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Clustering of points

Clustering in a point pattern roughly means that the points
lie in clusters (groups) with the clusters being spaced out.

How to compare clustering of two point processes (pp), say
having “on average” the same number of points per unit of
space? (More precisely, having the same mean measure.)

For simplicity, we consider pp on Rd.
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Motivation

Interesting methods have been developed for studying
local and global functionals of geometric structures over
Poisson or Bernoulli pp; experts in the audience !

Try to carry over some results to other point processes
by their “cluster-comparison” to Poisson or Bernoulli pp.
In this talk we concentrate on percolation-type results.

The “clustering-comparison” is not the usual strong
(coupling) comparison as we compare pp of the same
mean measure. Analog of convex comparison of random
variables.
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Motivation, cont’d

Program can be reminiscent of Ross-type conjectures in
queuing theory (replacing Poisson arrival process in a

single-server queue by a Cox PP with the same intensity should

increase the average customer delay).

Actually, more interesting results are on the side of pp
“more regular” pp (we call them sub-Poisson) with
determinantal pp as prominent examples.

The notion of sub- and super-Poisson distributions is
used e.g. in quantum physics and denotes distributions
for which the variance is smaller (respectively larger)
than the mean.
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Clustering and percolation

RGG with r = 98.
The largest component in the window is highlighted.
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Clustering and percolation

RGG with r = 100.
The largest component in the window is highlighted.
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Clustering and percolation

RGG with r = 108.
The largest component in the window is highlighted.
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Clustering and percolation

RGG with r = 112.
The largest component in the window is highlighted.
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Clustering and percolation

RGG with r = 120.
The largest component in the window is highlighted.
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Conjecture: Clustering worsens percolation

Point processes exhibiting more clustering should have
larger critical radius rc for the percolation of their continuum
percolation models.

Φ1 “clusters less than” Φ2 ⇒ rc(Φ1) ≤ rc(Φ2),

where rc(Φ) = inf{r > 0 : P(C(Φ, r)percolates) > 0}
Heuristic: Interconnecting well spaced-out clusters (necessary to

obtain an infinite connected component) requires large r. Spreading

points from clusters "more homogeneously" should result in a

decrease r for which the percolation takes place.
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Ways of comparing clustering — outline of the talk

Smaller in one of the following ways indicates less clustering:

Second-order statistics (Ripley’s K, L, pair correlation
function) ⇒ variance comparisons

Comparisons of void probabilities and all higher-order
factorial moment measures.
⇒ concentration inequalities and percolation results

Positive and negative association of pp.
⇒ comparison to Poisson pp

dcx ordering of pp
⇒ the strongest (on this list) comparison tool

examples, counterexamples and conclusions

– p. 11



Second-order statistics
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Ripley’s K and L function

Ripley’s K function: for a stationary isotropic pp Φ of

intensity λ on Rd

K(r) =
1

λ
E0

[Φ({x : |x| ≤ r}) − 1]

(expected number of points of Φ within the distance r of its typical

point)

Ripley’s L function: L(r) = (K(r)/κd)
1/d, where κd

volume of the unit ball in Rd.
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Ripley’s K and L function; cont’d

Fact: For Poisson pp K(r) = κdr
d, L(r) = r (Slivnyak-Mecke).

”Poisson-like network” “not so Poisson network”

Empirical Ripley’s L function for real positioning of BS in some big

European city ( Jovanovic&Karray [Orange Labs]).

Allow for local clustering comparison at different scales r.
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Pair correlation function

Probability of finding a point at a given position with respect
to another point

g(x, y) = g(x − y) :=
ρ(2)(x, y)

λ2
,

where ρ(2) is the density of the 2’nd order moment measure.

Also a local comparison. To weak to capture global
(percolation-like) properties.
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Ripley’s K function and variance comparison

A forerunner in this theory

Fact (Stoyan’83): Consider two stationary isotropic pp Φ1

and Φ1 of the same intensity, with the Ripley’s functions K1

and K2, respectively. If K1 ≤dc K2 i.e.,

∫ ∞

0

f(r)K1(dr) ≤
∫ ∞

0

f(r)K2(dr)

for all decreasing convex f then

Var (Φ1(B)) ≤ Var (Φ2(B))

for all compact convex B.

Stoyan’83 considers applications to some renewal, Cox,
Neyman-Scott and fibre processes.
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Voids and moments & concentration
inequalities via Chernoff bounds
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Voids and moments

probabilities: ν(B) = P (Φ(B) = 0), bounded Borel
sets (bBs) B.

Moment measures:

αk(B1 × . . . × Bk) = E

(

∏k
i=1 Φ(Bi)

)

for all (not

necessarily disjoint) bBs Bi.

