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Shadowing

In wireless communications, shadowing is deviation of the
power of the received electromagnetic signal from an
average value.

Caused by obstacles affecting the wave propagation.

May vary with geographical position and/or radio frequency.

Usually modelled as a random process.
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Shadowing

Commonly believed that
the larger variance (variability?) in the shadowing process
the worse performance of wireless (cellular) communication
networks.
Looks like yet another incarnation of the Ross’s conjecture...

Happens not always to be true.

Sometimes quite the opposite is true:
a stochastic resonance...

In particular, we will show that the call blocking probability in
cellular networks is not always increasing with the
shadowing variance.
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Outline of the Remaining Part of the Talk

Model Description,

Numerical Results

Some Mathematical Results

Concluding Remarks and Questions
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MODEL DESCRIPTION
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Geometry of BS’s

Hexagonal network ΦH

∆ distance between adja-
cent vertexes, surface of
the cell

√
3∆2/2, thus the

intensity λH = 2/(
√
3∆2)

BS/km2.

Uniformly shifted to make it
stationary.
Infinite or finite considered
on torus to neglect bound-
ary effects.
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Geometry of BS’s; cont’d

Poisson network ΦP

number of points of Φp in any
set A, ΦP (A), is Poisson
random variable with mean
λP times the surface of A,

numbers of points ΦP (Ai) of
Φp in disjoint sets Ai are in-
dependent random variables.

Intensity λP of BS/km2.
Infinite or finite considered on
torus to neglect boundary effects.
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Geometry of BS’s; cont’d

Hexagonal

“ideal” model

Poisson

“ad-hoc” deployed network

A general point process Φ?
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(Signal-Power) Path-Loss with Shadowing

Given BS X ∈ Φ (Φ = ΦP or ΦH) and location y ∈ R2 on
the plane, denote by 1/LX(y) the power of the signal
received at y from X.
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(Signal-Power) Path-Loss with Shadowing

Given BS X ∈ Φ (Φ = ΦP or ΦH) and location y ∈ R2 on
the plane, denote by 1/LX(y) the power of the signal
received at y from X.
Assume:

LX(y) =
L (|X − y|)
SX(y)

(1)

where

L(·) is a non-decreasing, deterministic path-loss
function,

SX(·) is a random shadowing field related to the BS X.
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Deterministic Path-Loss Function

If not otherwise specified

L (r) = (Kr)β(2)

where K > 0 and β > 2 (path-loss exponent) are some
constants.
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Shadowing Distribution

We will always assume that:

{SX(y)} are i.i.d. across BS’s X ∈ Φ and y ∈ R2

non-negative r.v’s.

normalized to E[SX(y)] = 1.

mean path-loss is finite, i.e., E[1/S] < ∞.
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Shadowing Distribution

We will always assume that:

{SX(y)} are i.i.d. across BS’s X ∈ Φ and y ∈ R2

non-negative r.v’s.

normalized to E[SX(y)] = 1.

mean path-loss is finite, i.e., E[1/S] < ∞.

Of special interest is:

SX(y) ≡ 1 — no shadowing,

SX(y) = S is log-normal with mean 1; S = e−σ2/2+σN ,
where N is standard (0, 1) Gaussian random variable.
Call v = σ10/ log 10 logarithmic standard deviation
(log-SD) of the shadowing; this is the SD of the path-loss
LX(y) expressed in dB.
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Spatial Service Policy

A given user at location y ∈ R2 is served by the BS X∗
y ∈ Φ

from which it receives the strongest signal (i.e., the weakest
path-loss)

LX∗

y
(y) ≤ LX(y) for all X ∈ Φ ,(3)

with any tie-breaking rule.
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Spatial Service Policy

A given user at location y ∈ R2 is served by the BS X∗
y ∈ Φ

from which it receives the strongest signal (i.e., the weakest
path-loss)

LX∗

y
(y) ≤ LX(y) for all X ∈ Φ ,(3)

with any tie-breaking rule.

