located far from it (say at infinity
– see Figure 3). Since the destination is too far from the
source to be able to receive the signal in one hop, the source
tries to find a non-emitting station in Φ0 such that the hop
to this station maximizes the distance traversed towards the
destination, among those which are able to receive the signal.
This station will later forward the data to the destination
or next intermediary station. In this model, the “effective”
distance traversed in one hop, which we will call the progress,
is equal to

D = max
Xj∈Φ0

(

δ(0, Xj ,Φ
1)|Xj |

(

cos(arg(Xj))
)+

)

, (5.1)

where arg(y) is the argument of the vector y ∈ R
2 (−π <

arg(y) ≤ π) and δ(x, y,Φ1) the indicator that (3.2) holds.
We are interested in the expectation d(λ, p) = E[D] that only
depends on λ and on the MAP p, once given the parame-
ters concerning emission and reception, Note that similarly
to Proposition 4.1, we have the following formula for the
(spatial) density of progress:

Proposition 5.1: The mean total distance traversed in one
hop by all transmissions initialized in some unit area (density
of progress) is equal to λpd(λ, p).

B. MSR-Aloha and Optimal Progress

Note that for given λ, there is the following trade-off in p
between the spatial density of communications and the range
of each transmission. For a small p, there are few emitters only
per unit area, but they can likely reach very remote receiver as
a consequence of little IΦ1 . On the other hand, a large p means



many emitters per unit area that create interference and thus
prevent each other from reaching a remote receiver. Another
feature associated with large p is the paucity of receivers,
which makes the chances of a jump in the right direction
smaller. In the sequel we try to quantify this tradeoff and find p
that maximizes the density of progress. Since this optimization
is adapted to the multihop context, the corresponding MAC
protocol will be referred to as MSR-Aloha.

For mathematical convenience and also for the reasons that
will be discussed in Section VII we will not study d(λ, p)
directly but rather a lower bound of this quantity which we
now introduce. Let

D̃ = max
Xj∈Φ0

(

p|Xj |(λp)|Xj |
(

cos(arg(Xj))
)+

)

(5.2)

and let d̃(λ, p) = E[D̃]. We have an obvious bound D̃ ≤
ρ(λp).

Proposition 5.2: For all λ, p, d(λ, p) ≥ d̃(λ, p).
Proof: Let E

1,E0 denote expectation w.r.t Φ1 and
Φ0, respectively. Note that E[D̃] = E

1
E

0[D̃] due to the
independence between Φ1 and Φ0. The result now fol-
lows from Jensen’s inequality, since the functional ϕ(f) =
E

0[maxXj∈Φ0(f(Xj)|Xj |(cos(arg(Xj)))
+)] is convex on the

space of real functions f : R
2 → R.

The aim of the remaining part of this section is to determine
the value of MAP p that optimizes λpd̃(λ, p).

We will use the notation (cf §IV-D) rmax = rmax(λp) =
maxargr≥0{rpr(λp)} and ρ = ρ(λp) = maxr≥0{rpr(λp)}.
For z ∈ [0, 1], let

G(z) =
2

r2max

∫

{r≥0:ρz/(rpr)<1}
r arccos

( ρz

rpr

)

dr . (5.3)

Remark 5.3: Note that if we assume simplified attenuation
function (3.1) and W = 0, then Proposition 4.5 shows that
G(z) does not depend on the model parameters λ, p, T, µ.
Indeed, in this case

G(z) =
2

c3

∫

{r≥0:c4z/(rp̄r)<1}
r arccos(

c4z

rp̄r
) dr.

In particular, for exponential S, we have

G(z) = 2

∫

{t:et/
√

2et≤1/z}
arccos

( zet

√
2et

)

dt . (5.4)

We now study the distribution function of D̃.
Proposition 5.4: We have

FD̃(z) = P(D̃ ≤ z) = e−λ(1−p)(rmax(λp))2G(z/ρ(λp)) .
Proof: Note in (5.2) that D̃ has the form of the so-called

extremal shot-noise maxXi∈Φ0 g(Xi) with the response func-
tion g(x) = |x|p|x|(cos(arg(x)))+. Its distribution function
can be expressed by the Laplace transform of the (additive)
shot noise

P( max
Xi∈Φ0

g(Xi) ≤ z) = E

[

exp

[

∑

Xi∈Φ0

ln(1I(g(Xi) ≤ z))

]]

and thus, by (3.4), for Poisson p.p. Φ0 with intensity λ(1−p)

P(D̃ ≤ z) = exp

[

−λ(1 − p)

∫

R2

1I(g(x) > z) dx

]

.

