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Outline
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CAPACITY

Ability to serve simultaneously many users. How many?
Quality of service in function to the number of served
users.
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CAPACITY

Ability to serve simultaneously many users. How many?
Quality of service in function to the number of served
users.

Queueing theory in association with stochastic geometry.

Space-time models. Simulations required for quantitative
results.

We shall present some model capturing the dependence
between the traffic demand and the quality of service in
large cellular networks, validated w.r.t. some real data.

Fruit of long-standing collaboration with M.K. Karray
from Orange.
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Motivation
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Some macroscopic law?
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A key QoS metric

Mean user throughput: average “speed” [bits/second] of
data transfer during a typical data connection.
More formally, the ratio of the average number of bits
sent (or received) per data request to the average
duration of the data transfer.
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A key QoS metric

Mean user throughput: average “speed” [bits/second] of
data transfer during a typical data connection.
More formally, the ratio of the average number of bits
sent (or received) per data request to the average
duration of the data transfer.

User-centric QoS metric.

Network heterogeneous in space and time. Appropriate
temporal and spatial averaging required.
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Various levels of averaging

Information theory (over bits processed in time)

Queueing theory (over users/calls served in time)

Stochastic geometry (over geometric patterns of cells
and users)

We are interested in the radio part of the problem.
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Outline

HOMOGENEOUS NETWORKS

TECHNOLOGY HETEROGENEOUS NETWORKS;
micro/macro cells

SPATIALLY INHOMOGENEOUS NETWORKS; varying
density of BS deployment, frequency dimensioning
problem.
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HOMOGENEOUS NETWORKS
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Queuing theory

for one cell
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Little’s law

Consider a service system in its steady state. (Here one
network cell during a given hour). Denote
N — mean (stationary, time average) number of users
(calls) served at a given time

λ — average number of call arrivals per unit of time [second]

T — average (Palm) call duration
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Little’s law

Consider a service system in its steady state. (Here one
network cell during a given hour). Denote
N — mean (stationary, time average) number of users
(calls) served at a given time

λ — average number of call arrivals per unit of time [second]

T — average (Palm) call duration
The Little’s law:

N = λT

Applies in to a very general system of service, production,

communication... No probabilistic assumptions regarding the

distribution of the arrivals, service times. Not related to a particular

service policy. Just stationarity!
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Mean user throughput via Little’s law

Denote:
1
µ — average data volume [bits] transmitted during one call

ρ := 1
µ
× λ mean traffic demand [bits/second]

r := 1
µ/T mean user throughput [bits/second]
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Mean user throughput via Little’s law

Denote:
1
µ — average data volume [bits] transmitted during one call

ρ := 1
µ
× λ mean traffic demand [bits/second]

r := 1
µ/T mean user throughput [bits/second]

From Little’s law

N = λT ⇒ 1

T
=

λ

N
⇒ 1

µT
=

λ

µN

r =
ρ

N
=

mean traffic demand

average number of users served at a given time
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Mean user throughput via Little’s law

Denote:
1
µ — average data volume [bits] transmitted during one call

ρ := 1
µ
× λ mean traffic demand [bits/second]

r := 1
µ/T mean user throughput [bits/second]

From Little’s law

N = λT ⇒ 1

T
=

λ

N
⇒ 1

µT
=

λ

µN

r =
ρ

N
=

mean traffic demand

average number of users served at a given time

But N depends on ρ. What is the relation between N and ρ?
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Processor sharing (PS) queue

Poisson process of call arrivals, iid data volume requests.
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PS: server resources shared equally among all calls; when
n user served simultaneously, one user gets the rate R/n.
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Denote: R — total service (transmission) rate [bits/second].

PS: server resources shared equally among all calls; when
n user served simultaneously, one user gets the rate R/n.
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θ :=
ρ

R
— system load
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PS: server resources shared equally among all calls; when
n user served simultaneously, one user gets the rate R/n.