In the case of no shadowing (SX(y) ≡ 1) and strictly
increasing path-loss function L(·) the above policy
corresponds to the geographically closest BS.

For infinite network models with random shadowing, one
has to prove that the minimum of the path-loss is
achieved for some BS.
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QoS “pre-metric” 1: Path-loss Factor

For a given location y ∈ R2 we define the path-loss factor as

l(y) := LX∗

y
(y) =

1

maxX∈Φ
SX(y)

L(|X−y|)

;(4)

i.e., as the path-loss experienced at y with respect to the
serving BS (not to be confused with the path-loss
exponent β).
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QoS “pre-metric” 1: Path-loss Factor

For a given location y ∈ R2 we define the path-loss factor as

l(y) := LX∗

y
(y) =

1

maxX∈Φ
SX(y)

L(|X−y|)

;(4)

i.e., as the path-loss experienced at y with respect to the
serving BS (not to be confused with the path-loss
exponent β).
We will be interested in the mean path-loss factor

E[l(y)] = E[l
(

y,Φ, SX(y), X ∈ Φ
)

] .

By stationarity (of toroidal or infinite network model)
E[l] := E[l(y)] = E[l(0)].
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QoS “pre-metric” 2: Interference Factor

For a given location y ∈ R2 we define the interference factor
as

f(y) :=
∑

X∈Φ,X 6=X∗

y

LX∗

y
(y)

LX(y)
=

∑

X∈Φ
SX(y)

L(|X−y|)

maxX∈Φ
SX(y)

L(|X−y|)

− 1 .(5)
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QoS “pre-metric” 2: Interference Factor

For a given location y ∈ R2 we define the interference factor
as

f(y) :=
∑

X∈Φ,X 6=X∗

y

LX∗

y
(y)

LX(y)
=

∑

X∈Φ
SX(y)

L(|X−y|)

maxX∈Φ
SX(y)

L(|X−y|)

− 1 .(5)

We will be interested in the mean interference factor

E[f(y)] = E[f
(

y,Φ, SX(y), X ∈ Φ
)

] .

By stationarity (of toroidal or infinite network model)
E[f ] := E[f(y)] = E[f(0)].
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Why E[l] and E[f ]?

The two QoS “pre-metrics”: mean path-loss factor E[l] and
mean interference factor E[f ] are rather elementary
characteristics, which give insight into more involved QoS
metrics, as e.g. the blocking probability.
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Blocking Probability in a Spatial Erlang’s Loss Model

Finite network (on torus), required space-time scenario;

(Poisson) arrival process (in time) of calls to the network,

calls require predefined (exponential) service times,

calls require predefined, fixed bit-rates (CBR),

blocking of arrivals when not enough resources (power,
frequency etc),

fraction of blocked arrivals in the long run of the system
is called the blocking probability (bp).
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Blocking Probability in a Spatial Erlang’s Loss Model

Finite network (on torus), required space-time scenario;

(Poisson) arrival process (in time) of calls to the network,

calls require predefined (exponential) service times,

calls require predefined, fixed bit-rates (CBR),

blocking of arrivals when not enough resources (power,
frequency etc),

fraction of blocked arrivals in the long run of the system
is called the blocking probability (bp).

Erlang’s loss formula: bp it is equal to the conditional
probability that in the stationary configuration of the
(non-blocked) arrival process the system cannot admit a
new user, given all users in the current configuration can
be served.
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Blocking Probability; basic facts cont’d

Multi-Erlang (ME) form of call admission condition:
∑

y:X∗

y=X

ϕ
(

l(y), f(y)
)

≤ 1 ,(6)

where the summation is over all users (including a new
arrival) to be served by the BS X and ϕ(·, ·) is some
function of the path-loss and interference factorr (can be
more general) of user y.
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Blocking Probability; basic facts cont’d

Multi-Erlang (ME) form of call admission condition:
∑

y:X∗

y=X

ϕ
(

l(y), f(y)
)

≤ 1 ,(6)

where the summation is over all users (including a new
arrival) to be served by the BS X and ϕ(·, ·) is some
function of the path-loss and interference factorr (can be
more general) of user y.