Passing to polar coordinates in the integral
∫

R2 . . . dx, we get
∫

R2

1I(g(x) > z) dx = r2maxG(z/ρ) ,

which completes the proof.
Immediately from the Proposition 5.4:
Proposition 5.5: The expectation of D̃ is equal to

d̃(λ, p) = E[D̃] = ρ(λp)

∫ 1

0

1 − e−λ(1−p)(rmax(λp))2G(z) dz .

Corollary 5.6: For the model with the simplified attenua-
tion function (3.1) and W = 0, the expected modified progress
is equal to

d̃(λ, p) =
c4

T 1/β
√
λp
H(p, T ) , (5.5)

and the spatial density of modified progress is

λpd̃(λ, p) =
c4
√
λp

T 1/β
H(p, T ) , (5.6)

where

H(p, T ) =

∫ 1

0

1 − exp
[(

1 − 1

p

) G(z)

c3T 2/β

]

dz (5.7)

Thus the maximal density of progress is attained for MAP
p∗ = p∗(T ) satisfying H(p∗, T ) = sup0≤p≤1H(p, T ). For
exponential S this is equivalent to
∫ 1

0

(

1 +
G(z)

p∗T 2/βC

)

exp
[(

1 − 1

p∗

) G(z)

2T 2/βC

]

dz = 1 . (5.8)

Note that p∗ does not depend on λ and µ.

C. Numerical Examples and Discussion

Now, we evaluate numerically the optimal MAP in the
exponential case, and discuss the issue of the distance to the re-
ceiver that realizes the maximum in (5.2). This distance should
not be large when one wants to implement the algorithm.
We will show, that at the optimal MAP p∗, the receiver that
realizes the maximum in (5.2), is very likely in the vicinity of
the emitter. However replacing the optimal receiver in (5.2)
by the nearest one in some angle towards destination gives
essentially suboptimal density of progress.

1) Numerical approximations of p∗: The successful numer-
ical calculation of d̃ and of the solution p of (5.8) maximizing
the density of progress requires an efficient way of calculating
the function G given by (5.4). Bellow we show some prop-
erties of G that involve the so called Lambert W functions
LW0 and LW1. These functions can be seen as the inverses
of the function tet in the domains (−1,∞) and (−∞,−1)
respectively; i.e., for s ≥ −1/e, LW0(s) is the unique solution
of LW0(s)eLW0

(s) = s satisfying LW0(s) ≥ −1, whereas
for 0 > s ≥ −1/e, LW1(s) is the unique solution of
LW1(s)eLW1

(s) = s satisfying LW1(s) ≤ −1. Let L0(s) =
− 1

2LW0(−s−2e−1) and L1(s) = − 1
2LW1(−s−2e−1) . The

following representation of G is equivalent to that in (5.4):

G(z) = 2

∫ π/2

arcsin(z)

(

L1(
sin s

z
) − L0(

sin s

z
)
)

ds .

Moreover, the following function

G∼(z) = π(1 − z) − 2 ln(z) arccos(z)

approximates G very well on the whole interval 0 < z < 1.
Figure 4 shows the density of progress calculated by means
of G∼ for β = 3, λ = 1 and three values of the SIR threshold
T = {10, 13, 15}dB. On the plot, we can identify the MAP
p∗ that maximizes the density of progress for a given T .
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Fig. 4. Density of progress for the model with exponential
S and simplified attenuation function with β = 3, λ = 1
and W = 0, with T = {10, 13, 15}dB (curves from top
to bottom). The optimal values (maxarg, max) are respectively
{(0.052, 0.0086), (0.034, 0.0055), (0.026, 0.0040)}.

2) Location of the Optimal Receiver: First we will show
that the optimal density of progress can be approached in a
model with a reasonably restricted domain of reception. By
this we mean that we exclude in the definition of D and D̃ the
receivers laying outside some disk with given radius R. Note
first that we have the following straightforward generalization
of our previous results.

Proposition 5.7: The Propositions 5.1, 5.2, 5.4 and 5.5
remain true if we take maxXi∈Φ0,|Xj |≤R(. . .) the defini-
tions (5.1) and (5.2). In this case the function G has to
be modified by taking the integral in (5.3) over the region
{0 ≤ r ≤ R : ρz/(rpr) < 1}.
The case considered above will be referred to as the restricted
range model in what follows.

We look for a reception radius R such that for a given p
the density of progress in the restricted range model is close
enough to that of the unrestricted range model. It is convenient
to relate the reception radius R with the intensity λ of emitters.
As we will see later on, its even more convenient to take R =
Krmax for some constant K ≥ 0 (recall, that rmax = rmax(λp)
is the distance at which the mean range rpr(λp) is maximal).
Denote by GK the function defined by (5.3) with the integral
taken over {0 ≤ r ≤ Krmax : ρz/(rpr) < 1}.