Recall: ρ — traffic demand [bits/second]

θ :=
ρ

R
— system load

If θ < 1 the system stable, otherwise unstable.
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Processor sharing (PS) queue

Poisson process of call arrivals, iid data volume requests.

Denote: R — total service (transmission) rate [bits/second].

PS: server resources shared equally among all calls; when
n user served simultaneously, one user gets the rate R/n.

Recall: ρ — traffic demand [bits/second]

θ :=
ρ

R
— system load

If θ < 1 the system stable, otherwise unstable.
Number of users in the system has a geometric distribution
with the mean

N =

{

θ
1−θ when θ < 1

∞ when θ ≥ 1
(∗)
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Spatial processor sharing queue

Service (transmission) rate R(y) depends on user location y

(because of the distance to transmitting station, etc...)

Denote: V — the service zone (cell)
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Spatial processor sharing queue

Service (transmission) rate R(y) depends on user location y

(because of the distance to transmitting station, etc...)

Denote: V — the service zone (cell)

Equation (∗) applies with R being the harmonic average of
the local service rates R(y)

R =
|V |

∫

V
1/R(y) dy

as often in the case of rate averaging...
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Spatial processor sharing queue

Service (transmission) rate R(y) depends on user location y

(because of the distance to transmitting station, etc...)

Denote: V — the service zone (cell)

Equation (∗) applies with R being the harmonic average of
the local service rates R(y)

R =
|V |

∫

V
1/R(y) dy

as often in the case of rate averaging...

How to model service rates R(y)?
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Information theory

for the link quality
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Transmissin rate as channel capacity

Transmission rate R(y) is technology dependent
(information coding, simple or multiple
transmission/reception antenna systems, etc)
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information-theoretic capacity bounds for appropriate
channel models.
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Transmissin rate as channel capacity

Transmission rate R(y) is technology dependent
(information coding, simple or multiple
transmission/reception antenna systems, etc)

We express available R(y) with respect to the
information-theoretic capacity bounds for appropriate
channel models.

E.g. the Shannons law for the Gaussian channel says
R(y) = aW log(1 + SNR(y)),

where
W — channel bandwidth [Hertz]
SNR — signal-to-noise ratio
a (0 < a < 1) — calibration coefficient (real v/s theoretical rate)
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Transmissin rate as channel capacity

Transmission rate R(y) is technology dependent
(information coding, simple or multiple
transmission/reception antenna systems, etc)

We express available R(y) with respect to the
information-theoretic capacity bounds for appropriate
channel models.

E.g. the Shannons law for the Gaussian channel says
R(y) = aW log(1 + SNR(y)),

where
W — channel bandwidth [Hertz]
SNR — signal-to-noise ratio
a (0 < a < 1) — calibration coefficient (real v/s theoretical rate)

More specific expressions for MMSE, MMSE-SIC, MIMO, etc...
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Concluding for one cell
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Throughput r v/s traffic demandρ

Putting together previously explained relations for one cell V
r = ρ/N , N = θ/(1 − θ), θ = ρ/R one obtains

r = (ρc − ρ)+,
where

ρc := R =
|V |

∫

V
1/R(SINR(y)) dy

can be interpreted as the critical traffic demand for cell V
and R(SINR(y)) are location dependent user peak service
rates, which depend on the SINR experienced at y.

– p. 18



Throughput r v/s traffic demandρ

Putting together previously explained relations for one cell V
r = ρ/N , N = θ/(1 − θ), θ = ρ/R one obtains

r = (ρc − ρ)+,
where

ρc := R =
|V |

∫

V
1/R(SINR(y)) dy

can be interpreted as the critical traffic demand for cell V
and R(SINR(y)) are location dependent user peak service
rates, which depend on the SINR experienced at y.

Adequate model for the spatial distribution of the SINR in
cellular networks is required!
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r = (ρc − ρ)+ cell by cell?
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Stochastic geometry

for a large multi-cell network
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Network of interacting cells

Vi — network cells on the plane (i = 1, . . .)
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Network of interacting cells

Vi — network cells on the plane (i = 1, . . .)

