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Consider Φ =
∑

i δXi
simple (Xi 6= Xj for i 6= j) , stationary point

process in R
d. Recall, Φ is a random object on the space M of locally finite

counting measures on R
d with a suitable σ-field.
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Consider Φ =
∑

i δXi
simple (Xi 6= Xj for i 6= j) , stationary point

process in R
d. Recall, Φ is a random object on the space M of locally finite

counting measures on R
d with a suitable σ-field.

Consider a measurable, real-valued marking (score) function ξ = ξ(x, φ)
defined on R

d × M, with x ∈ φ. Assume ξ is translation invariant; i.e.,
ξ(x+ a, φ+ a) = ξ(x, φ) for all a ∈ R

d and φ ∈ M.

We will call
Mi := ξ(Xi,Φ)

geometric mark of the point Xi of Φ (produced by the marking function ξ).

Note that Φ̃ :=
∑

i δ(Xi,Mi) is a stationary marked point process.

We will sometimes (ab)use the same notation for the weighted point measure
Φ̃ :=

∑
iMiδXi

, where atoms of Φ are weighted by the values of their
marks (possibly signed measure).
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� Distance to the nearest neighbour:
Mi = Ri := min{|Xi −Xj| : xj ∈ Φ, Xi 6= Xi}.

� Volume of the Voronoi cell:
Mi = |Ai| := |{y ∈ R

d : |y −Xi| ≤ minXj∈Φ |y −Xj|}|.
� Shot-noise:

mi = Si :=
∑

i6=j ℓ(|Xj −Xi|) with some response function ℓ(·).
� Number of neighbors within distance R:

shot-noise with response function ℓ(r) = 1(r ≤ R).
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� Distance to the nearest neighbour:
Mi = Ri := min{|Xi −Xj| : xj ∈ Φ, Xi 6= Xi}.

� Volume of the Voronoi cell:
Mi = |Ai| := |{y ∈ R

d : |y −Xi| ≤ minXj∈Φ |y −Xj|}|.
� Shot-noise:

mi = Si :=
∑

i6=j ℓ(|Xj −Xi|) with some response function ℓ(·).
� Number of neighbors within distance R:

shot-noise with response function ℓ(r) = 1(r ≤ R).

Many interesting statistics of more complex geometric models can be
represented as functions (e.g. sums) of such geometric marks.
For example: ...
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For R > 0 there exist an edges between any two points Xi, Xj ∈ Φ iff
|Xi −Xj| ≤ R. The sum of marks Mi of points in a given bounded
window may represent for example:

� Total number of edges:
ξ(x,Φ) = 1

2
(Φ(Bx(r)) − 1), where Bx(r)

is the ball of radius r centered at x
� Total edge length

ξ(x,Φ) = 1
2

∑
y∈Φ∩Bx(r)

|x− y|.
� Sub-graph Γ count

ξ(x,Φ) = 1
k

∑
y1,...,yk∈Φ∩Bx(kr)

distinct

1
(
G({y1, . . . , yk}, r)∼=Γ

)
,

where Γ is an abstract graph with k vertexes.
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� More involved geometric and topological properties of data encored in
Čech complex that is an extension of the Gilbert graph allowing for
higher-dimensional edges called facets.

� k-covered region volumes in the Boolean model.
� Morse critical points.
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� Properties of k-nearest neighbor graphs.
� In particular intrinsic volumes of faces of Voronoi tessellations
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Many engineering characteristics of communication networks, for example
cell loads in wireless communication networks capturing in a concise way the
quality of service offered by the base stations, whose locations are modeled by
the points of Φ.
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Many engineering characteristics of communication networks, for example
cell loads in wireless communication networks capturing in a concise way the
quality of service offered by the base stations, whose locations are modeled by
the points of Φ.

In what follows we shall present two subjects related to
geometric marks.



Subject I: Limit theory for geometric marks
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We shall study the asymptotic of the weighted point measure Φ̃
“compressed” to the unit volume window:

µn :=
∑

Xi∈Wn

MiδXi/n1/d ,

where Wn = [0, n1/d]d.
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where Wn = [0, n1/d]d.
More precisely, expectation asymptotics, variance asymptotics, and central
limit theorems (CLT) for the integrals
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∫
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f(x)µn(dx)

of µn with respect to test functions f .



Subject I: Limit theory for geometric marks

8 / 77

We shall study the asymptotic of the weighted point measure Φ̃
“compressed” to the unit volume window:

µn :=
∑

Xi∈Wn

MiδXi/n1/d ,

where Wn = [0, n1/d]d.
More precisely, expectation asymptotics, variance asymptotics, and central
limit theorems (CLT) for the integrals

µn(f) :=

∫

W1

f(x)µn(dx)

of µn with respect to test functions f .

⇒ We shall define and use some (new?) mixing condition for point processes
expressed in terms of the correlations functions and related to the cumulant
measures.
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We shall address (in a more computer-science way) the following “practical”
problem:
Suppose the marking (score) function ξ is not know. One aims at learning
this function from the examples of marked point patterns, in order to predict
the marks of new point patterns.
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We shall address (in a more computer-science way) the following “practical”
problem:
Suppose the marking (score) function ξ is not know. One aims at learning
this function from the examples of marked point patterns, in order to predict
the marks of new point patterns.

⇒ We shall use some new “representation” of the weighted measure Φ̃ via its
scattering moments. These are new operators based on wavelet transforms
computed at different scales. They have many interesting properties studied
up to now mostly in empirical way.

Mathematically, we shall study the asymptotic of the scattering moments of
Φ̃ as the scale grows infinitely small or large.
The CLT (established in the first part) is useful for large scales, and suggests
how to estimate the variance asymptotic of Φ̃, in particular to detect the
hyperuniformity or hyperfluctuations (to be exaplained).
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Limit theory for geometric statistics of point
processes having fast decay of correlations
based on a joint work with
D. Yogeshwaran [ISI Bangalore,]
Joe Yukich [Lehigh University, Bethlehem]



LLN and CLT for iid rv’s — classic results
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Y1, Y2, . . . independent, identically distributed rv’s, Sn =
∑n

i=1 Yi.

