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Séminaire DGA/INRIA

INRIA, Rocquencourt, le 19 mars 2009



A comprehensive

STOCHASTIC GEOMETRY (SG) FRAMEWORK

for the modeling of WIRELESS NETWORKS

wireless networks ⇐ SG

⇑
signal detection models

⇑
radio wave propagation models

Developed at INRIA by several researchers (F. Baccelli, BB, Ph. Jacquet

P. Mühlethaler, ...) in collaborations with several academic and industrial partners

(EPFL, Stanford, SPRINT, Orange Labs, Thomson, ...).
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WHAT IS STOCHASTIC GEOMETRY (SG)

an ancient theory and modern contexts

SG is now a reach branch of applied probability, which allows to study random

phenomena on the plane or in higher dimension; it is intrinsically related to the theory

of point processes.
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WHAT IS STOCHASTIC GEOMETRY (SG)

an ancient theory and modern contexts

SG is now a reach branch of applied probability, which allows to study random

phenomena on the plane or in higher dimension; it is intrinsically related to the theory

of point processes.

Initially its development was stimulated by applications to biology, astronomy and

material sciences. Nowadays, it is also used in image analysis and in the context of

communication networks.
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SG an ancient theory and modern contexts ...

A pioneer

We would like to stress the pioneering role of Edgar N. Gilbert in using SG for

modeling of communication networks.

Géométrie aléatoire: un cadre pour la modélisation des rseaux sans fil
4



SG an ancient theory and modern contexts ...

A pioneer

We would like to stress the pioneering role of Edgar N. Gilbert in using SG for

modeling of communication networks.

Gilbert (1961) Random plane networks, SIAM-J,

Gilbert (1962) Random subdivisions of space into crystals, Ann. Math. Stat.,
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SG an ancient theory and modern contexts ...

A pioneer

We would like to stress the pioneering role of Edgar N. Gilbert in using SG for

modeling of communication networks.

Gilbert (1961) Random plane networks, SIAM-J,

Gilbert (1962) Random subdivisions of space into crystals, Ann. Math. Stat.,

One can consider Gilbert’s paper of 1961 both as the first paper on continuum

percolation (percolation of the Boolean model) and as the first paper on the analysis

of the connectivity of large wireless networks by means of stochastic geometry.

The paper of 62 is on Poisson-Voronoi tessellations.
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SG an ancient theory and modern contexts ...

Followers

PHASE I — domination of the cable: The first papers following Gilbert’s ideas

appeared in the modern engineering literature shortly before year 2000 (before the

massive popularization of wireless communications) and were using mainly the

classical stochastic geometry models (as Voronoi tessellations or Boolean model)

trying to fit them to existing networks.
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SG an ancient theory and modern contexts ...

Followers

PHASE I — domination of the cable: The first papers following Gilbert’s ideas

appeared in the modern engineering literature shortly before year 2000 (before the

massive popularization of wireless communications) and were using mainly the

classical stochastic geometry models (as Voronoi tessellations or Boolean model)

trying to fit them to existing networks.

PHASE II — wireless revolution: Nowadays, the number of papers using some form of

stochastic geometry is increasing very fast in conferences like Infocom or Mobicom,

where one of the most important observed trends is an attempt to better take into

account in geometric models specific mechanisms of wireless

communications .
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SG an ancient theory and modern contexts ...

Classical SG models

• Poisson point process,

• Voronoi tessellation,

• Boolean model.

Géométrie aléatoire: un cadre pour la modélisation des rseaux sans fil
6



SG / Classical models

Poisson Point Process

Planar Poisson point process (p.p.) Φ of intensity λ:

• Number of Points Φ(B) of Φ in subset B of the plane is Poisson random variable

with parameter λ|B|, where | · | is the Lebesgue measure on the plane; i.e.,

P{Φ(B) = k } = e−λ|B| (λ|B|)k

k!
,

• Numbers of points of Φ in disjoint sets are independent.
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SG / Classical models

Poisson Point Process

Planar Poisson point process (p.p.) Φ of intensity λ:

• Number of Points Φ(B) of Φ in subset B of the plane is Poisson random variable

with parameter λ|B|, where | · | is the Lebesgue measure on the plane; i.e.,

P{Φ(B) = k } = e−λ|B| (λ|B|)k

k!
,

• Numbers of points of Φ in disjoint sets are independent.