ρi := ρ × |Vi| — traffic demand to cell i

ρc
i =

|Vi|∫
Vi

1/R(SINRi(y)) dy
— critical traffic demand for cell i

θi = ρi/ρ
c
i = ρ

∫

Vi
1/R(SINRi(y)) dy — load of cell i

Ni = θi/(1 − θi) — mean number of users in cell i

ri = (ρc
i − ρi)

+ — throughput in cell i.
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Network of interacting cells

Vi — network cells on the plane (i = 1, . . .)

ρi := ρ × |Vi| — traffic demand to cell i

ρc
i =

|Vi|∫
Vi

1/R(SINRi(y)) dy
— critical traffic demand for cell i

θi = ρi/ρ
c
i = ρ

∫

Vi
1/R(SINRi(y)) dy — load of cell i

Ni = θi/(1 − θi) — mean number of users in cell i

ri = (ρc
i − ρi)

+ — throughput in cell i.

However, SINRi(y) depends on the extra-cell interference.
Study of such dependent PS-queues is impossible!
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Decoupling of cells

Simplifying idea:
“decoupling cells in time”, keeping only spatial dependence
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Decoupling of cells

Simplifying idea:
“decoupling cells in time”, keeping only spatial dependence

Come up with a model in which stochastic processes
describing the evolution of PS-queues at different cells are
conditionally independent, given locations of network BS,
which will be assumed (random) point process.
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Cell load equations

Assume that the cell loads θi i = i, . . . satisfy the system of
fixed-point equations

θi = ρ

∫

Vi

1

R

(

P/l(|y−Xi|)
N+P

∑

j 6=i

min(θj,1)/l(|y−Xj|)

) dy

where Xi is the location of the BS i, l(·) is the path loss
function, N external noise, P BS transmit power.
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queue of cell i is not idle.

– p. 23



Cell load equations

Assume that the cell loads θi i = i, . . . satisfy the system of
fixed-point equations

θi = ρ

∫

Vi

1

R

(

P/l(|y−Xi|)
N+P

∑

j 6=i

min(θj,1)/l(|y−Xj|)

) dy

where Xi is the location of the BS i, l(·) is the path loss
function, N external noise, P BS transmit power.

Recall: θi (provided θi < 1) is the probability that the PS
queue of cell i is not idle.

Existence of a solution! We assume uniqueness; partially supported by

[Siomina&Yuan, “Analysis of cell load coupling for LTE network ...” IEEE

TWC 2012].
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Stable fraction of the network

There is no one global network stability condition.
Recall: for a given traffic demand ρ per unit of surface, cell i
is stable provided ρi = ρ|Vi| < ρc

i .

– p. 24



Stable fraction of the network

There is no one global network stability condition.
Recall: for a given traffic demand ρ per unit of surface, cell i
is stable provided ρi = ρ|Vi| < ρc

i .

Denote:
S =

⋃

i:ρi<ρc
i
Vi — union of all stable cells

πS — fraction of the surface covered by S; equivalently:
probability that the typical user is covered by a stable cell.
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Mean user throughput in large network

Define the mean user throughput in the network as the ratio

r =
average number of bits per data request

average duration of the data transfer in the stable part S
in the stable part S of the network;
(“ratio of averages” not the “average of ratios”).
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Mean user throughput in large network

Define the mean user throughput in the network as the ratio

r =
average number of bits per data request

average duration of the data transfer in the stable part S
in the stable part S of the network;
(“ratio of averages” not the “average of ratios”).