Factorial moment measures: α(k)(·) for simple pp,

truncation of the measure αk(·) to “off the diagonals”

{(x1, . . . , xk) ∈ (Rd)k : xi 6= xj for i 6= j}
In a general (not necessarily simple pp) {α(k)(·) : k} can

be expressed in terms of {αk(·) : k} and vice versa.
Each of the three families of three functionals (voids,
moments and factorial moments) determine the
distribution of pp.
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Clustering & concentration

The “most spatially homogeneous” (“non-clustering”)
way of spreading points of Φ, with a given mean
measure α(·), would be to place them according to the
(deterministic) measure α(·). But this is not a point
process.

Consider the probability that Φ deviates from α(·) on B

by more than a: P (|Φ(B) − α(B)| ≥ a).

Smaller these probabilities indicate less clustering (more
homogeneity).

Voids and moments allow for upped bounds on these
probabilities → concentration inequalities.
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Concentration inequalities

Chernoff’s bounds:
P (Φ(B) − α(B) ≥ a) ≤ e−t(α(B)+a)

E
(

etΦ(B)
)

and
P (α(B) − Φ(B) ≥ a) ≤ et(α(B)−a)

E
(

e−tΦ(B)
)

E
(

etΦ(B)
)

and E
(

e−tΦ(B)
)

can be expressed in terms of

moments and voids of Φ, respectively.

Indeed: E
(

etΦ(B)
)

=
∑∞

k=0
tk

k!α
k(B)

and
E
(

e−tΦ(B)
)

=
∑∞

k=0 e
−tk

P (Φ(B) = k) = P (Φ′(B) = 0)

is the void probability of the point process Φ′ obtained
from Φ by independent thinning with retention probability
1 − e−t. Ordering of voids is preserved by independent
thinning.

– p. 20



Comparison to Poisson pp — Laplace ordering

Consider pp Φ having voids and moments smaller than
Poisson pp (of the same mean). We call them weakly
sub-Poisson (a weaker comparison than dcx).

P (Φ(B) = 0) ≤ e−E(Φ(B)) for all bBs B (V)

E

(

∏k
i=1 Φ(Bi)

)

≤ ∏k
i=1 E(Φ(Bi)) for all disjoint Bi (M)

Prop. For simple pp Φ of mean measure α: Φ has
smaller voids than Poisson ((V) holds true) if and only if
for all f ≤ 0

E
(

exp
[∫

Rd f(x) Φ(dx)
])

≤ exp
[∫

Rd(e
f(x) − 1)α(dx)

]

(*)

Prop. For simple pp Φ of mean measure α: If Φ has
smaller moments than Poisson ((M) holds true) than (*)
holds for all f ≥ 0.
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Concentration inequality for sub-Poisson

Extension of a result for Poisson pp (cf Penrose (2003)):

Cor. Let Φ be an unit intensity, simple, stationary, weakly
sub-Poisson point process and Bn be a set of Lebesgue
measure n. Then, for any 1/2 < a < 1 there exist n(a)
such that for n ≥ n(a)

P(|Φ(Bn) − n| ≥ na) ≤ 2 exp
[

−n2a−1/9
]

.
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Voids and moments & percolation
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Continuum percolation

Boolean model C(Φ, 2r):
germs in Φ,
spherical grains of given ra-
dius r.

r

Joining germs whose
grains intersect one gets
Random Geometric Graph
(RGG).

percolation ≡ existence of an infinite connected subset
(component).
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Critical radius for percolation

Critical radius for the percolation in the Boolean Model
with germs in Φ:
rc(Φ) = inf{r > 0 : P(C(Φ, r)percolates) > 0}
In the case when Φ is stationary and ergodic

0

1

c
grain radius r

r

probability of percolation

If 0 < rc < ∞ the phase transition is non-trivial.

– p. 25



Voids & percolation — a sufficient condition

An upper bound on rc using voids

rc = inf
{

r > 0 : ∀n ≥ 1,
∑

γ∈Γn

P (C(Φ, r) ∩ Qγ = ∅) < ∞
}

.

By Peierls argument

rc(Φ) ≤ rc(Φ).

Smaller voids imply
smaller rc(Φ)

0

r

1/n

γ

Qγ
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Moments & percolation — a necessary cond.

A lower bound on rc related to moments measures

rc(Φ) := inf
{

r > 0 : lim inf
m→∞

E(Nm(Φ, r)) > 0
}

.

By Markov inequality

rc(Φ) ≤ rc(Φ).