� (Weak LLN) If µ := E(Y1) finite then

Sn

n

P→ µ n → ∞.

� (CLT) If σ2 := Var (Y1) < ∞ then

Sn − nµ√
Var (Sn)

=
Sn − nµ√

nσ
⇒ N(0, 1) .

Looking for LLN and LCT for dependent rv’s.



Dependent sums in geometric context
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P = {Xi} ⊂ R
d — point process, geometric input data.

Consider sums
Sn =

∑

Xi∈Pn

ξ(Xi,Pn) ,

where

� Pn = P ∩Wn data truncated to the observation window
Wn = [0, n1/d]d of volume n.,

� ξ(Xi,Pn) score function of the relative position of point Xi in Pn.
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P = {Xi} ⊂ R
d — geometric input data

Sn =
∑

Xi∈Pn

ξ(Xi,Pn) .

Two-fold dependence of the summands in Sn:

� via the score function ξ,
� via possibly correlated data P.
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P = {Xi} ⊂ R
d — geometric input data

Sn =
∑

Xi∈Pn

ξ(Xi,Pn) .

Two-fold dependence of the summands in Sn:

� via the score function ξ,
� via possibly correlated data P.

Special cases:

� ξ(x,P) = ξ(x) — linear score function, no dependence via ξ,
� Poisson process P — independent data.
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Assume P = {Xi} form homogeneous Poisson point process on R
d of

intensity λ.
Remind:

� P(B) — number of points in B is Poisson (λ|B|) rv,
� P(B1), . . .P(Bk) are independent rv’s.
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Fact: given P(Wn) = n, points of P in Wn, are independent, identically
distributed (uniform on Wn).
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Assume P = {Xi} form homogeneous Poisson point process on R
d of

intensity λ.
Remind:

� P(B) — number of points in B is Poisson (λ|B|) rv,
� P(B1), . . .P(Bk) are independent rv’s.

Fact: given P(Wn) = n, points of P in Wn, are independent, identically
distributed (uniform on Wn).

In case of linear score functions of Poisson process Sn =
∑

Xi∈Pn
ξ(Xi) are

Poisson-randomized sums of iid rv’s hence LLN and CLT reduce to (almost)
classic setting.



Stabilizing score functions
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To control the dependence via the score function ξ define:

� R = R(x,X ) is a stabilization radius of ξ on data X at x ∈ X if any
modification of data X outside the ball Bx(R) of radius R centered at
x does not change the value of ξ(x,X )

ξ (x,X ∩Bx(R)) = ξ
(
x,

(
X ∩Bx(R)

)
∪

(
X ′ ∩Bc

x(R)
))

for any data set X ′, with Bc
x denoting the complement of the ball Bx.



Exponential stabilization on Poisson data
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Consider translation invariant score function ξ(x,X ) = ξ(x+ a,X + a) for
all a ∈ R

d.

� ξ is exponentially stabilizing on Poisson input if

sup
1≤n≤∞

P (R(0,Pn ∪ {0}) > r ) ≤ c1e
−c2r

for some constants c1 < ∞, c2 > 0 and all r ≥ 0.



Exponential stabilization on Poisson data
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Theorem ...[Penrose & Yukich (2003)]...

Assume ξ is exponentially stabilizing on Poisson process with intensity λ and
consider Sn =

∑
Xi∈Pn

ξ(Xi,Pn).

� (Mean) If E(ξp(0,P ∪ {0})) < ∞ for some p > 1 then

E(Sn)

n
→ λE(ξ(0,P ∪ {0})) n → ∞.

...



Limit theory for Poisson data cnt’d
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Theorem ...[Baryshnikov &Yukich (2005)]...

� (Variance) If E(ξp(0,P ∪ {0})) < ∞ for some p > 2 then

Var (Sn)

n
→ σ2(ξ) < ∞ n → ∞ ,

where

σ2(ξ) = λE
(
ξ2(0,P ∪ {0}))

+ λ2

∫

Rd

E(ξ(0,P ∪ {0, x})ξ(x,P ∪ {0, x}))

−
(
E(ξ(0,P ∪ {0}))

)2
dx .

...



Limit theory for Poisson data cont’d
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Theorem ...[Baryshnikov-Yukich (2005)]...

� (Mean) & (Variance) imply weak LLN for Sn.
� If moreover σ2(ξ) > 0 then the CLT for Sn holds.
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Theorem ...[Baryshnikov-Yukich (2005)]...

� (Mean) & (Variance) imply weak LLN for Sn.
� If moreover σ2(ξ) > 0 then the CLT for Sn holds.

Goal: extend the theory to correlated data.



Sample data realizations and their models
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negative correlation
(hyper-)regulararity

rigidity

� determinantal,
� α-determinantal α < 0,
� Gibbsian and other hard-hore,

independence

� Poisson
� Binomial

positive correlation
(hyper-)fluctuation

clustering

� permanental ,

� α-permanental
α > 0,

� cluster processes,

� Cox processes



Outline of the remaining part of the talk
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� controlling correlations of points
� examples of point processes with fast decaying of correlations
� main results
� comments on previous results
� proof idea



Mixing point processes
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� (Usual) mixing of a point process roughly says that configurations of
points in distant regions U, V are asymptotically independent

E(φ(P ∩ U) · ψ(P ∩ V )) − E(φ(P ∩ U))E(ψ(P ∩ V )) → 0

as distance(U, V ) → ∞,

where φ,ψ are two functions of the configuration of points.
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� (Usual) mixing of a point process roughly says that configurations of
points in distant regions U, V are asymptotically independent

E(φ(P ∩ U) · ψ(P ∩ V )) − E(φ(P ∩ U))E(ψ(P ∩ V )) → 0

as distance(U, V ) → ∞,

where φ,ψ are two functions of the configuration of points.

Mixing implies ergodicity, hence LLN for sums without boundary effects
S̃n =

∑
Xi∈Pn

ξ(Xi,P).
Too weak for LLN with boundary effects and CLT.



Stronger mixing properties
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� alpha-mixing Total variation convergence of (φ(P ∩ U), ψ(P ∩ V )) to
the independence. Still not enough for CLT.