We have

r :=
ρπS

λBSN0

where
λBS is the density of BS deployment (stationary, ergodic)
N0 := 1/n

∑n
i:ρi<ρc

i
Ni is the spatial average of the

(steady-state mean) number of users per stable cell;
(typical (stable) network cell interpretation).
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“Mean cell” approach

Mean cell load: constant θ̄ satisfying

θ̄ =
ρ

λBS
E

[

1/R

(

P/l (|X∗|)
N + P

∑

Xj 6=X∗ θ̄/l (|y − Z|)

)]

, where

X∗ BS serving the typical user (located at 0).
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(
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, where
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ρ
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“Mean cell” approach

Mean cell load: constant θ̄ satisfying

θ̄ =
ρ

λBS
E

[

1/R

(

P/l (|X∗|)
N + P

∑

Xj 6=X∗ θ̄/l (|y − Z|)

)]

, where

X∗ BS serving the typical user (located at 0).

Mean traffic demand (to the typical cell): ρ̄ =
ρ

λBS
.

Other “mean cell” characteristics calculated from θ̄ and ρ̄ as
in the case of a single (isolated) cell:

N̄ =
θ̄

1 − θ̄
— mean number of users

r̄ = ρ̄(1/θ̄ − 1) — mean user throughput.
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Numerical results

for some real network

(a homogeneous BS deployment region)
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Mean cell load and the stable fraction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200

C
e
ll
 l
o
a
d
  

  
  

  
  

  
  

  
  

  
  

  
 S

ta
b
le

 f
ra

c
ti
o
n

Traffic demand per cell [kbps]

Typical cell load
Stable fraction

Mean cell
Field measurements

– p. 28



Mean number of users per cell
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Mean user throughput
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Mean user throughput, another example
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Conclusions
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Conclusions

QoS in large irregular multi-cellular networks using
information theory (for link quality), processor sharing
queues (traffic demand and service model, cell by cell),
stochastic geometry (to handle a spatially distributed
network).

The mutual-dependence of the cells (due to the
extra-cell interference) is captured via some system of
cell-load equations accounting for the spatial distribution
of the SINR.

Identify macroscopic laws regarding network
performance metrics involving averaging both over time
and the network geometry.

Validated against real field measurement in an
operational network.
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What next?

Heterogeneous networks; micro/macro cells.

– p. 34



What next?

Heterogeneous networks; micro/macro cells.

Spatially inhomogeneous networks; varying density of
BS deployment, as observed at the level of a whole
country; useful for macroscopic network planning and
dimensioning.
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TECHNOLOGY HETEROGENEOUS
NETWORKS
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Motivation
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Variable BS transmission power
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Multi-tier network approach

micro cells macro cells
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Network of interacting cells; recap.

Vi — network cells on the plane (i = 1, . . .), each cell
serving its users according to the processor sharing (PS)
model,
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Network of interacting cells; recap.

Vi — network cells on the plane (i = 1, . . .), each cell
serving its users according to the processor sharing (PS)
model,

ρi := ρ × |Vi| — traffic demand to cell i

ρc
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Network of interacting cells; recap.

Vi — network cells on the plane (i = 1, . . .), each cell
serving its users according to the processor sharing (PS)
model,

ρi := ρ × |Vi| — traffic demand to cell i

ρc
i =

|Vi|∫
Vi

1/R(SINRi(y)) dy
— critical traffic demand for cell i

θi = ρi/ρ
c
i = ρ

∫

Vi
1/R(SINRi(y)) dy — load of cell i; if

θi < 1, it is equal to the probability that the PS queue of cell
i is not idle,

Ni = θi/(1 − θi) — mean number of users in cell i

ri = (ρc
i − ρi)

+ — throughput in cell i.

Cell loads θi mutually dependent θi = θi({θj : j 6= i}) via
the extra-cell interference (cell load equations).
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More specifically...

Base stations (BS) locations modeled by a point process
Φ = {Xi} on the plane R2, assumed stationary, simple
and ergodic, with intensity parameter λ := λBS > 0,
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More specifically...
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Φ = {Xi} on the plane R2, assumed stationary, simple
and ergodic, with intensity parameter λ := λBS > 0,

BS Xi transmission power Pi > 0.

Propagation loss: deterministic path-loss function
l : R2 → R+ of the transmitter-receiver vector y − Xi,
and random shadowing Si (y − Xi) (random fields
{Si (·)} are i.i.d. marks of Φ).
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More specifically...