Laplace transform of the Poisson p.p.

LΦ(h) = E[e
R

h(x)Φ(dx)] = e−λ
R

(1−eh(x)) dx ,

where h(·) is a real function on the plane and
∫

h(x) Φ(dx) =
∑

Xi∈Φ h(Xi).
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SG / Classical models / Poisson p.p. ...

Poisson p.p. is a very basic model. Used to represent:

• the repartition of users in all kind of networks,

• locations of nodes in ad hoc, mesh and sensor networks,

• locations of base stations (access points) in irregular cellular network

architectures.
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Poisson p.p. is a very basic model. Used to represent:

• the repartition of users in all kind of networks,

• locations of nodes in ad hoc, mesh and sensor networks,

• locations of base stations (access points) in irregular cellular network

architectures.

:-) Very simple model, allows for explicit calculus
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Poisson p.p. is a very basic model. Used to represent:

• the repartition of users in all kind of networks,

• locations of nodes in ad hoc, mesh and sensor networks,

• locations of base stations (access points) in irregular cellular network

architectures.

:-) Very simple model, allows for explicit calculus

:-( (Homogeneous) Poisson assumption often too simplistic.

Géométrie aléatoire: un cadre pour la modélisation des rseaux sans fil
8-b



SG / Classical models / Poisson p.p. ...

Poisson p.p. is a very basic model. Used to represent:

• the repartition of users in all kind of networks,

• locations of nodes in ad hoc, mesh and sensor networks,

• locations of base stations (access points) in irregular cellular network

architectures.

:-) Very simple model, allows for explicit calculus

:-( (Homogeneous) Poisson assumption often too simplistic.

Need for models exhibiting more clustering, attraction, repulsion of points ⇒ Cox

models (doubly stochastic Poisson p.p’s), Gibbs p.p., Hard-core p.p. and others

(Determinental/Permimental p.p’s ?)
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SG / Classical models

Voronoi Tessellation (VT)

Given a collection of points Φ = {Xi} on the plane and a given point x, we define

the Voronoi cell of this point Cx = Cx(Φ) as the subset of the plane of all locations

that are closer to x than to any point of Φ; i.e.,

Cx(Φ) = {y ∈ R
2 : |y − x| ≤ |y − Xi| ∀Xi ∈ Φ} .
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SG / Classical models

Voronoi Tessellation (VT)

Given a collection of points Φ = {Xi} on the plane and a given point x, we define

the Voronoi cell of this point Cx = Cx(Φ) as the subset of the plane of all locations

that are closer to x than to any point of Φ; i.e.,

Cx(Φ) = {y ∈ R
2 : |y − x| ≤ |y − Xi| ∀Xi ∈ Φ} .

When Φ = {Xi} is a Poisson p.p. we call

the (random) collection of cells {CXi
(Φ)}

the Poisson-Voronoi tessellation (PVT).

Borders of Voronoi Cells
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SG / Classical models / VT

A dual model to Voronoi tessellation, the Delauney triangulation is used as a

(connected) graph of nearest neighbours (e.g. for routing purpose).
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SG / Classical models / VT

A dual model to Voronoi tessellation, the Delauney triangulation is used as a

(connected) graph of nearest neighbours (e.g. for routing purpose).

:-) VT takes into account distance to nearest BS’s (neighbourhood model)
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SG / Classical models / VT

A dual model to Voronoi tessellation, the Delauney triangulation is used as a

(connected) graph of nearest neighbours (e.g. for routing purpose).

:-) VT takes into account distance to nearest BS’s (neighbourhood model)

:-( ignores other physical aspects of the communication as path loss, interference.

Géométrie aléatoire: un cadre pour la modélisation des rseaux sans fil
10-c



SG / Classical models

Boolean Model (BM)

Let Φ̃ = {(Xi, Gi)} be a marked Poisson p.p., where {Xi} are points and {Gi}
are iid random closed stets (grains). We define the Boolean Model (BM) as the union

Ξ =
⋃

i

Xi ⊕ Gi where x ⊕ G = {x + y : y ∈ G}.
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Ξ =
⋃

i
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Known:
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SG / Classical models

Boolean Model (BM)

Let Φ̃ = {(Xi, Gi)} be a marked Poisson p.p., where {Xi} are points and {Gi}
are iid random closed stets (grains). We define the Boolean Model (BM) as the union

Ξ =
⋃

i

Xi ⊕ Gi where x ⊕ G = {x + y : y ∈ G}.