� Brillinger mixing Reduced cumulant (singed) measures having finite total
variation. Directly usable in proofs of CLT for point counts. More difficult
to verify for examples of point processes.

� mixing of correlation functions — our approach.



Correlation functions
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Consider simple point process P (no multiple points) on R
d;

k-point correlation function ρ(k)(x1, ..., xk) of P. Informally

P (P(dx1) ≥ 1, . . . ,P(dxk) ≥ 1 ) = ρ(k)(x1, ..., xk)dx1 . . . dxk.



Correlation functions

24 / 77

Consider simple point process P (no multiple points) on R
d;

k-point correlation function ρ(k)(x1, ..., xk) of P. Informally

P (P(dx1) ≥ 1, . . . ,P(dxk) ≥ 1 ) = ρ(k)(x1, ..., xk)dx1 . . . dxk.

Formally ρ(k) is the density the corresponding factorial moment measure

α(k)(B1 × · · · ×Bk) = E
(∏

1≤i≤k P(Bi)
)
=

∫
B1×···×Bk

ρ(k)(x1, ..., xk) dx1 . . . dxk, where B1, ..., Bk are mutually

disjoint bounded Borel sets in R
d.

{ρ(k), k ≥ 1} characterize the distribution of simple point process having
finite some exponential moments.



ω-mixing of correlation functions
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Definition. The correlation functions are ω-mixing, with function
ω = ω(k, s) of k = 1, 2, . . ., s ≥ 0 if for all p, q ≥ 1

|ρ(p+q)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)|

≤ ω(p+ q, s),

where s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) separation distance
between {x1, . . . , xp} and {xp+1, . . . , xp+q}.
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Definition. The correlation functions are ω-mixing, with function
ω = ω(k, s) of k = 1, 2, . . ., s ≥ 0 if for all p, q ≥ 1

|ρ(p+q)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)|

≤ ω(p+ q, s),

where s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) separation distance
between {x1, . . . , xp} and {xp+1, . . . , xp+q}.

We assume ω(k, s) ց 0 when s → ∞ meaning

correlation functions asymptotically factorize (some physicists say “cluster”)
for large separation distance indicating asymptotic independence of P.



Relations to other mixing properties
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Depend on the function ω. For example:

�
∑

k

ǫk

k!
ω(k, s) < ∞ for some ǫ > 0 and → 0 as s → ∞ implies

α-mixing.
� ω(k, s) = Cke

−s (called fast decay of correlations) implies Brillinger
mixing.



Relations to other mixing properties
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Some Examples of point processes having fast decay of correlations:

� determinantal and permanental processes with fast decaying kernel
K(x, y) ≤ Ce−c|x−y|, for C < ∞, c > 0.

� α-permanental and determinantal processes with with fast decaying
kernel.

� Zero set of Gaussian entire function,
� some Gibbs point processes,
� processes with finite range dependence (e.g. Matern hard core).



Stabilizing score functions revisited
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Definition. The score function ξ is exponentially stabilizing on correlated
input P if

sup
1≤n≤∞

sup
x1,...,xl∈Wn

Px1,...,xl

(
Rξ(x1,Pn) > t

) ≤ Ce−clt

for some constants C < ∞, cl > 0 and all t ≥ 0,
where Px1,...,xl are Palm probabilities of P; play the role of conditional
probabilities given P has atoms at x1, . . . , xl.



Moment conditions revisited
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Definition. Given p ∈ [1,∞), say that the pair (ξ,P) satisfies the
p-moment condition if

sup
1≤n≤∞

sup
1≤p′≤⌊p⌋

sup
x1,...,xp′∈Wn

Ex1,...,xp′
max{|ξ(x1,Pn)|, 1}p ≤ Mp < ∞

for some constant Mp := Mξ
p , where Ex1,...,xp′

are Palm expectations.



Measure valued sums
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Charge points of Pn = P ∩Wn in Wn = [0, n1/d]d, by the values of their
score functions, contract the space by n−1/d as n → ∞ to obtain weighted
(signed) point measure on W1 = [0, 1]d

µξ
n :=

∑

x∈Pn

ξ(x,Pn)δn−1/dx.
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Charge points of Pn = P ∩Wn in Wn = [0, n1/d]d, by the values of their
score functions, contract the space by n−1/d as n → ∞ to obtain weighted
(signed) point measure on W1 = [0, 1]d

µξ
n :=

∑

x∈Pn

ξ(x,Pn)δn−1/dx.

Total mass is the previously considered sum

µξ
n(R

d) = µξ
n(Wn) = Sn .

Integrals of test functions f are denoted by

µξ
n(f) =

∫

W1

f(x)µξ
n(dx).



Main result
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Theorem [BB, Yogeshwaran, Yukich (2018+)]

Assume ξ is exponentially stabilizing on point process P, with intensity λ,
having fast decay of correlations.

� (Mean) If (ξ,P) satisfies p-moment condition for some p > 1 then for
all bounded functions f on W1 = [0, 1]d

∣∣∣∣∣
E
(
µξ
n(f)

)

n
− λE0

(
ξ(0,P)

) ∫

W1

f(x) dx

∣∣∣∣∣ = O(n−1/d).



Main result cnt’d
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� (Covariance) If (ξ,P) satisfies p-moment condition for some p > 2 then
for all bounded functions f, g on W1 = [0, 1]d

lim
n→∞

Cov
(
µξ
n(f)µ

ξ
n(g)

)

n
= σ2(ξ)

∫

W1

f(x)g(x) dx ∈ [0,∞),

where

σ2(ξ) = λE0

(
ξ2(0,P ∪ {0}))

+ λ2

∫

Rd

E0,x

(
ξ(0,P ∪ {0, x})ξ(x,P ∪ {0, x})

)

−
(
E0

(
ξ(0,P ∪ {0})

)2
dx .

...



Main result cnt’d
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� (Mean) & (Variance) imply the weak LLN for µξ
n(f).

� CLT for µξ
n(f) holds for some natural “admissible” subclass of stabilizing

score functions on input processes with fast decay of correlations, provided
σ2(ξ) > 0.