We will continue with the simplified attenuation func-
tion (3.1) and W = 0. In this case

G(z) =
2

c3

∫

{0≤<r≤c3K:c4z/(rp̄r)<1}
r arccos(

c4z

rp̄r
) dr.

We can now prove the following continuity result.
Proposition 5.8: For the simplified attenuation function and

W = 0
0 ≤ d̃− d̃K ≤ ρzK , (5.9)

for some function K 7→ zK , such that limK→∞ zK = 0. For
exponential S, we can take zK = Ke1/2−K2/2 for K ≥ 1.

Proof: Since rp̄r → 0 when r → ∞ (see Appendix),
for each K ≥ 0, there exists zK such that GK(z) = G(z)
for z ≥ zK . Moreover zK → 0 when K → ∞. Thus (5.9)
follows from Propositions 5.5 and 5.7.

Take for example, p = 0.035, which for T = 13dB gives
in exponential S case the mean progress in the unbounded
model (about) d̃ = 0.0055/0.035 = 0.157 (cf. Figure 4), the
best mean range is attained for the range attempt rmax = 0.506
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Fig. 5. Density of progress for the model with exponential S and simplified
attenuation function with β = 3, λ = 1 and W = 0, with T = 10dB for
“optimal receiver” and “nearest neighbor” case.

and is equal to ρ = 0.307. In order to have a relative difference
ε = 0.01 we find the minimal K ≥ 1 such that Ke1/2−K2/2 ≤
0.01 · 0.157/0.307 = 0.00513, which is K = 3.768. This
means that in the model with reception radius R = Krmax =
3.768 · 0.506 = 1.905, the mean progress is 1% close to the
optimal one, obtained in the unrestricted model.

On the other hand, it is easy to calculate the progress
in the model when the emitter chooses always the
nearest (to him) receiver in the cone of a given an-
gle α towards the destination. Formally let D̃near

α =
p|X∗|(λp)|X∗| cos(arg(X∗)), where X∗ = X∗(α) is such
that |X∗| = min{|Xj | : Xj ∈ Φ0, | arg(Xj)| ≤ α/2}.
Since the distribution function of |X∗| for the Poisson process
Φ0 with intensity λ(1 − p) is known to be Pr(|X∗| ≥
r) = Pr(the Poisson p.p. has no points in the resp. cone) =
exp[−λ(1 − p)α/2π] and arg(X∗) is independent of |X∗|,
uniformly distributed on (−α/2, α/2), we easily get the
following result on the mean progress in this scenario.

Proposition 5.9: For the simplified attenuation function,
exponential S and W = 0 we have

E[Dnear
α ] =

Γ(3/2)√
λ

sin(α/2)(1 − p)
(

(1 − p)α/2 + pT 2/βC
)3/2

.

Figure 5 compares the density of progress pd̃(1, p) in the
“optimal receiver” case to the density of progress pE[Dnear

α ]
in the “nearest neighbor” case, for various values of α when
T = 10dB and S is exponential. The optimal choice of α
is about 0.72π, for which the optimal MAP p is about p =
0.056 which gives pE[Dnear

α ] = 0.0080, to be compared to
p∗d̃(1, p∗) = 0.0086 for p∗ = 0.052.

Finally, note on Figure 6, that for T in the range 0dB–10dB
the optimal value of the density of progress p∗d̃(p∗, 1) is linear
in p∗, which means that the mean progress d̃(p∗, 1) does not
depend much on T in this range. We see on Figure 7, that
making T very small increases the optimal MAP p∗, rather
than the mean progress d̃(p∗, 1).

VI. CAPACITY AND STABILITY

A. Transport Capacity

The spatial density of progress introduced above is related to
Gupta and Kumar’s [16] notion of transport capacity. In [16],
it is shown how to construct a spatial and temporal scheme
for scheduling transmissions in a bounded region such that the
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Fig. 6. Density of progress for the model with exponential S and simplified
attenuation function with β = 3 and W = 0 for moderate values of T .
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Fig. 7. Density of progress for the model with exponential S and simplified
attenuation function with β = 3 and W = 0 for small values of T .

number of bit meters pumped by the network every second is
of the order of O

( √
λ√

log(λ)

)

when the intensity λ→ ∞.