Known:
• Poisson distribution of the

number of grains intersecting

any given set.

• Asymptotic results (λ → ∞)

for the probability of complete

covering of a given set.
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BASIC MODELS/BM ...

• BM is a generic wireless coverage model: points denote locations of BS’s and

grains denote (independent!) coverage regions.

• It can be used to address questions of connectivity in case of ad-hoc and mesh

networks; (see continuum percolation model, Gilbert (1961)).

Géométrie aléatoire: un cadre pour la modélisation des rseaux sans fil
12



BASIC MODELS/BM ...

• BM is a generic wireless coverage model: points denote locations of BS’s and

grains denote (independent!) coverage regions.

• It can be used to address questions of connectivity in case of ad-hoc and mesh

networks; (see continuum percolation model, Gilbert (1961)).

:-) Simple model, allows for explicit calculus, can account for path-loss effect.
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BASIC MODELS/BM ...

• BM is a generic wireless coverage model: points denote locations of BS’s and

grains denote (independent!) coverage regions.

• It can be used to address questions of connectivity in case of ad-hoc and mesh

networks; (see continuum percolation model, Gilbert (1961)).

:-) Simple model, allows for explicit calculus, can account for path-loss effect.

:-( Ignores interference effect (as coverage regions are independent).
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SG FOR WIRELESS NETWORKS

usful signal
noise

interferenceSINR =
POWER RECEIVED FROM GIVEN EMITTER

NOISE POWER + OTHER RECEIVED SIGNAL POWER
︸ ︷︷ ︸

interference

• SINR characterizes the throughput of the radio channel to a given location.

• SINR depends very much on the geometry of the location of nodes!

• Nodes’ location ⇒ realization of some random (point) process (mobile users,

mesh networks, etc.)

• Many nodes’ and channels’ characteristics (MAC states, fading, etc) ⇒ random

marks of points.
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SG for wireless...

Stochastic geometry provides a natural way of defining and computing macroscopic

properties of such networks, by some averaging over all potential geometrical

patterns for the nodes, in the same way as queuing theory provides averaged

response times or congestion over all potential arrival patterns within a given

parametric class.
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SG for wireless...

Stochastic geometry provides a natural way of defining and computing macroscopic

properties of such networks, by some averaging over all potential geometrical

patterns for the nodes, in the same way as queuing theory provides averaged

response times or congestion over all potential arrival patterns within a given

parametric class.

When the underlying random model is spatially ergodic, this probabilistic analysis

also provides a way of estimating spatial averages which often capture the key

dependencies of the network performance characteristics (connectivity, stability,

capacity, etc.) in function of a relatively small number of parameters.

Géométrie aléatoire: un cadre pour la modélisation des rseaux sans fil
14-a



SG for wireless...

Stochastic geometry provides a natural way of defining and computing macroscopic

properties of such networks, by some averaging over all potential geometrical

patterns for the nodes, in the same way as queuing theory provides averaged

response times or congestion over all potential arrival patterns within a given

parametric class.

When the underlying random model is spatially ergodic, this probabilistic analysis

also provides a way of estimating spatial averages which often capture the key

dependencies of the network performance characteristics (connectivity, stability,

capacity, etc.) in function of a relatively small number of parameters.

We believe this methodology will play the same role as queuing theory in wireline

systems, where it was instrumental in designing the first multiprogramming computers

and the basic protocols used in computer networks and in particular in the Internet.
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Examples of subjects studied within this general framework

• SINR coverage model: foundations of the GS framework for wireless networks,
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Examples of subjects studied within this general framework

• SINR coverage model: foundations of the GS framework for wireless networks,

• Power control in cellular networks: the time-space setting ⇒ dimensioning

method for CDMA, HSDPA, OFDM (LTE) ⇒ 3 joint INRIA/FT R&D patents

exploited by Orange.
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• Power control in cellular networks: the time-space setting ⇒ dimensioning

method for CDMA, HSDPA, OFDM (LTE) ⇒ 3 joint INRIA/FT R&D patents

exploited by Orange.