� Multivariate CLT holds for
(
µξ
n(f1), . . . , µ

ξ
n(fk)

)
by the Cramér-Wold

device.
� Extensions for surface and smaller-order variance scaling (when

σ2(ξ) = 0, which is the case for some “very regular” (called
hyperuniform) processes as some determinantal point processes having
projection kernel (e.g. Ginibre).



Previous results
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Presented approach extends some previous CLT results for point counts
(constant marking function) of correlated point processes

� determinantal processes Soshnikov (2002)
� determinantal and permanental processes Shirai & Takahashi (2003),
� Gaussian entire functions Nazarov & Sodin (2012)



Main steps of the proof

35 / 77

We use the method of cumulants with the following intermediate steps:

� Fast decay of correlations of P = Φ and exponential stabilization of ξ on
P implies fast decay of correlations of the weighted point measure Φ̃;
result of an independent interest. Proof based on factorial moment
expansions for point processes BB (1995).
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� Fast decay of correlations of Φ̃ implies Brillinger mixing of Φ̃; proof
inspired by Nazarov & Sodin (2012) considering point counts.
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We use the method of cumulants with the following intermediate steps:

� Fast decay of correlations of P = Φ and exponential stabilization of ξ on
P implies fast decay of correlations of the weighted point measure Φ̃;
result of an independent interest. Proof based on factorial moment
expansions for point processes BB (1995).

� Fast decay of correlations of Φ̃ implies Brillinger mixing of Φ̃; proof
inspired by Nazarov & Sodin (2012) considering point counts.

� Brillinger mixing with enough fast increase of variance implies vanishing of
cumulants order k ≥ 3, of

µ(ξ)
n (f) − E[µ(ξ)

n (f)]

(Var
(
µ
(ξ)
n (f)

)
)1/2

implying normal convergence (a classical result of Marcinkiewicz).



More details: fast decay of correlations with marks
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Correlation functions of the weighted point measure Φ̃: for p ≥ 1,
k1, . . . , kp ≥ 1,

m(k1,...,kp)(x1, . . . , xp) := Ex1,...,xp(ξ(x1,P)k1 . . . ξ(xp,P)kp)

×ρ(p)(x1, . . . , xp).
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Correlation functions of the weighted point measure Φ̃: for p ≥ 1,
k1, . . . , kp ≥ 1,

m(k1,...,kp)(x1, . . . , xp) := Ex1,...,xp(ξ(x1,P)k1 . . . ξ(xp,P)kp)

×ρ(p)(x1, . . . , xp).
Fast decay of correlations if
m(k1,...,kp+q)(x1, . . . , xp+q)

≈ m(k1,...,kp)(x1, . . . , xp) ×m(kp+1,...,kp+q)(xp+1, . . . , xp+q)
up to an additive error exponentially decaying in the separation distance of
the two groups of arguments {x1, . . . , xp} and {xp+1, . . . , xp+q}.
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Correlation functions of the weighted point measure Φ̃: for p ≥ 1,
k1, . . . , kp ≥ 1,

m(k1,...,kp)(x1, . . . , xp) := Ex1,...,xp(ξ(x1,P)k1 . . . ξ(xp,P)kp)

×ρ(p)(x1, . . . , xp).
Fast decay of correlations if
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≈ m(k1,...,kp)(x1, . . . , xp) ×m(kp+1,...,kp+q)(xp+1, . . . , xp+q)
up to an additive error exponentially decaying in the separation distance of
the two groups of arguments {x1, . . . , xp} and {xp+1, . . . , xp+q}.

Fact: Fast decay of correlations of the input process P = Φ̃ and exponential
stabilizing of the score function implies fast decay of correlations of the
weighted point measure Φ̃.
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Correlation functions of the weighted point measure Φ̃: for p ≥ 1,
k1, . . . , kp ≥ 1,

m(k1,...,kp)(x1, . . . , xp) := Ex1,...,xp(ξ(x1,P)k1 . . . ξ(xp,P)kp)

×ρ(p)(x1, . . . , xp).
Fast decay of correlations if
m(k1,...,kp+q)(x1, . . . , xp+q)

≈ m(k1,...,kp)(x1, . . . , xp) ×m(kp+1,...,kp+q)(xp+1, . . . , xp+q)
up to an additive error exponentially decaying in the separation distance of
the two groups of arguments {x1, . . . , xp} and {xp+1, . . . , xp+q}.

Fact: Fast decay of correlations of the input process P = Φ̃ and exponential
stabilizing of the score function implies fast decay of correlations of the
weighted point measure Φ̃.

Proof using factorial moment expansion (an ersatz of the chaos expansion for
non-Poisson inputs) of m(k1,...,kp+q) with respect to factorial moments of Φ.
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Fast decay of correlations of Φ is equivalent to the the Ursell functions
m⊤(x1, . . . , xp) (densities of cumulant measures) being absolutely bounded
by some function φ⊤(·) exponentially decaying in the arguments diameter

|m⊤(x1, . . . , xk)| ≤ C⊤
k φ⊤

(
c⊤k diam(x1, . . . , xk)

)
.
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Fast decay of correlations of Φ is equivalent to the the Ursell functions
m⊤(x1, . . . , xp) (densities of cumulant measures) being absolutely bounded
by some function φ⊤(·) exponentially decaying in the arguments diameter

|m⊤(x1, . . . , xk)| ≤ C⊤
k φ⊤

(
c⊤k diam(x1, . . . , xk)

)
.

This imples Brillinger mixing
supx1∈Rd

∫
(Rd)k−1 |m⊤(x1, . . . , xk)| dx2 · · · dxk < ∞.

Similarly for the weighted point measure Φ̃.
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Brillinger mixing of Φ̃ implies all cumulants of µ(ξ)
n (f) of order k ≥ 1 grow

as n (window volume).
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Brillinger mixing of Φ̃ implies all cumulants of µ(ξ)
n (f) of order k ≥ 1 grow

as n (window volume).

Consequently, the kth cumulant of
µ(ξ)
n (f) − E[µ(ξ)

n (f)]

(Var
(
µ
(ξ)
n (f)

)
)1/2

when n → ∞ behaves as n

(Var
(
µ
(ξ)
n (f)

)
)k/2

.