Our MSR-Aloha protocol also pumps a certain number of
bit meters every second. If the bit rate corresponding to the
threshold T is b, then the density of progress is λpd(λ, p) and
MSR-Aloha pumps Ct = bλpd(λ, p) bit meters per second
and per unit area. From the Proposition 5.2 and formula (5.6),
we can lower-bound this transport capacity per unit area by

Ct = b

( √
p∗

T 1/β
√

2eC
H(p∗, T )

)√
λ = O

(√
λ
)

, (6.1)

where H(p, T ) is given by (5.7), letting p∗ to maxi-
mize H(p, T ). So, we conclude that MSR-Aloha, achieves the
optimal transport capacity of Gupta and Kumar. The reason for
which it is O(

√
λ) and not O(

√
λ√

log(λ)
) is there are no extra

connectivity requirements. In Section VII, we will describe
some conditions under which MSR-Aloha can be implemented
in a purely decentralized way. Under these conditions MSR-
Aloha can then be seen as a way of achieving optimal transport
capacity in a decentralized way. To our best knowledge it is
the first protocol to achieve this property.

B. Stability of MSR Aloha

Up to now, we analyzed spatial properties of the MSR-
Aloha mechanism. We cannot really address stability issues
unless we define temporal evolution of the model.

Suppose each mobile has the following transmission dynam-
ics: it has a queue of packets to be transmitted at the bit rate
specified by the SIR threshold T . This queue is fed by packets

which are either fresh packets originating from this mobile or
arriving from another mobile and to be relayed. Each mobile
tries to transmit the packet head of the line according to the
MSR-Aloha scheme, namely tries to transmit this packet with
probability p and either succeeds or keeps this packet head
of line in case of collision (to be identified with the instant
progress D = 0).

Each packet transport consists in several transmission hops
between a random source and a random destination. We
assume that the set of such packet transports is homogeneous
(for instance forming a random segment process with uniform
orientation and mean length L). Then, assuming MSR-Aloha
mechanism, the transport of each new packet requires an av-
erage of L/d(λ, p) individual transmissions. Let τ denote the
mean number of fresh packets initiated per time slot and per
mobile. Thanks to the homogeneity assumptions, the average
number of transmissions that are created by the network per
slot and per unit of space is therefore λτL/d(λ, p).

We also know that when all stations have packets to trans-
mit, the mean number of packets that are allowed to transmit
per unit area and per slot is λp.

These two observations lead to the following conclusion:
if the time intensity τ of fresh packets per station is larger
than pd(λ, p)/L, then there is no way for the protocol to cope
with the traffic load during periods where most stations have
to transmit in some area. Thus the quantity Cd = pd(λ,p)

L is an
upper bound on the mean number of fresh packets per station
and per slot that MSR-Aloha can handle at a given MAP p.

The question whether any time intensity of communications
smaller than Cd per mobile leads to a stable dynamics for a
network controlled by MSR-Aloha is quite natural by analogy
with what we know of Aloha or Ethernet.

We show below that under simple independence and non-
degeneracy assumptions on mobility, this dynamic stability can
be conjectured.

1) Stability under Mobility: The slotted mobility model
is close to the way point model: mobiles are numbered in
some way (e.g. using the distance to the origin at slot 0).
Mobile i, which is located at Xn

i in slot n, has a random and
independent motion mn

i during this slot, so that its position
at slot n+ 1 is Xn+1

i = Xn
i +mn

i . If the {mn
i } sequence is

made of independent and identically distributed (i.i.d.) random
variables in n and i, then {Xn

i } is a Poisson point process at
all time n if it is at time 0. The law of mn

i is assumed to be
non-degenerate (i.e. the norm of mn

i is assumed to be positive
with a positive probability). This implies that the sequence of
configurations seen by mobile i over time (by configuration
seen by mobile i at time n, we understand the family of points
{Xn

j − Xn
i }j) is stationary and ergodic (see [25] for these

definitions). The distribution each such configurations is the
Palm distribution of a planar Poisson p.p of intensity λ.

Given the ergodicity of the configurations seen by mobile
i over time and the homogeneity assumptions, it makes sense
to assume that the (time) point process of packets (fresh or to
be relayed) arriving into the queue of station i is stationary
and ergodic, with a time intensity τ ′ equal to τ ′ = τL/d(λ, p).
The ergodicity assumption would not be justified in case of a 0
motion as mobile i might then be a bottleneck having to relay
a larger number of packets or experiencing a larger collision
rate due to its particular location in configuration 0. The worst
case scenario for mobile i (or equivalently an upper bound to



the content of its queue) is obtained when considering the case
where all other queues are always full (which is the analogue
of the situation where all stations are backlogged in standard
Aloha). In contrast with what happens in standard Aloha,
where the probability of success in an infinite population
model is 0 when all stations are blocked, in our model, thanks
to spatial reuse, the probability for mobile i to transmit is
still positive, equal to p, even when all mobiles have infinite
backlogs The sequence of successful transmission times that
mobile i would experience if backloged is also a stationary
and ergodic since it is based on the stationary and ergodic
sequence of configurations seen by i over time and the i.i.d.
sequences of transmission coin tosses in all mobiles. It makes
sense to assume that the sequence of successful transmission of
mobile i when backloged and the arrival process in the queue
of station i, are jointly stationary and ergodic since they are
both functionals of the same sequence of configurations seen
by station i. Loynes’ theorem [25] can then be invoked to show
that under assumption τ ′ < p, that is equivalent to τ < Cd,
mobile i (and hence any mobile) has a queue size that is upper
bounded by a finite stationary and ergodic process, which is
a satisfactory definition of dynamic stability.