If ME admission condition then the Erlang’s loss formula
can be practically evaluated, e.g. discretizing the
geometry and using the Kaufman-Roberts algorithm.
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Multi-Erlang; downlink CDMA

ϕ(l, f) =
ξ

1 + αξ

1

1 − ǫ

(Nl

P̃
+ α+ f

)

;

- P̃ is the maximal BS power,

- ǫ is the fraction of this maximal power used in common
(pilot) channels,

- α is the intra-cell orthogonality factor,

- N external noise power

- ξ = ψ−1(r/W ) is the SINR threshold corresponding to the
required bit-rate r of user given the link performance
function ψ and the system bandwidth W ,

- ψ is the link performance function (e.g. for AWGN channel
with maximal capacity coding ψ(ξ) = log2(1 + ξ) is the
Shannon’s formula).
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Multi-Erlang; downlink OFDMA

ϕ(l, f) =
r

Wψ
(

(1 − ǫ)/((Nl/P̃ ) + α+ f)
) ,

with the notation as for CDMA.

– p. 19



RESULTS
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Blocking Probability

We consider Hexagonal BS models on the torus TN with
power-law path-loss function (2) and log-normal shadowing.
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Blocking Probability

We consider Hexagonal BS models on the torus TN with
power-law path-loss function (2) and log-normal shadowing.

For a given realization of the shadowing field (in a suitably
discretized geometry), we calculate the blocking probability
via the Kaufman-Roberts algorithm.

Next, we average over many realizations of the shadowing
field.

In practice, for a sufficiently large network (≥ 36 BS in our
setting) just one realization of the shadowing field is enough
(spatial ergodicity).
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Blocking probability v/s shadowing
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Blocking probability v/s shadowing, cont’d
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Blocking probability v/s shadowing, cont’d
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Back to Basics

Let’s try to understand the impact of the model parameters
(in particular the variance of the shadowing) on E[l] and
E[f ].
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E[l] in the Hexagonal Network; Simulation
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E[f ] in the Hexagonal Network; Simulation
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Observations for the Hexagonal Network

Mean path-loss factor increases in (log-SD of) the
shadowing, increases in path-loss exponent, but
(slightly) decreases in the network size.

Mean interference factor is not monotone in shadowing:
first increases and then decreases (to 0, cf Prop. 1). It
decreases in the path-loss exponent and increases in
the network size.

For more than 100 BS and reasonable path-loss model
assumptions E[l(0)] and E[f(0)] correspond to these in
the infinite model. However, for large values of log-SD of
the shadowing E[f(0)] non-negligibly increases with the
network size.
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Understanding the Blocking Probability

Graphical explanation
of the possible non-monotonicity
of the blocking probability.

+

=

variance of the shadowing

blocking probability

path−loss factor

interference factor

– p. 30



Poisson Network, path-loss factor
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Poisson Network, interference factor
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Observations for Poisson network

Mean path-loss factor increases in shadowing, increases
in path-loss exponent, but decreases in the network size
(same as for Hexagonal).

Mean interference factor decreases in the shadowing
(unlike in Hexagonal!). It decreases in the path-loss
exponent and increases in the network size (Same as for
Hexagonal).

For infinite Poisson network with arbitrary distribution of
shadowing, the QoS “pre-metrics” are known explicitly
and do not depend on the shadowing!; cf. Prop 3.

For large log-SD of the shadowing, the QoS
“pre-metrics” of Hexagonal and Poisson network are
very similar.
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SO, WHAT CAN BE PROVED?
SOME MATHEMATICAL RESULTS.

– p. 34



Log-Normal Shadowing with mean 1

S = e−σ2/2+σN where N is the standard Gaussian random
variable. For any fixed ǫ > 0 we have

P{S ≥ ǫ} = P{N ≥ σ/2 + (log ǫ)/σ} σ→∞−→ 0 ,

which shows that the random variable S converges in
probability to 0 (hence path-loss 1/S converges to ∞).