Hence, for k ≥ 3 and large enough these cumulants tend to 0 with n → ∞ ,
provided the variance grows as nδ, with some δ > 0.
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On scattering moments of geometrically
marked point processes

based on a joint work (in progress) with
Antoine Brochard [PhD student PSL/ENS and Huawei, Paris]
Stephane Mallat [College de France and ENS Paris]
Sixin Zhang [Peking University]
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We know Fourier and Laplace transforms, moments, factorial moments, ... of
random measures and point processes.

This talk is about scattering moments — a new class of operators, which in
some sense (mostly to be yet explored) capture distribution, but also
individual realizations of point patterns, proposed recently by Stephane Mallat
(see Mallat (2012)) for signal (image) analysis.

This is a discrete family of nonlinear and noncommuting operators, computing
at different scales the modulus of a wavelet transform of a one- or
higher-dimensional signal (e.g. image).

They are Lipschitz-continuous with respect smooth signal diffeomorphisms
and this makes them useful in signal processing, in particular in relation to
statistical learning, as they allow one to learn intrinsic properties of some class
of signals from a smaller number of signal samples.



Wavelet
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Following Bruna, Mallat, Bacry, Muzy (2015),
let ψ be a continuous, bounded, complex valued function on R

d of zero
average

∫
Rd ψ(x) dx = 0

and such that |ψ(x)| = O(|x|−d) for |x| → ∞.

Usually ψ is normalized so that
∫
Rd |ψ(x)| dx = 1.

We call ψ (d-dimensional) mother wavelet.
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Morlet wavelet on the plane

ψ(x) = exp(i ω ·x) exp(−|x|2/2),

where i is the imaginary unit and ω ·x is the scalar product of some nonzero
vector parameter ω ∈ R

2, called spatial frequency, with x ∈ R
2.
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Scaling and rotating the mother wavelet
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Consider a discrete family of re-scaled and rotated wavelets

ψ(j,θ) = ψ(j,θ)(x) := 2−jdψ(2−jr−θx),

with the scale parameter j ∈ Z = { . . . ,−1, 0, 1, . . . } and the rotation
parameter θ ∈ [0, 2π); (rθx denotes the rotation of x ∈ R

2 by the angle θ
with respect to the origin).
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In general, signal is modeled as a (random, possibly signed) measure
Λ = Λ(dx) on R

d.

Wavelet transform of (a realization of) Λ at scale 2j and angle θ, is a
(random) filed on R

d defined as a convolution of Λ with the wavelet ψ(j,θ):

(Λ ⋆ ψ(j,θ))(x) :=

∫

Rd

ψ(j,θ)(x− y) Λ(dy) .

Observe: The zero average property of the mother wavelet
∫
Rd ψ(x) dx = 0

implies that the wavelet transform Λ ⋆ ψ(j,θ)(x) at the scale j has larger
absolute values for x where the Λ is has more variability at this given scale. It
(almost) vanishes where Λ is (almost) uniform at this scale.



Wavelet transforms of purely atomic signals in R
d

46 / 77

In this talk we are interested in purely atomic signals, that is weighted point
processes

Λ = Φ̃ :=
∑

i

MiδXi,

where Φ =
∑

i δXi
is a simple, stationary point process in R

d and Mi are
marks of the points of Φ produced by a real valued, translation invariant
score (marking) function m:

Mi = m(Xi,Φ),

with m(x+ a, φ+ a) = m(x, φ) for all x, a ∈ R
d and signal φ ∋ x.



Wavelet transforms of purely atomic signals in R
d

46 / 77

In this talk we are interested in purely atomic signals, that is weighted point
processes

Λ = Φ̃ :=
∑

i

MiδXi,

where Φ =
∑

i δXi
is a simple, stationary point process in R

d and Mi are
marks of the points of Φ produced by a real valued, translation invariant
score (marking) function m:

Mi = m(Xi,Φ),

with m(x+ a, φ+ a) = m(x, φ) for all x, a ∈ R
d and signal φ ∋ x.

In this case the wavelet transforms are just shot-noise fields of Φ̃ with
wavelets as the response function

(Φ̃ ⋆ ψ(j,θ))(x) =
∑

i

Miψ(j,θ)(x− xi).
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Define the scattering fields as the modulus of the (complex valued) wavelet
transforms

Sj,θΦ̃ := |Φ̃ ⋆ ψ(j,θ)(x)| =
∣∣∣∣∣
∑

i

Miψ(j,θ)(x− xi)
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Define the scattering fields as the modulus of the (complex valued) wavelet
transforms

Sj,θΦ̃ := |Φ̃ ⋆ ψ(j,θ)(x)| =
∣∣∣∣∣
∑

i

Miψ(j,θ)(x− xi)

∣∣∣∣∣ .

Define the scattering moments of the (stationary) signal Φ̃ as the expected
values of these new fields (without loss of generality) calculated at the origin
0 ∈ R

d

S̄Φ̃(j, θ) := E[Sj,θΦ̃(0)] j ∈ Z, θ ∈ [0, 2π).

If Φ̃ is isotropic S̄Φ̃(j, θ) = S̄Φ̃(j) do not depend on θ.

Second order scattering moments are defined by considering the first scattering field Sj,θΦ̃
as the signal density

S̄Φ̃(j1, θ1, j2, θ2) := E[||Φ̃ ⋆ ψ(j1,θ1)| ⋆ ψ(j2,θ2)(0))|].
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� The non-linearity produced by the modulus | · | in

E
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∑

iMiψj(0−Xi)
∣∣∣
]

makes the scattering moments (a priori) depend

on all correlation functions of Φ̃, (which would not be the case if the
square | · |2 of the norm is taken).
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� The non-linearity produced by the modulus | · | in

E
[∣∣∣
∑

iMiψj(0−Xi)
∣∣∣
]

makes the scattering moments (a priori) depend

on all correlation functions of Φ̃, (which would not be the case if the
square | · |2 of the norm is taken).

� To what extend the scattering moments characterize the correlation
functions of Φ̃ (and its distribution)? We do not know.