Smaller moments imply
larger(!) rc(Φ) 0−m m

m

−m
r

N  =m 3
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Non-trivial phase transition for sub-Poisson

Extension of the well known result for Poisson pp:

Prop. Let Φ be a stationary, weakly sub-Poisson pp with
intensity λ. Then

0 < 1
(κdλ)1/d

≤ rc(Φ) ≤
√
d
(

log(3d−2)
λ

)1/d

< ∞.

All weakly sub-Poisson point processes exhibit a
non-trivial phase transition in the percolation of their
Boolean models. Bounds are uniform over all processes
of a given intensity!

Similar results for k-coverage in Boolean model (clique
percolation) and SINR percolation and some other
percolation models.
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Association of point processes as
comparison to Poisson pp
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Association of pp

Φ is called associated if
Cov (f(Φ(B1), . . . ,Φ(Bk)), g(Φ(B1), . . . ,Φ(Bk))) ≥ 0

for bBs B1, . . . , Bk and f, g continuous and increasing
functions taking values in [0, 1] (Burton&Waymire (1985)).

Φ is called negatively associated if
Cov (f(Φ(B1), . . . ,Φ(Bk)), g(Φ(Bk+1), . . . ,Φ(Bl))) ≤ 0

for bBs B1, . . . , Bl such that
(B1 ∪ . . . ∪ Bk) ∩ (Bk+1 ∪ . . . ∪ Bl) = ∅ and f, g

increasing functions (Pemantale (2000)).
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Weak sub-poissonianity and association

Prop. A negatively associated, simple point process with
a Radon mean measure is weakly sub-Poisson.
A (positively) associated point process with a Radon, diffuse mean

measure is weakly super-Poisson (voids and moments larger than

for Poisson).

Cor. Assume that Φ is a simple point process of Radon
mean measure α. If Φ is negatively associated then for
all f of a fixed sign

E
(

exp
[∫

Rd f(x) Φ(dx)
])

≤ exp
[∫

Rd(e
f(x) − 1)α(dx)

]

provided the integrals are well defined.
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directionally-convex ordering of point
processes
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dcx ordering of point processes

Φ1 ≤dcx Φ2 if for all bounded Borel subsets B1, . . . , Bn,

E
(

f
(

Φ1(B1), . . . ,Φ1(Bn)
))

≤ E
(

f
(

Φ2(B1), . . . ,Φ2(Bn)
))

.

for all dcx f . Function f : Rd → R twice differentiable

is dcx if ∂2f(x)
∂xi∂xj

≥ 0 for all x ∈ Rd and ∀i, j; extended to

all functions by considering difference operators.

dcx is a partial order (reflective, antisymmetric and
transitive) of point process with locally finite mean
measure (to ensure transitivity).

If Φ1 ≤dcx Φ2 then E(Φ1(·)) = E(Φ2(·)) (equal mean
measures).

dcx is preserved by independent thinning, marking and
superpositioning of pp., creating of Cox pp.
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dcx and shot-noise fields

Given point process Φ and a non-negative function h(x, y)

on (Rd, S), measurable in x, where S is some set, define
shot noise field: for y ∈ S

VΦ(y) :=
∑

X∈Φ

h(X, y) =

∫

Rd

h(x, y)Φ(dx) .

Prop. If Φ1 ≤dcx Φ2 then
(

VΦ1
(y1), . . . , VΦ1

(yn)
)

≤dcx

(

VΦ2
(y1), . . . , VΦ2

(yn)
)

for any finite subset {y1, . . . , yn} ⊂ S, provided the RHS
has finite mean. In other words, dcx is preserved by the
shot-noise field construction.
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dcx and shot-noise fields; cont’d

Proof.

Approximate the integral by simple functions as usual in
integration theory: a.s. and in L1
∑kn

i=1 ainΦ(B
j
in) →

∫

Rd h(x, y)Φ(dx) = VΦ(yj), ain ≥ 0.

Increasing linear operations preserve dcx hence
approximating simple functions are dcx ordered.

dcx order is preserved by joint weak and L1

convergence. Hence limiting shot-noise fields are dcx

ordered.
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dcx and extremal shot-noise fields

In the setting as before define for y ∈ S

UΦ(y) := sup
X∈Φ

h(X, y) .

Prop. If Φ1 ≤dcx Φ2 then for all
y1, . . . , yn ∈ S; a1, . . . , an ∈ R,

P
(

UΦ1
(yi) ≤ ai, 1 ≤ i ≤ m

)

≤ P
(

UΦ2
(yi) ≤ ai, 1 ≤ i ≤ m

)

;

i.e, the (joint) finite-dimensional distribution functions of the
extremal shot-noise fields are ordered (lower orthant order).