This shows that path-loss factor l(y) converges in probability
and in expectation to infinity.
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Finite Networks, Increasing Shadowing

Proposition 1 Assume an arbitrary, fixed, finite pattern
{X1, X2, . . . , Xn} of BS locations. Consider any
deterministic path-loss function 0 < L(r) < ∞ and
(independent) log-normal shadowing SXi

(·) with the
log-SD v. Then for any location y we have

lim
v→∞

f(y) = 0 in probability.

Log-normal shadowing amplifies the ratio between the
strongest signal and all other signals thus reducing the
interference.
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Finite Networks, Increasing Shadowing

Proposition 1 Assume an arbitrary, fixed, finite pattern
{X1, X2, . . . , Xn} of BS locations. Consider any
deterministic path-loss function 0 < L(r) < ∞ and
(independent) log-normal shadowing SXi

(·) with the
log-SD v. Then for any location y we have

lim
v→∞

f(y) = 0 in probability.

Log-normal shadowing amplifies the ratio between the
strongest signal and all other signals thus reducing the
interference.

Corollary 1 The mean interference factor E[f(0)] in the
Poisson and hexagonal network on the torus TN , with
log-normal shadowing converges in distribution and in
expectation to 0 when log-SD of the shadowing goes to ∞.
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Finding Serving BS in Infinite Networks

Proposition 2 Consider infinite Poisson Φ = ΦP or
hexagonal Φ = ΦH model of BS, with shadowing whose
marginal distribution has finite moment of order 2/β (a).
Then there exist almost surely the serving BS, i.e., X∗

0 ∈ Φ

satisfying (3). Moreover, the interference factor calculated
with respect to the restriction of Φ to TN , i.e., f(0, Φ̃TN ),
converges almost surely and in expectation to f(0, Φ̃).

ai.e., E[S2/β] < ∞. Note that 2/β < 1 and thus the above assumption follows

from our default assumption E[S] = 1 < ∞.
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Infinite Poisson Network

Proposition 3 Assume infinite Poisson network with the
deterministic path-loss function (2). The distribution of the
path-loss factor l(0) = l(0, Φ̃) and interference factor
f(0) = f(0, Φ̃) do not depend on the (marginal) distribution
of the shadowing field S = SX(y) provided E[S2/β] < ∞.
Moreover, their expectations are given by

E[f(0)] =
2

β − 2
,

E[l(0)] =
KβΓ(1 + β/2)

(πλE[S2/β])β/2
,

where Γ(a) =
∫∞

0
ta−1e−tdt. Also, the distribution function

of l(0) admits a simple explicit expression.
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CONCLUDING REMARKS
& QUESTIONS
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Concluding Remarks

Random shadowing is believed to degrade the QoS.

Studying two QoS “pre-metrics” (path-loss with respect
to the serving BS and interference factor) one discovers
a more subtle reality.

As commonly expected: strong variance of the
shadowing increases the mean path-loss with respect to
the serving BS, which in consequence, degradates most
of the QoS metrics.

However, the mean interference is not monotonic in the
variance of the shadowing. It first increases and then
decreases (asymptotically to zero!), when the shadowing
variance goes to infinity.
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Concluding Remarks; cont’d

For moderate shadowing, when the QoS is not yet
compromised by the path-loss conditions, it may profit
from the reduction of the interference. This is because
increasing variance of the shadowing tends to "separate"
the strongest (serving BS) signal from all other signals.
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Concluding Remarks; cont’d

For moderate shadowing, when the QoS is not yet
compromised by the path-loss conditions, it may profit
from the reduction of the interference. This is because
increasing variance of the shadowing tends to "separate"
the strongest (serving BS) signal from all other signals.

Such phenomenon can be compared to stochastic
resonance phenomena observed for some other
stochastic models.

Might shed new light, in particular on the design of
indoor communication scenarios.
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QUESTIONS OR COMMENTS?

THANK YOU
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