Base stations (BS) locations modeled by a point process
Φ = {Xi} on the plane R2, assumed stationary, simple
and ergodic, with intensity parameter λ := λBS > 0,

BS Xi transmission power Pi > 0.

Propagation loss: deterministic path-loss function
l : R2 → R+ of the transmitter-receiver vector y − Xi,
and random shadowing Si (y − Xi) (random fields
{Si (·)} are i.i.d. marks of Φ).

The power received at location y from BS Xi is
PXi

(y) =
PiSi(y−Xi)
l(y−Xi)

.

Cell Vi of BS Xi ∈ Φ is the strongest received signal zone
Vi = {y : PXn

(y) ≥ PY (y) for all Y ∈ Φ}.
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Cell load equations

Cell loads {θi : i = i, . . .} is the (minimal) solution of the
system of fixed-point equations

θi = ρ

∫

Vi

1

R

(

PXi
(y)

N+
∑

j 6=i

min(θj,1)PXj
(y)

) dy for all i,

where N is the external noise power.
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Multi-tier network, basic facts

Consider J types (tiers) of BS characterized by different
(constant) transmitting powers Pj, j = 1, . . . , J , modeled by
independent homogeneous Poisson point processes Φj of
intensity λj.
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(constant) transmitting powers Pj, j = 1, . . . , J , modeled by
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FACT 1: Probability that the typical cell is of type j is equal
to λj/λ, where λ =

∑

j λj.
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Multi-tier network, basic facts

Consider J types (tiers) of BS characterized by different
(constant) transmitting powers Pj, j = 1, . . . , J , modeled by
independent homogeneous Poisson point processes Φj of
intensity λj.
FACT 1: Probability that the typical cell is of type j is equal
to λj/λ, where λ =

∑

j λj.
FACT 2: Probability that the cell covering the typical user is
of type j is equal to aj/a, where a =

∑

j aj and

aj :=
πE
[

S2/β
]

K2
λjP

2/β
j .
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Network equivalence

FACT 3: The distribution of the signal powers received by
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Moreover, probability that a given received power is emitted
by a station of type j does not depend on the value of the
received power (and is equal to aj).
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Network equivalence

FACT 3: The distribution of the signal powers received by
the typical user in the multi-tier network is the same as in the
homogeneous network with all emitted powers equal to

P =





J
∑

j=1

λj

λ
P

2/β
j





β/2

.

Moreover, probability that a given received power is emitted
by a station of type j does not depend on the value of the
received power (and is equal to aj).
FACT 4: The mean load of the typical cell of type j is

θ̄j = θ̄
λaj

λja
= θ̄

P
2/β
j

P 2/β
,

where θ̄ is the load of the typical cell in the equivalent
homogeneous network.
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Cell load per cell type
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Real data for micro/macro cells fit the analytical prediction.
( Data from a commercial network in a big European city.)
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Mean user throughput prediction per cell type
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SPATIALLY INHOMOGENEOUS
NETWORKS
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Motivation
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Frequency dimensioning problem

What frequency bandwidth required for a network deployed
across the whole country?
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Scaling laws for homogeneous networks

Assume path-loss function l (x) = (K |x|)β , x ∈ R2,
where K > 0 and β > 2.

For α > 0 consider a network obtained from the original
one by the following dilation:

base station locations Φ′ = {X′ = αX}X∈Φ

intensity of traffic demand ρ′ = ρ/α2

distance coefficient K′ = K/α

shadowing processes S′
i (y) = Si

(

y
α

)

while preserving the original powers P ′
i = Pi

Consider the cells V ′
i of the rescaled network and their

respective characteristics their ρ′
i, ρ

′c
i , r′i, N

′
i , θ

′
i.
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Scaling laws for homogeneous networks

FACT: For α > 0 consider the homogeneous network
scaling as above. We have V ′

i = αVi. Moreover, the
minimal solution of the system of load equations {θi} of the
original network is the minimal solution of the scaled one

θ′
i = θi for all i.
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Scaling laws for homogeneous networks

FACT: For α > 0 consider the homogeneous network
scaling as above. We have V ′

i = αVi. Moreover, the
minimal solution of the system of load equations {θi} of the
original network is the minimal solution of the scaled one

θ′
i = θi for all i.