Cor.One-dimensional distributions of the extremal shot-noise
fields are strongly ordered with reversed inequality
UΦ2

(y) ≤st UΦ1
(y), ∀y ∈ S.
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dcx and extremal shot-noise fields; cont’d

Proof.

Reduction to an (additive) shot noise:

P (UΦ(yi) ≤ ai, 1 ≤ i ≤ n)

= E

(

e−
∑n

i=1

∑
X∈Φ

− log 1[h(X,yi)≤ai]
)

.

e−
∑

xi is dcx function.
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dcx and voids & moments

Prop. If Φ1 ≤dcx Φ2 then ν1(B) ≤ ν2(B).

Prop. If Φ1 ≤dcx Φ2 then α1(·) = α2(·) and αk
1(·) ≤ αk

2(·) for

k ≥ 1 provided these measures are σ-finite.

We call pp dcx smaller (larger) than Poisson sub-Poisson
super-Poisson is (stronger) dcx sens.
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dcx versus association

Prop. A negatively associated point processes with convexly
sub-Poisson one-dimensional marginal distributions is dcx

sub-Poisson.
An associated point processes with convexly super-Poisson
one-dimensional marginal distributions is dcx

super-Poisson.
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Clustering comparison tools — recap.
dcx ordering

dcx-functions of

(Φ(B1), . . . ,Φ(Bk))

and shot-noise fields, in particular

LΦ(f) for f ≤ 0 or f ≥ 0

negative & positive association

comparison with respect to the Poisson

point process

LΦ(f) for f ≤ 0 or f ≥ 0

comparison of void probabilities

LΦ(f) for f ≥ 0

comparison of moment

measures

LΦ(f) for f ≤ 0

statistical comparison

pair correlation function,

Ripley’s K-function

with marginals cx ordered to Poisson

Implications between methods, and some characteristics

their allow to compare; LΦ(f) = E[exp
∫
−fdΦ].

Smaller in any comparison means clusters less.
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EXAMPLES ???
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Comparison to Poisson pp

strongly (dcx)

Voronoi perturbed lattices with

replication kernel N ≤cx Pois, in

particular binomial, determinantal(?)

negatively associated

binomial, determinantal(?)

weakly (voids and moments)

dcx sub-Poisson, negatively

associated, determinantal

sub-Poisson processes

strongly (dcx)

Poisson-Poisson cluster, Lévy based

Cox, mixed Poisson, Neyman-Scott

with mean cluster size 1, Voronoi

perturbed lattices with replication

kernel N ≥cx Pois.

associated

Poisson-center cluster, Neyman-Scott,

Cox associated with associated

intensity measure.

weakly (voids and moments)

dcx super-Poisson, associated,

permanental

super-Poisson processes

Some point processes comparable to Poisson point process according

to different methods.
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Determinantal pp
— voids, moments and more
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Determinantal pp

Examples of weakly sub-Poisson pp? Theory fits well to

determinantal pp Φdet defined as having density of the

k th factorial moment measure with respect to µ⊗d, for
some µ(·), given by

ρ(k)(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k , where det

stands for determinant of a matrix and K is some kernel.
Assumptions on K needed!

Assumptions: Let K : Rd × Rd → C locally
square-integrable kernel with respect to µ⊗2, defining
Hermitian, positive semi-definite, trace-class operator
KB on on L2(B,µ), for all compact B, with all
eigenvalues in [0, 1]. (cf. Ben Hough(2009))
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Determinantal pp is weakly sub-Poisson

By Hadamard’s inequality,

det (K(xi, xj))1≤i,j≤k ≤ ∏k
i=1 K(xi, xi) hence Φdet has

moments smaller than Poisson pp of mean
K(x, x)µ(dx).

Distribution of Φdet(B) is equal to sum of independent
Bernoulli variables with parameters given by the

eigenvalues of KB. Hence Φdet(B) is convexly smaller
than Poisson which implies smaller voids.

Cor. All determinantal pp exhibit non-trivial phase
transition in percolation of their RGG. New result!
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Determinantal pp and dcx

Prop.
(

Φdet(B1), . . . ,Φ
det(Bn)

)

≤dcx

(

Pois(B1), . . . ,Pois(Bn)
)

,

for disjoint, simultaneously observable Bi

(eigenfunctions of K⋃
Bi

, restricted to Bi are also

eigenfunctions of KBi for all i).