Of course, the above argument does not extend to the case
with no mobility at all, where one can fear a bad behavior
of the plain MSR Aloha protocol in some parts of the plane
due to long lasting bottleneck local situations. However, we
will show in the second part of this section, that under mild
assumptions the MSR-Aloha protocol nevertheless provides a
positive throughput and a positive progress to any node of the
network and is still optimal in some sense.

Remark 6.1: Connectivity in mobile ad hoc networks is
most often addressed as a static percolation question. One
typically considers a snapshot of such a network and one says
that two nodes are connected if a successful transmission is
possible between them within this snapshot. One then defines
connectivity either as the property that all nodes belong to
the same connected component (e.g. [16]) or as the existence
of an infinite connected component (e.g. [26]). Note that this
snapshot connectivity condition is one of the requirements
in Gupta and Kumar’s transport capacity estimate [16]. The
setting of this section can actually be viewed as a dynamic
framework for addressing connectivity: within the framework
described above, the network has to transport an infinite flow
of fresh packets originating from all nodes, each with its
own destination. The existence of a sequence of successful
transmissions over time allowing the network to transport each
fresh packet of this infinite flow in a finite number of slots is
a new and quite natural definition of connectivity.

Let us now look at the average end to end delays. We
concentrate on the case where d̃ is used and on the simplified
attenuation model. When all queues are stable and reach a
stationary regime as alluded to above, this new definition of
connectivity is satisfied and in steady state, the mean delay
for transporting a packet from origin to destination ought
to be proportional to L/d̃(λ, p∗). The multiplicative constant
is the average steady state queuing delay through one relay.
Each relay is a slotted queue with arrival rate τL/d̃(λ, p∗)
and service rate p∗ per slot. Assume now that λ varies in a
range where L is large compared to 1/

√
λ, which is required

for the multihop model of the last sections to make sense.
Also assume that τ is chosen in such a way that the load

factor τL/(p∗d̃(λ, p∗)) of each such queue is equal to some
positive θ < 1 when λ varies, which is required for dynamic
stability. This last assumption can be rephrased by stating
that we adapt τ to the density of nodes according to the
formula τ = θp∗d̃(λ, p∗)/L = O

(

1√
λ

)

. Then it makes sense
to assume that the average stationary delay through one relay
is approximately constant in λ. Since d̃(λ, p) = κ/

√
λ for

some κ (see (5.5)), we conclude that under the assumptions
made above, this average stationary origin to destination delay
ought to be proportional to L

√
λ.

2) The Case without Mobility: The aim of this part of the
section is to study the behavior of MSR-Aloha as defined in
§V-B in the particular case where nodes have no mobility at all.
In this case, the dynamic stability result discussed in the first
part of this section does not hold anymore. We show below that
the under mild assumptions the protocol nevertheless provides
a positive throughput and a positive progress to any node of
the network and is still optimal in a sense defined below.

The setting is as follows:

• Φ = {Xi} denotes the locations of nodes; we still assume
an infinite number of nodes in the plane with locations
that remain fixed for all time slots;

• the medium access sequence of station i is an indepen-
dent sequence of i.i.d. r.v’s {ei

n}, taking value 1 with
probability p in slot n if the station is allowed to emit in
this slot, and 0 else;

• the potential powers of node i is also an independent
sequence of i.i.d. r.v’s {Si

n}.
Each time n when node i is allowed to emit, the interference
for the signal emitted by node i at receiver j is IΦ(n, i, j) =
∑

k 6=i S
k
ne

k
nl(|Xj −Xk|). This sequence is i.i.d.

Our only assumption is that the series JΦ(n, x) =
∑

k 6=i S
k
nl(|Xj − x|) is almost surely (a.s.) convergent for all

x. A simple example where this assumption is satisfied is that
where the locations {Xi} are a realization of an homogeneous
Poisson point process and the {Si

n} have finite mean. It then
follows from shot noise theory that the series itself is a.s.
convergent indeed.