• WiFi LANS and mesh networks: the Gibbsian algorithms for self organization

were well received by the international community ⇒ SPRINT patent.
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Examples of subjects studied within this general framework

• SINR coverage model: foundations of the GS framework for wireless networks,

• Power control in cellular networks: the time-space setting ⇒ dimensioning

method for CDMA, HSDPA, OFDM (LTE) ⇒ 3 joint INRIA/FT R&D patents

exploited by Orange.

• WiFi LANS and mesh networks: the Gibbsian algorithms for self organization

were well received by the international community ⇒ SPRINT patent.

• MAC in MANETS: an optimal tuning of MAC, MAC/Routing interplay.

• Opportunistic routing in MANETS: Opportunistic scheduling had a major impact

on cellular networks with e.g. HSDPA. In mobile ad hoc networks, opportunistic

routing strategies, which take advantage of both time and space diversity, seem

to significantly outperform classical routing strategies, where packets are routed

on a pre-defined path usually obtained by a shortest path routing protocol and

then implemented by the MAC.
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SG ALLOWS FOR TWO TYPES OF RESULTS

• Scaling laws: Discover main tendencies of the network behaviour when number

of nodes increases using mathematical formalism (percolation theory, limiting

theory for random graphs, ...). Difficult/impossible via pure, crude simulation.
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SG ALLOWS FOR TWO TYPES OF RESULTS

• Scaling laws: Discover main tendencies of the network behaviour when number

of nodes increases using mathematical formalism (percolation theory, limiting

theory for random graphs, ...). Difficult/impossible via pure, crude simulation.

• Optimal tuning of “real” network parameters: rapid when using (semi)explicit

analytical evaluation of the performance metrics. Difficult via pure, crude

simulation.
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A SCALING LAW FOR MANETS

• Douse et al. (2000,2003):

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

G
am

m
a*

Node density

Percolation domain

super-critical

sub-critical

density of nodesin
te

rf
er

en
ce

ca
nc

el
la

tio
n

fa
ct

or

connected

disconnected

di
sc

on
ne

ct
ed

Striking fact: Increasing node density may disconnect the network!
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Striking fact: Increasing node density may disconnect the network!

See also: Gupta & Kumar’s (2000): transport capacity per node in MANET is

proportional to 1/
√

node density when node density → ∞.
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MAC TUNING FOR MANETS

Baccelli, BB, Mühlethaler (2008):

Optimal tuning of MAP p

for mean end-to-end

delay in opportunistic

routing.

optimal p does not de-

pend on the density of

nodes
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THANK YOU
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A BIT OF MATH
calculating SINR coverage probability

in the case of Rayleigh fading and Poisson repartition of interferers
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A BIT OF MATH
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in the case of Rayleigh fading and Poisson repartition of interferers

• Φ̃ = {(Xi, Si)} — marked homogeneous Poisson point process

representing antenna locations Xi on R
2 and their emitted powers Si,
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A BIT OF MATH
calculating SINR coverage probability

in the case of Rayleigh fading and Poisson repartition of interferers

• Φ̃ = {(Xi, Si)} — marked homogeneous Poisson point process

representing antenna locations Xi on R
2 and their emitted powers Si,

• (X0 = 0, S) — given antenna located at a fixed point (here origin 0) with

(possibly random) emitted power S;
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A BIT OF MATH
calculating SINR coverage probability

in the case of Rayleigh fading and Poisson repartition of interferers

• Φ̃ = {(Xi, Si)} — marked homogeneous Poisson point process

representing antenna locations Xi on R
2 and their emitted powers Si,

• (X0 = 0, S) — given antenna located at a fixed point (here origin 0) with

(possibly random) emitted power S;

• randomness of S can account for fading in the channel from 0 to some given

location y (of a receiver) at the distance |y| = R.
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A BIT OF MATH
calculating SINR coverage probability

in the case of Rayleigh fading and Poisson repartition of interferers

• Φ̃ = {(Xi, Si)} — marked homogeneous Poisson point process

representing antenna locations Xi on R
2 and their emitted powers Si,

• (X0 = 0, S) — given antenna located at a fixed point (here origin 0) with

(possibly random) emitted power S;

• randomness of S can account for fading in the channel from 0 to some given

location y (of a receiver) at the distance |y| = R.