A partial proof of the fact that stationary determinantal
pp are negatively associated can be found in the current
version of Ghosh’12 arXiv:1211.2435.
If this is true than determinantal pp are not only weakly
sub-Poisson, but having convexly smaller marginals are
actually dcx sub-Poisson.
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Ginibre pp

Example: Ginibre pp is the the determinantal point
process on R2 with kernel
K((x1, x2), (y1, y2)) =

exp[(x1y1 + x2y2) + i(x2y1 − x1y2)],
xj, yj ∈ R, j = 1, 2, with respect to the measure

µ(d(x1, x2)) = π−1 exp[−x2
1 − x2

2] dx1dx2.

Spherical annuli are its simultaneously observable sets.

Consequently, pp of the squared radii {|Xi|2} of the
Ginibre point process is dcx sub-Poisson.
Interestingly {|Xi|2} =distr {Tn =

∑

n

∑n
i=1 Z

n
i }, where

Zn
i are i.i.d. exponential.
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Clustering worsens percolation? —
examples and ... a counterexample
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Perturbed lattices

Assume:

Φ — deterministic lattice,

(say uniform) translation kernel in-
side lattice cell,

N0(x, ·) = Poi(1),

N1(x, ·) ≤c Poi(1),

N2(x, ·) ≥c Poi(1).
Then

Φ
pert
1 ≤dcx Φ

pert
0 ≤dcx Φ

pert
2

ր ↑ տ
sub-Poisson

perturbed lattice
Poisson pp super-Poisson

perturbed lattice
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Perturbed lattices; cont’d

cx ordered families of (discrete) random variables from
smaller to larger:

deterministic (constant);

Hyer-Geometric pHGeo(n,m,k)(i) =
(

m
i

)(

n−m
k−i

)

/
(

n
k

)

(max(k − n + m, 0) ≤ i ≤ m).

Binomial pBin(n,p)(i) =
(

n
i

)

pi(1 − p)n−i (i = 0, . . . , n)

Poisson pPoi(λ)(i) = e−λλi/i! (i = 0, 1, . . .)

Negative Binomial pNBin(r,p)(i) =
(

r+i−1
i

)

pi(1 − p)r.

Geometric pGeo(p)(i) = pi(1 − p)

Assuming parameters making equal means, we have
const ≤cx HGeo ≤cx Bin ≤cx Poi ≤cx NBin ≤cx Geo

– p. 50



Conjecture for perturbed lattices

Φ1 ≤dcx Φ2

⇓
rc(Φ1) ≤ rc(Φ2)

Bin(1, 1) = const

Bin(1, 1/n)րcxPoi(1)

NBin(n, 1/(1 + n))ցcxPoi(1)

NBin(1, 1/2) = Geo(1/2)
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Counterexample: a super-Poisson pp with rc = 0

Poisson-Poisson cluster pp ΦR,δ,µ
α with annular clusters

Φα — Poisson (parent)
pp of intensity α on R2,
Poisson clusters of
total intensity µ, sup-
ported on annuli of radii
R − δ,R.

We have Φλ ≤dcx ΦR,δ,µ
α , where Φλ is homogeneous

Poisson pp of intensity λ = αµ.

Prop. Given arbitrarily small a, r > 0, there exist constants
α, µ, δ, R such that 0 < α,µ, δ,R < ∞, the intensity αµ of

ΦR,δ,µ
α is equal to a and the critical radius for percolation

rc(Φ
R,δ,µ
α ) ≤ r. Consequently, one can construct

Poisson-Poisson cluster pp of intensity a and rc = 0. – p. 52



Conclusions
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Voids and moment measures allow for a simple
comparison of comparison of clustering properties of pp.

We believe that these tools can be used to generalize
some results derived for Poisson to “more
homogeneous” (less clustering) — sub-Poisson pp.

We have seen examples regarding concentration
inequalities and phase transition in percolation.

Other clustering comparison tools?

Conjecture restricted to sub-Poisson pp.?
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Sub-poissonianity used in

Daley Last Descending chains, the lilypond model, and

mutual-nearest-neighbour matching (2005)

Hirsch, Neuhaeuser, Schmidt Connectivity of random geometric

graphs related to minimal spanning forests (2012)

Yogeshwaran, Adler On the topology of random complexes built

over stationary point processes (2012).
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For mode details ...

BB, Yogeshwaran Directionally convex ordering of random

measures, shot-noise fields ... Adv. Appl. Probab. (2009)

BB, Yogeshwaran Clustering and percolation of point processes

EJP 2013.

BB, Yogeshwaran On comparison of clustering properties of point

processes Adv. Appl. Probab. (2014).

BB, Yogeshwaran Clustering comparison of point processes with

applications to random geometric models arXiv:1112.5285 to

appear in Stochastic Geometry, Spatial Statistics and Random

Fields ... (V. Schmidt, ed.) Lecture Notes in Mathematics Springer.

thank you
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