Consequently ρ′c
i = ρc

i , r
′
i = ri, N ′

i = Ni.
And thus, the typical cell of the scaled networks has the
same mean characteristics as the typical cell of the original
network. In particular E0

[θ′
0] = E0

[θ0].
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Networks with homogeneous QoS response

Assume a non-homogeneous network deployment
covering urban, suburban and rural areas.
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Networks with homogeneous QoS response

Assume a non-homogeneous network deployment
covering urban, suburban and rural areas.

Propagation-losses differ depending on these network
ares. Specifically, assume for i ∈ {urban, suburban, rural}

Ki/
√
λi = const,

where Ki is the path-loss distance factor and λi local
density of BS.

The scaling laws: locally, in urban, suburban and rural
areas, the same relations between the mean
performance metrics and the (per-cell) traffic demand.

One relation is enough to capture the key dependencies
for heterogeneous network dimensioning!
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Justifying assumptions

Assumption Ki/
√
λi = const means that the average

distance D between neighbouring base stations is inversely
proportional to the distance coefficient of the path-loss
function: D × K = const.
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Justifying assumptions

Assumption Ki/
√
λi = const means that the average

distance D between neighbouring base stations is inversely
proportional to the distance coefficient of the path-loss
function: D × K = const.
May be justified by the fact that operators aim to assure
some coverage condition of the form (D × K)β = const.

Example: propagation parameters for carrier frequency 1795MHz.

Environment A B K = 10A/B Kurban/K

Urban 133.1 33.8 8667 1

Suburban 102.0 31.8 1612 5

Rural 97.0 31.8 1123 8

Suburban and rural BS distance D should be, respectively, 5 and 8 times
larger than in the urban scenario. Realistic?
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Cell load in different network-density zones
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Real data in different zones fit the same analytical prediction.
(Data from a commercial network of an international operator
in a big European country — a “reference network”)
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Cell load with regular network decomposition

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  100  200  300  400  500  600  700  800

C
e
ll 

lo
a
d

Traffic demand per cell [kbit/s]

Network 3G, Carrier frequency 2.1GHz

Analytical model
Mesh size=3km

10km
30km

100km

The analytical prediction fits the real data regardless of the
network decomposition scale. The “reference network”.
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Networks in two other countries
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The analytical prediction fits the real data. In Country 2 (blue points),

for the traffic > 600 kbit/s per cell, an admission control is applied.
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Bandwidth dimensioning

What frequency bandwidth to run cellular network at a
given QoS?
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Bandwidth dimensioning

What frequency bandwidth to run cellular network at a
given QoS?

Conjecturing the homogeneous QoS response network
model focus on urban zones.

Use the mean-cell model to predict the mean user
throughput for increasing traffic demand given the
network density and the frequency bandwidth.

Find the minimal frequency bandwidth for which the
prediction of the mean user throughput reaches a given
target value.
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Bandwidth dimensioning solution
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Conclusions

We have presented macroscopic laws regarding network
performance metrics involving averaging both over time
and the network geometry.

We are able to consider both
local network heterogeneity (e.g. micro/macro cells)
and
spatially inhomogeneity of network deployment
(varying density of BS)

This latter extension is useful for macroscopic network
planning and dimensioning.
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More details in

BB., Jovanovic, Karray, M. K. How user throughput depends on the

traffic demand in large cellular networks. In Proc. of

WiOpt/SpaSWiN 2014 (arxiv:1307.8409)

Jovanovic, Karray, BB. QoS and network performance estimation in

heterogeneous cellular networks validated by real-field

measurements. In Proc. of ACM PM2HW2N 2014 (hal-01064472)
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Thank you!
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