� We study their asymptotic when j → −∞ and j → ∞ (at small and
large scales). This is inspired by results for non-marked, 1D-Poisson
process obtained in Bruna, Mallat, Bacry, Muzy (2015).
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Empirical scattering moments are calculated when replacing the expectations
E[· · · ] by the empirical averaging over x in a given observation window W

ŜΦ̃(j, θ) :=
1

|W |

∫

W
Sj,θΦ̃(x) dx j ∈ Z, θ ∈ [0, 2π).
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Empirical scattering moments are calculated when replacing the expectations
E[· · · ] by the empirical averaging over x in a given observation window W

ŜΦ̃(j, θ) :=
1

|W |

∫

W
Sj,θΦ̃(x) dx j ∈ Z, θ ∈ [0, 2π).

� When the scale j is small with respect to the window W the empirical
scattering moments are good estimators of the theoretical ones, hence
they are invariant with respect to realizations of Φ̃ (rather characterize
the distribution of Φ̃).

� For larger scales the empirical scattering moments carry additional
information about the given realization. Lipschitz-continuous with respect
smooth signal diffeomorphisms, can be used to statistical learning and/or
classification of signal patterns.
Some application example will be given in the second part of this talk.



Outline of the remaining part
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� Limit results for scattering moments of weighted point processes,
� Statistical learning of score functions using scattering moments. (Briefly)
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Limit results for scattering moments
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� Φ =
∑

i δXi simple, stationary point process on R
d of intensity λ.

� Mi := m(Xi,Φ) ∈ R real marks defined by some translation-invariant
marking (score) function.

� Φ̃ =
∑

iMiδXi random, purely atomic, possible signed measure, where
marks are point weights.
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� Φ =
∑

i δXi simple, stationary point process on R
d of intensity λ.

� Mi := m(Xi,Φ) ∈ R real marks defined by some translation-invariant
marking (score) function.

� Φ̃ =
∑

iMiδXi random, purely atomic, possible signed measure, where
marks are point weights.

� ψ (mother wavelet) continuous, bounded, real (for simplicity of the
presentation) function on R

d, zero average
∫
Rd ψ(x) dx = 0, normalized

||ψ||1 =
∫
Rd |ψ(x)| dx = 1, with compact support supp(ψ) = B.

� ψj(x) := 2−jdψ(2−j(x) wavelet at scale j ∈ { . . . ,−1, 0, 1, . . . }.
For simplicity no rotation considered, irrelevant if Φ is isotropic.

� Sj(x) := SjΦ̃(x) =
∣∣∣
∑

iMiψj(x−Xi)
∣∣∣ scattering filed of Φ̃ at

scale j; stationary random field on R
d.

� S̄(j) := S̄Φ̃(j) = E[Sj(0)] scattering moment at scale j ∈ Z.



Small scale limit
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Theorem. Assume the second order correlation function ρ2(x, y) of Φ exists
and denote by κ(·) the reduced second order correlation (i.e.,
ρ2(x, y) = λκ(x− y)). Assume

∫
B |E0,u(m(0,Φ))κ(u)|du < ∞,

where E0,u is two-point Palm expectation of Φ. Then, as j → −∞

S̄(j) = λE0[m(0,Φ)] + O(2jd
∫

B
E0,2ju[m(0,Φ)]κ(2ju)du).

The scattering moments at small scales converge to the intensity
λE0[m(0,Φ)] of the random measure Φ̃. The speed of convergence depends
on the reduced second order correlation (more repulsion faster convergence).



Small scale limit — proof idea
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At small scales the wavelet functions “see” the points separately and hence

E
[∣∣∣
∑

i

Miψj(0 −Xi)
∣∣∣
]
≈ E

[∑

i

∣∣∣Miψj(0 −Xi)
∣∣∣
]
. (*)
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At small scales the wavelet functions “see” the points separately and hence

E
[∣∣∣
∑

i

Miψj(0 −Xi)
∣∣∣
]
≈ E

[∑

i

∣∣∣Miψj(0 −Xi)
∣∣∣
]
. (*)

Use Campbell’s formula to calculate the expression in the right-hand-side
of (*).

Remark: Factorial moment expansion can give higher order approximations in
(*). TODO



Large scale limit
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Denote Yj :=
∑

x∈Φ ψ(2
−jx)m(x,Φ). Recall S̄(j) = 2−jdE[|Yj|].)

Theorem Assume Yj satisfy the CLT as j → ∞ and some moment
conditions usually required for the CLT. Then

lim
j→∞

S̄(j)

2−jd
√

Var(Yj)
= E[|N (0, 1)|] =

√
2/π.

The scattering moments at large scale reveal the variance asymptotic of Yj .
It is related but in general not the same as the asymptotic of the variance of
the total mass of Φ̃. To be explained.
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The CLT for Yj :=
∑

x∈Φ ψ(2
−jx)m(x,Φ) can be established for a large

class of score functions and point processes including Poisson one. (There
exists a reach literature, e.g. BB, Yogeshwaran, Yukich (2019) concerning
point processes with fast decay of correlations.)
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The CLT for Yj :=
∑

x∈Φ ψ(2
−jx)m(x,Φ) can be established for a large

class of score functions and point processes including Poisson one. (There
exists a reach literature, e.g. BB, Yogeshwaran, Yukich (2019) concerning
point processes with fast decay of correlations.)

By the CLT, with E[Yj] = 0 (since the wavelet function is centered), and by
the continuity of | · | we have

|Yj|√
Var(Yj)

d−−−→
j→∞

|N (0, 1)|.

Under some suitable moment assumption the convergence holds also in L1.