Let us show that for all positive real numbers η the
probability that the random variable JΦ(n, x) is less than η is
positive: since the series JΦ(n, x) is convergent, for all η > 0,
there exists a finite subset of the indices F such that the sum
of all its terms over the indices that do not belong to F is less
than η. Hence, the probability that JΦ(n, x) is less than η is
is larger than the probability that ei

n = 0 for all i ∈ F , which
is positive since F is finite. Using this and the fact that Si

n is
independent of IΦ(n, i, j), it is easy to check that the success
of a transmission from i to j in slot n, namely the event
{Si

nl(|Xj − Xi|) > TIΦ(n, i, j)} is of positive probability,
which in turns implies that the progress from node i toward
any final destination has a positive expectation.

Hence, MSR-Aloha provides a positive throughput to any
node of any infinite network provided the interference created
by all nodes in this network is finite at any point of the plane.

VII. IMPLEMENTATION ISSUES

This section addresses the design issues of a MSR-Aloha
MAC protocol based on the notion of progress. As described
in the model, MSR-Aloha is a slotted protocol. The slots
can be obtained via the timing information of a positionning



Fig. 8. Slot structure in MSR-Aloha

system as GPS or local atomic clocks (cesium-beam, rubidium
clocks or hydrogen maser clocks) can provide nodes with such
a synchronisation. MSR-Aloha being a random access MAC
protocol, we also have to cope with collisions. Of course MAC
collisions can be handled above the MAC layer but it can
be easily shown that this leads to inefficient communication
systems. This is why a good implementation of MSR-Aloha
should use MAC acknowledgments for point to point packets
as it is done in MAC protocols used for WLANs standards [3],
[4]. We have assumed that MSR-Aloha is slotted. The slot can
be divided in two parts: a data part (the main part) used by the
emitter to send the packet and an acknowledgment part used
by the receiver to indicate that it has correctly received the
packet, (see Figure 8). There is an issue concerning the correct
reception of the acknowledgment since the global geometry of
the transmissions of acknowledgments is different from that of
the transmission of data packets. This issue can be solved by
using CDMA codes to send the acknowledgments. Each data
packet mentions the CDMA code with which the recipients
have to reply. As we will see later, all the receivers of a
given packet will use this one code, and if the number of
available CDMA codes is large enough, a random selection
amongst available CDMA codes will make collision in codes
of neighboring packet transmissions very unlikely. Since gains
of more than 10dB are very easy to build, the correct reception
of acknowledgments is very likely. In case a packet is not
correctly acknowledged, MSR-Aloha will just have to send
the packet again still using p (p∗ in the optimized case) as the
transmission probability.

Actually the MAC transmission policy of MSR-Aloha is
extremly simple; whenever a MSR-Aloha node has a packet
to send or to retransmit, it must send it using p (p∗ in the
optimized case) as transmission probability on each slot. The
reception of an acknowledgement packet is used to qualify the
correct transmission of a packet. The computation of p∗ can
be done a priori since it only requires to know the capture
threshold T . Thus no special channel monitoring is needed.

Since MSR-Aloha is optimized for multihop networks, it
must be closely related to a routing protocol. It is beyond the
scope of this article to describe routing algorithms or to fully
study how routing algorithms could work with MSR-Aloha.
Most existing routing protocols do not use the geographical
locations of nodes to compute routes, but research has shown
that geographical location information can improve routing
performance in mobile multihop networks [27], [28]. In the
following we give a few hints concerning the use of MSR-
Aloha with geographical position information.

We can imagine two techniques for MSR-Aloha: the next
hop towards the final destination is directly computed or it is
the result of a real transmission.

Fig. 9. Active signaling technique. When a burst is detected in a reception
interval, the node quits the selection process. The “best relay” will be the
receiver having used the greatest binary sequence for its signaling burst.

A. Direct computation of the next hop

For this solution it will be assumed that each network node
knows the locations of all network nodes including itself.
Thus the emitter knows its location (say 0), the direction
of the final destination and the locations Xi of the emitter’s
neighbors expressed in the referential centered in the emitter
in 0 and such that the x axis points to the destination. It
can hence evaluate the functions p|Xi|v(Xi) for all i, where
v(x) = |x|(cos(arg(x)))+ and determine which is the best
neighbor to be the next hop towards the final destination.
Notice that this algorithm can also be implemented by the
receivers. For this solution we assume that each node knows
its location and locations of all the other nodes. Although
actually only the locations of the neighbor nodes and the
destination node are to be known, we can not claim that this
scheme is completely independent of the network density λ.
The following solution will have this property.

B. Next hop selected in a real transmission

We are looking for a mechanism which can at the same
time acknowledge the reception of the current transmission
and select among the potential receivers the one which offers
the largest progress towards the destination. Such a mechanism
can be implemented using in receivers an active signaling
scheme inspired from the scheme used in the Hiperlan type
1 [4] access technique called EY-NPMA (Elimination Yield
Non Preemptive Multiple Access). Note that EY-NPMA can
be precisely analyzed in a single hop context, see [29].