Probability that the given antenna covers y with SINR higher than some threshold T

is pR = P
(

SL(R)/T − W − IΦ̃(y) > 0
)

.
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A BIT OF MATH — SINR coverage

Res. The coverage probability pR can be given via Fourier transforms of

(independent) r.v.’s S , W and IΦ̃(y) that is explicitly known (as Laplace transform)

in Poisson SN case

pR =
1

2
− 1

2iπ

∫ ∞

−∞

E[eiξIeΦ
(y)]E[eiξW ]E[e−iξSL(R)/T )]

ξ
dξ .

Proof via Rieman boundary problem.
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A BIT OF MATH — SINR coverage

Example

Fourier transform FI
Φ̃
(ξ) of the homogeneous Poisson (intensity λ) SN with

exponential S (parameter m) and attenuation L(r) = A max(r, r0)
−4

FIΦ
(ξ) = E

[
e−iξIΦ

]

= exp

[

λπ

√

iAξ

m
arctan

(

r2
0

√
m

iAξ

)

− λ

2
π2

√

iAξ

m

+ λπr2
0

r4
0 − iAξ − r4

0m

iAξ + r4
0m

]

,

for ξ ∈ R, where the branch of the complex square root function is chosen with

positive real part.
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A BIT OF MATH — SINR coverage

Special case — Rayleigh fading

Res. [Baccelli&BB&Muhlethaler (2004)]: Assume that S (power of the given antenna)

is exponential r.v. with par. µ (which corresponds e.g. to constant emitted power and

Rayleigh fading in the channel). Then

pR = LW

(
µT/L(R)) × exp

{

− 2πλ

∫ ∞

0

r(1 − E[e−S′TL(r)/L(R)]) dr

}

,

where S ′ is the generic power emitted by an interferer.
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A BIT OF MATH — SINR coverage

Special case — Rayleigh fading

Res. [Baccelli&BB&Muhlethaler (2004)]: Assume that S (power of the given antenna)

is exponential r.v. with par. µ (which corresponds e.g. to constant emitted power and

Rayleigh fading in the channel). Then

pR = LW

(
µT/L(R)) × exp

{

− 2πλ

∫ ∞

0

r(1 − E[e−S′TL(r)/L(R)]) dr

}

,

where S ′ is the generic power emitted by an interferer.

Proof:

pR = P(S > (W + IΦ̃)T/L(R))

=

∫ ∞

0

e−µsT/L(R) dP(W + IΦ̃ ≤ s)

= LW (µT/L(R)) × LI
Φ̃
(µT/L(R)) .
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A BIT OF MATH — SINR coverage / Rayleigh fading case

Cor. When the generic power S ′ emitted by interferers is also exponential (Rayleigh

fading) and assuming the simplified attenuation function L(r) = (Ar)−β and

W = 0

pR = e−λR2T 2/βC ,

where C = C(β) =
(

2πΓ(2/β)Γ(1 − 2/β)
)

/β.

Géométrie aléatoire: un cadre pour la modélisation des rseaux sans fil
24



A BIT OF MATH — SINR coverage / Rayleigh fading case

Some useful optimizations

One can study the following optimization problems for the expected effective

transmission range r × pr:

• given the density of stations λ find the targeted range r that optimizes the

expected effective transmission range

ρ = ρ(p) = max
r≥0

{rpr(p)} =
1

T 1/β
√

2λpC

rmax = rmax(p) = argmaxr≥0{rpr(λ)} =
1

T 1/β
√

2λC
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A BIT OF MATH — SINR coverage / Rayleigh fading case / optimizations

• given the targeted range R find the density of emitters λ that optimize the

expected effective transmission range R × pR:

λmax = λmax(R) =argmaxλ≥0{RpR(λ)} =
1

R2T 2/βC

max
λ≥0

{RpR(λ)} =
1

R2T 2/βeC
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A BIT OF MATH — SINR coverage / Rayleigh fading case / optimizations

• given the targeted range R find the density of emitters λ that optimize the

expected effective transmission range R × pR:

λmax = λmax(R) =argmaxλ≥0{RpR(λ)} =
1

R2T 2/βC

max
λ≥0

{RpR(λ)} =
1

R2T 2/βeC

More can be done. See optimal tuning of Aloha MAC for transport capacity in IEEE

Tran. Inf. Theory 2004.
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