Hence
E[|Yj|]√
Var(Yj)

→j→∞ E[|N (0, 1)|] =
√

2/π.
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Suppose the power spectral measure (Bartlett spectrum) of the random
measure Φ̃ admits density µΦ̃(ν) (sometimes called “structure” or

“scattering” function). Denote by ψ̂ the Fourier transform of the wavelet
function ψ. Then

Var(Yj) = Var
(∫

Rd

ψ(2−jx) Φ̃(dx)
)

= 2jd
∫

Rd

|ψ̂(ν)|2µΦ̃(2
−jν) dν (*)

(as j → ∞) ∼ 2jd (volume scaling)

provided 0 < µΦ̃(0) < ∞ ⇐⇒ volume scaling of the variance of Φ̃.
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Suppose the power spectral measure (Bartlett spectrum) of the random
measure Φ̃ admits density µΦ̃(ν) (sometimes called “structure” or

“scattering” function). Denote by ψ̂ the Fourier transform of the wavelet
function ψ. Then

Var(Yj) = Var
(∫

Rd

ψ(2−jx) Φ̃(dx)
)

= 2jd
∫

Rd

|ψ̂(ν)|2µΦ̃(2
−jν) dν (*)

(as j → ∞) ∼ 2jd (volume scaling)

provided 0 < µΦ̃(0) < ∞ ⇐⇒ volume scaling of the variance of Φ̃.

When µΦ̃(0) = 0 (hyperuniformity) or µΦ̃(0) = ∞ (hyperfluctuation of Φ̃)
the expression in (*) has, respectively, sub-volume or super-volume scaling,
but the volume exponents are in general different from these regarding the
total mass of Φ̃.



Large scale limit, volume order variance scaling
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Proposition: When Φ̃ exhibits volume order variance scaling (e.g. Poisson
case) then Var(Yj) ∼ 2jd and

lim
j→∞

2jd/2S̄j =
√
2/π||ψ||22

√
σ2,

where σ2 = λE0[m2(0,Φ)] +∫
Rd E

0,x[m(0,Φ)m(x,Φ)]λκ(x) − (λE0[m(0,Φ)])2dx.



Large scale limit — variance scaling classification
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When j → ∞
� log S̄j ∼ −jd/2 indicates Poisson-like variance asymptotic,

� log S̄j . −jd/2 indicates hyperuniformity (e.g. Ginibre),

� log S̄j & −jd/2 indicates hyperfluctuation (e.g. Poisson line
intersections).



Examples; d = 2: volume order variance scaling
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lo
g
2
S̄
j

j − jmin

Poi. — Poisson process, DPP — Gaussian determinantal process,
MCP — Matérn cluster process; all non-marked (m(x, φ) = 1).
Note log2(S̄jmin

) = log2(λ); e.g. log2(512) = 9, etc.

For large j, log2(S̄j) ∼ −j2
2

= −j.
Error bars — 95% confidence intervals calculated on 500 realizations.



Examples: hyperuniformity and hyperfluctuation
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lo
g
2
S̄
j

j − jmin

Poi. — Poisson process, log2(S̄j) ∼j→∞ −j,
Cross. — Poisson line crossing, log2(S̄j) ∼j→∞> −j (hyperfluct.),
Ginibre — determinantal process; log2(Ŝj) ∼j→∞< −j (hyperunif.).



Example: Voronoi-surface marking of Poisson points
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lo
g
2
S̄
j

j − jmin

Poi. — Poisson process, log2(S̄j) ∼j→∞ −j,
Vor. — Voronoi-surface marking of Poisson, log2(S̄j) ∼j→∞< −j.



Example: stable maching of Poisson to 2D lattice
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lo
g
2
S̄
j

j − jmin

log2(S̄j) ∼j→∞< −j
Hyperuniform (dependent) thinning of Poisson of intensity λ > 1 obtained as
its stable maching to the square lattice of intensity 1 on 2D; see Klatt, Last,
Yogeshwaran (2018).
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Statistical learning of geometric marks



Problem of learning of geometric marks
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Suppose the marking function m is not known explicitly.

One observes only some realizations of the marked point process Φ̃ with
points restricted to some finite observation window W . Denote these
realizations by φ̃k =

∑
i δ(xi(k),mi(k)), with xi(k) ∈ W , k = 1, . . ..

The problem consists in learning the function m so as to be able to calculate
approximations of the unobserved marks mi = m(xi, φ) for a new
realization φ =

∑
i δxi of (only points) of the point process Φ.



Learning and reconstructing in a nut-shell
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Learning and reconstructing marks with scattering transforms
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Recall the problem: the marks mi = m(xi, φ) of the observed marked point
patterns φ̃ =

∑
i δxi,mi are produced by unknown function m = m(x, φ),

which one wants to learn from data.



Learning and reconstructing marks with scattering transforms
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Recall the problem: the marks mi = m(xi, φ) of the observed marked point
patterns φ̃ =

∑
i δxi,mi are produced by unknown function m = m(x, φ),

which one wants to learn from data.

� Learning: Capture the relation between the marks and the points through
the relation between the vector of the (say first order) empirical scattering
moments Ŝφ̃ := (Ŝφ̃(j, θ) : j, θ) of the marked point patterns φ̃ and
the vector of (say first- and second-order) empirical moments
Ŝ2φ := (Ŝφ(j1, θ1, j2, θ2) : j1, θ1, j2, θ2) of the non-marked one φ.
This relation can be established established using some regression model
(e.g., linear ridge regression) on the training data set, where points and
marks are observed.
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Recall the problem: the marks mi = m(xi, φ) of the observed marked point
patterns φ̃ =

∑
i δxi,mi are produced by unknown function m = m(x, φ),

which one wants to learn from data.

� Learning: Capture the relation between the marks and the points through
the relation between the vector of the (say first order) empirical scattering
moments Ŝφ̃ := (Ŝφ̃(j, θ) : j, θ) of the marked point patterns φ̃ and
the vector of (say first- and second-order) empirical moments
Ŝ2φ := (Ŝφ(j1, θ1, j2, θ2) : j1, θ1, j2, θ2) of the non-marked one φ.
This relation can be established established using some regression model
(e.g., linear ridge regression) on the training data set, where points and
marks are observed.

� Reconstructing: Estimate marks mi = m(xi, φ) of a new configuration,
where only points are observed, (numerically) solving an inverse problem,
where marks are reconstructed from the estimated (regressed) scattering
moments.



Linear regression — brief reminder of a well known statistical
approach
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Let Xk := Ŝ2φk and Yk := Ŝφ̃k, k = 1, . . . , n, be the scattering
transforms of n realizations of marked point patterns φ̃k. (In Xk only points
are considered, while in Yk points with marks).