The transmission slot is divided in a main part used by the
transmitter to send the data and a remaining part of fixed length
at the end of the slot which is used by the potential receivers.
In this remaining part of the slot, the potential receivers (i.e.,
these who have successfully received the packet, and one of
whom will forward it as the best relayer) send a burst of active
signaling used for the selection of the best receiver. This burst
is composed of a sequence of intervals of the same length
in which a given receiver can either transmit or listen (see
Figure 9). During this active signaling phase, each receiver
applies the following rule: if he senses a signal during any of
his listening intervals, he quits the selection process (namely
he stops transmitting during the whole remaining part of the
active signaling phase). The reason for this stems from the
construction of signaling bursts (described below): the sensing
of a transmission during a listening interval implies that a
better relay has also correctly received the data information
sent in the first part of the slot.

1) Signaling burst: Let us now describe the way signaling
bursts are built. Each such burst is best represented by a



Fig. 10. Simultaneous transmissions with their receiving areas. The active
signaling generate interference in other receiving areas.

binary sequence where 1 denotes a transmission interval and 0
denotes a listening one. This binary sequence is computed by
each reception node as follows: the first nf bits are computed
by the receiver as a function of the progress the node offers
as relay to the packet. Since we assume that the data packet
includes the address of the source and the address of the final
destination, a node can easily compute this progress it offers
as relay to a received packet. For instance, we can assume that
the first nf = 10 bits give the progress offered by the relay
coded in base 2. It is easy to check that if the progress offered
by a receiver 1 is larger than that of receiver 2, then there exists
an interval in which receiver 2 listens and receiver 1 emits,
which is exactly the announced property. We then add nr bits
selected at random to discriminate between nodes offering
the same progress. We will also assume that the sequence
encompasses a last bit set to 1. This bit forces the receiver
which remains active after the selection process to provide
evidence of its activity. Thus if the emitter (the node who sent
the data packet in the first part of the slot) cannot sense a
signal in the last interval of the signaling burst, it infers that
its packet has not been received or that the selection process
between potential relays has failed and the data packet must
be retransmitted according to the Aloha rule. To cope with
interference between several selection processes taking place
in different locations of the plane during the same signaling
burst, we propose to use CDMA codes; the code to be used by
all receivers of a given packet for acknowledging this packet
and selecting the best relay can be provided in the packet.

There remain two issues concerning the auto-selection-
acknowledgment process.

2) Length of the signaling burst: First, the binary sequence
of the active signaling used for the selection of the optimal
receiver should be long enough to be able to discriminate
between all the potential receivers. A brisk analysis shows
that the expected number of successful receivers of a given
packet is O(1) when λ → ∞ and thus it is possible to fix a
length of this binary sequence that will be sufficient for all λ.
Indeed, for the simplified attenuation function and W ≡ 0, by
Lemma 3.3, this expected number is equal to

E

[

∑

Xi∈Φ0

δ(0, Xi,Φ
1)

]

=
1 − p∗

p∗T 2/β

∫

p̄|x| dx .

3) Interference in the signaling burst: The second issue
concerns the interference created in the active signaling phase.
In Figure 10, we have shown simultaneous transmissions with
their related receiving nodes. The aim of the auto-selection-
acknowledgment is to select the best ’relay’ towards a given
final destination. The signaling technique used to perform this
selection generates interference.

It is beyond the scope of this paper to give a detailed
stochastic-geometry analysis of this problem. Instead, we will
briefly explain why it is possible to fix a CDMA code length
that provides enough orthogonality to cope with interferences
in this phase, for all λ > 0. Note that there are two possible
misbehaviors due to the interference in this phase.

One is when a potential receiver, in one of his listening
intervals, does not correctly received the signal coming from
one of his competitors. It may in such case infer that there is
energy from another transmission attempt as actually there is a
signaling burst sent by a better relay for this very transmission.

Another is when a potential receiver (or even the emitter
when its looks at the last interval of the signaling burst) takes
the interference resulting from signaling burst of other auto-
selection as a signaling burst for its own signaling process.
First Problem. Correct receptions must be validated on a SIR
basis. The following approximation/bound of the probability
of the correct reception can be considered: pack

Rack = Pr
(

Sack ≥
γT ackIack(ARack)β

)

, where Sack is the power used in active

signaling, T ack is the SIR threshold, Rack is the distance on
which the right signal is attenuated, I ack is the interference
in this phase and γ is the orthogonality factor due to usage
of the CDMA codes of a given length. Note that, due to
our previous considerations, Rack = O(1/

√
λ) and Iack ≈

∑

Xi∈Φ1 NiS
ack
i (A|Xi|)−β , where Ni = O(1) (λ → ∞) is

the number of potential receivers of the packet transmitted by
the emitter Xi. Thus, for the simplified attenuation function
and W ≡ 0, by Lemma 3.3,

pack
Rack = p̄ack

O(1/
√

λ)
√

λp∗(γT ack)1/β ,

where p̄ack
R denotes the probability of success for the model

with γ = T ack = λ = 1. This shows that pack
Rack = O(1) when

λ→ ∞ and moreover, pack
Rack → 1 when γ → 0.