One is looking for a common, linear relation between Xk and Yk for all
samples k, represented by some matrix B and vector β0 such that

BXk + β0 ≈ Yk for all k = 1, . . . , n. (1)



Linear ridge regression — brief reminder
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Denote by β(p) the p th line of the matrix B in (1). For p = (j, θ) it
corresponds to the scattering moment in Yk at scale 2j and angle θ.
Similarly, let β0(p) be the p th component for the vector β0. Let
Yk(p) := Sφ̃k(p) be the p = (j, θ)-component of Sk. The linear ridge
model consists in minimizing the regularized sum of the squared residuals

n∑

k=1

[β(p)Xk + β0(p) − Yk(p)]
2 + λ(p)||β(p)||2 ,

for some (Tikhonov) regularization parameters λ(p) ≥ 0 (usually needed in
high dimensional regression problems). These parameters are chosen (by the
cross-validation) to minimize this squared residuals on the validation set, a
subset of the training set. where ||·|| is the Euclidean norm.



Solution of the linear ridge regression — brief reminder
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The linear ridge regression problem admits explicit solution

[β̂0(p), β̂(p)]
⊤ := (X⊤X + λ(p)I)−1

X
⊤
Y(p), (2)

where X is the matrix with lines Xk appended with the first column of 1’s,
Y(p) is the column vector with elements Yk(p), k = 1, . . . , n, I is the
appropriate identity matrix and ⊤ stands for the matrix transpose.
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The linear ridge regression problem admits explicit solution

[β̂0(p), β̂(p)]
⊤ := (X⊤X + λ(p)I)−1

X
⊤
Y(p), (2)

where X is the matrix with lines Xk appended with the first column of 1’s,
Y(p) is the column vector with elements Yk(p), k = 1, . . . , n, I is the
appropriate identity matrix and ⊤ stands for the matrix transpose.

Using (2) one can calculate estimates ˆ̂Sφ̃ of the empirical, (marked)
scattering moments of a new configuration φ̃ =

∑
i δ(xi) for which only

points are given, by using its empirical, non-marked scattering moments Ŝ2φ

ˆ̂Sφ̃(p) := β̂(p) Ŝ2φ+ β̂0(p)
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The linear ridge regression problem admits explicit solution

[β̂0(p), β̂(p)]
⊤ := (X⊤X + λ(p)I)−1

X
⊤
Y(p), (2)

where X is the matrix with lines Xk appended with the first column of 1’s,
Y(p) is the column vector with elements Yk(p), k = 1, . . . , n, I is the
appropriate identity matrix and ⊤ stands for the matrix transpose.

Using (2) one can calculate estimates ˆ̂Sφ̃ of the empirical, (marked)
scattering moments of a new configuration φ̃ =

∑
i δ(xi) for which only

points are given, by using its empirical, non-marked scattering moments Ŝ2φ

ˆ̂Sφ̃(p) := β̂(p) Ŝ2φ+ β̂0(p)

Remember, expression (2) requires tuning of the regularization parameters
λ(p) ≥ 0 usually needed in high dimensional regression problems when the
matrix X

⊤
X is not invertible.



Reconstruction — tricky optimization problem
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Knowing non-marked configuration φ =
∑

i δxi
and having calculated

approximations ˆ̂Sφ̃ of its marked scattering moments, we estimate unknown
marks mi = m(xi, φ) by looking for a solution to the following
minimization problem

arg min
φ̃′:φ′=φ

||Ŝφ̃′ − ˆ̂Sφ̃||2, (3)

where we minimize over all arbitrarily marked configurations φ̃′ sharing the
points with given φ (hence over unknown marks) and Ŝφ̃′ denotes the
scattering moment calculated for φ̃′. It should be noted that (3) is a non
convex optimization problem. To solve it we use L-BFGS-B algorithm, see
Byrd, Lu, Nocedal (1995). This is a steepest descent algorithm for which it is
important to optimize (via cross-validation) the number of iterations.



Examples of geometric marks
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Consider φ̃ =
∑

i δ(xi,mi) with points on the plane R
2 and the following

marks

� Voronoi cell surface:
mi = |Ai| := |{y ∈ R

2 : |y − xi| ≤ minxj∈φ |y − xj|}|.
� Shot-noise: mi = Si :=

∑
i 1(xi 6= xj)ℓ(|xj − xi|) with the response

function ℓ(r) = rβ for some β > 2.
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Consider φ̃ =
∑

i δ(xi,mi) with points on the plane R
2 and the following

marks

� Voronoi cell surface:
mi = |Ai| := |{y ∈ R

2 : |y − xi| ≤ minxj∈φ |y − xj|}|.
� Shot-noise: mi = Si :=

∑
i 1(xi 6= xj)ℓ(|xj − xi|) with the response

function ℓ(r) = rβ for some β > 2.

In what follows we illustrate of the quality of the procedure of learning and
prediction of these marks. The training data set — 10 000 Poisson point
patterns (about 30 points in each) for each model. Regression problem has
dimension 1401 −→ 57 (number of fist- and second-order scattering
moments calculated for non-marked point patterns, and 57 for marked
patterns. More details in Brochard, BB, Mallat, Zhang (2019).



Voronoi cell surface area reconstruction example
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Blue — exact, orange — reconstructed
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Voronoi cell surface area reconstruction example

73 / 77

Blue — exact, orange — reconstructed

1D lexicographic representation of points to see better
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Voronoi cell surface area Q-Q plots
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(a) (b) (c)

Reconstructed marks vs true values for all points of 100 test images.
Reconstruction from (a) estimated moments, (b) exact moments, (c)
benchmark based on distance matrix representation.



Shot-noise
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Q-Q plot: (a) estimated moments, (b) exact moments, (c) benchmark.



Conclusions
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� Scattering moments are nonlinear and noncommuting operators,
computing at different scales the modulus of a wavelet transform.

� At small scale their capture the intensity of point processes, at large scale
their variance scaling.

� Numerical evidences confirm that they can capture (in statistically
exploitable way) existing rigidity. For example, they allow one to estimate
values of marks given locations of points.

� More work required to understand better these, apparently statistically
useful, operators.
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