Second Problem. This problem cannot be validated on a SIR
basis. We have to fix an absolute threshold for the power of the
signal received in the auto-selection process, based on which
the user will be able to distinguish between the burst of its
own signaling process and a burst of a different auto-selection.
In order to make the process decentralized and auto-adapting
to the density λ, we let each receiver Xi fix this threshold as
some fraction τ of the power S(A|Xi|)−β it received from the
emitter in the data part of the transmission slot. The fraction
τ should be set to a value such that the probability P1 of
the detection of the signaling process associated with its own
emission is large, while the probability P2 of the detection
of a burst from a different auto-selection is small. These two
probabilities can be approximated/bounded as follows:

P1 = Pr
(

Sack(ARack)−β ≥ τS(A|X∗|)−β
)

,

P2 = Pr
(

Iack ≥ τS(A|X†|)−β
)

,

where we take X∗ to be the user the nearest to the emitter
(it determines the largest threshold) and X† to be the most
remote user in the cluster of receivers participating in the
autos-election (it determines the smallest threshold). Assuming
Sack ≈ S and knowing that Rack = O(1/

√
λ) we have

P1 = Pr
(

|X∗| ≥ τ1/βRack
)

= e−λ(1−p∗)τ2/β(Rack)2 = e−(1−p∗)τ2/βO(1)



for λ→ ∞ and we can take τ > 0 small enough to make P1

close to 1. For the second probability, assuming Sack ≈ S and
knowing that |X†| = O(1/

√
λ), we have

P2 = 1 − p̄ack
|X†|

√
λp∗(γ/τ)1/β ,= 1 − p̄ack√

p∗(γ/τ)1/βO(1)

and we can take γ > 0 large enough to make P2 close to 0.
4) Summary: The receiver selection version of the MSR-

Aloha protocol has the following interesting properties:

• for any given MAP p, it realizes a mean progress d(λ, p);
• its throughput scales in at least O(

√
λ) (this follows from

the results of §V-B);
• the protocol does not require that pr(λp) and λ be known;
• there are no extra connectivity requirements (which

explains why its throughput is in O(
√
λ) and not in

O(
√

λ√
log(λ)

)) and hence no neighborhood management;

• it is fully decentralized and it scales to arbitrarily large
configurations (as shown by the analysis considering an
infinite number of nodes scattered through the whole
plane with any given density).

APPENDIX

We give here sufficient conditions for

pr(λ) = Pr

(

r ≤ S1/β

A(T (W + IΦ))1/β

)

(A.1)

to be continuous function of r and λ and for
limλ→∞ λpr(λ) = limr→∞ rpr(λ) = 0.

Proposition A.1: If Pr(S > 0) > 0 then the Poisson
shot noise IΦ is absolutely continuous w.r.t the Lebesgue
measure (has a density), consequently the same is true for

S1/β

A(T (W+IΦ))1/β and hence pr(λ) is continuous in r and, by
Lemma 3.3, in λ.
For the proof see Prop. A.2 in [30].

Proposition A.2: Suppose Pr(S > 0) > 0. If E[S2/β ] <
∞ then limr→∞ rpr(λ) = 0. If E[S3/β ] < ∞ then
limλ→∞ λpr(λ) = 0.

Proof: Note by (A.1) that for limr→∞ rpr(λ) = 0

it suffices to have E[ S2/β

A(T (W+IΦ))2/β ] < ∞, whereas for
limr→∞ λpr(λ) = limr→∞ λpr

√
λ(1) = 0 it suffices to have

E[ S3/β

A(T (W+IΦ))3/β ] < ∞. The result follows from indepen-
dence of S,W, IΦ and from the fact that if Pr(S > 0) > 0
then E[I−γ

Φ ] < ∞ for any γ > 0. Indeed, take ε > such
that Pr(S > ε) > 0 and observe that IΦ ≥ I ′ where
I ′ = ε(A|X∗|)−β , where X∗ is the point Xi of Φ which is the
closest to 0 and such that Si > ε. The distribution function of
|X∗| is Pr(|X∗| ≥ r) = e−λ Pr(S>ε)πr2

and it is easy to see
that E[I ′−γ

] = ε−γAγβ
E[|X∗|γβ ] <∞ for any γ > 0, β > 0.
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