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wireless networks ⇐ SG

⇑

signal detection models

⇑

radio wave propagation models
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rec. power

emitter receiver

signal power
R

detailed Maxwell’s electromagnetic field equations — too complex and not needed

(D) Deterministic model: Prec. ≈ Pemitted · l(R) ,

(G) Stochastic (“far-field”) model: Prec. =
∑

i Pi
CLT
≈ Pemitted ·F ·l(R) ,

where l(R) ∼ R−β is deterministic attenuation function, F is random fading variable.

(M) Rayleigh fading: F is exponential (= Z 2
I + F 2

Q where ZI , ZQ i.i.d. N(0,1))
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signal detection models

usful signal

noise
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The principal (radio) channel characteristic:

SINR =
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NOISE POWER + OTHER RECEIVED SIGNAL POWER
︸ ︷︷ ︸

interference
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signal detection models

usful signal

noise
interference

The principal (radio) channel characteristic:

SINR =
POWER RECEIVED FROM GIVEN EMITTER

NOISE POWER + OTHER RECEIVED SIGNAL POWER
︸ ︷︷ ︸

interference

depends very much on the geometry of the location of nodes!

Non-outage: 1(SINR > Const) — existence of connection

Throughput: f (SINR) — # Bits/sec that can be send in the channel

with a given bit-error probability; f depends on coding: linear for sim-

ple schemes, f (x) ∼ log(1 + x) is max. theoretical bound (Shannon

theorem).
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types of wireless networks

Cellular networks (GSM, UMTS, WiFi): Infrastructure of base stations or access

points provided by an operator. Individual users talk to these stations and listen to

them.
regular irregular (mesh networks)
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Key issues concerning cellular networks:

• How do the cells really look like?

• How many users a given infrastructure can reliably serve?

• Users send (uplink) and receive (downlink).

• Channels carry voice (fixed-birtate traffic) and/or data (elastic traffic).

• Users arrive to the network, move and depart.

• Evaluate Quality-of-Service characteristics of a “typical user” (e.g. call blocking

probability).
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Ad-hoc networks (IEEE 802.11 in mode ad hoc): No fixed infrastructure (no base

stations, no access points, etc.)

optimal receiver

towards destination

receiver

emitter

Bartek Błaszczyszyn



Ad-hoc networks (IEEE 802.11 in mode ad hoc): No fixed infrastructure (no base

stations, no access points, etc.)

• A random set of users distributed

in space and sharing a common

Hertzian medium.

optimal receiver

towards destination

receiver

emitter

Bartek Błaszczyszyn

Ad-hoc networks (IEEE 802.11 in mode ad hoc): No fixed infrastructure (no base

stations, no access points, etc.)

• A random set of users distributed

in space and sharing a common

Hertzian medium.

• Users constitute ad-hoc network

that is in charge of transmitting

information far away via several

hops.

optimal receiver

towards destination

receiver

emitter

Bartek Błaszczyszyn

Ad-hoc networks (IEEE 802.11 in mode ad hoc): No fixed infrastructure (no base

stations, no access points, etc.)

• A random set of users distributed

in space and sharing a common

Hertzian medium.

• Users constitute ad-hoc network

that is in charge of transmitting

information far away via several

hops.

• Users switch between emitter and

receiver modes.

optimal receiver

towards destination

receiver

emitter
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Key issues concerning ad-hoc networks:

• Connectivity: Can every node be reached? No isolated (groups of) nodes?
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Key issues concerning ad-hoc networks:

• Connectivity: Can every node be reached? No isolated (groups of) nodes?

• Protocols for routing.

• Capacity: How much own traffic every node can send, given it has to relay traffic

of other nodes?
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Sensor networks: Variants of ad-hoc networks.

• Nodes monitor some space (mea-

suring temperature, detecting in-

truders, etc.)

• They send collected information in

an ad-hoc manner to some “sink”

locations.
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Sensor networks: Variants of ad-hoc networks.

• Nodes monitor some space (mea-

suring temperature, detecting in-

truders, etc.)

• They send collected information in

an ad-hoc manner to some “sink”

locations.

Issues: Coverage, connectivity, energy (battery) saving.
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STOCHASTIC GEOMETRY (SG)

an ancient theory and modern contexts

SG is now a reach branch of applied probability, which allows to study random

phenomena on the plane or in higher dimension; it is intrinsically related to the theory

of point processes.
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STOCHASTIC GEOMETRY (SG)

an ancient theory and modern contexts

SG is now a reach branch of applied probability, which allows to study random

phenomena on the plane or in higher dimension; it is intrinsically related to the theory

of point processes.

Initially its development was stimulated by applications to biology, astronomy and

material sciences. Nowadays, it is also used in image analysis and in the context of

communication networks.
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SG an ancient theory and modern contexts ...

a pioneer
We would like to stress the pioneering role of Edgar N. Gilbert in using SG for

modeling of communication networks.

Edgar N. Gilbert (1961) Random plane networks, SIAM-J

Edgar N. Gilbert (1962) Random subdivisions of space into crystals, Ann. Math. Stat.

Gilbert (1961) proposes continuum percolation

model (percolation of the Boolean model) to

analyze the connectivity of large wireless net-

works. Gilbert (1962) is on Poisson-Voronoi

tessellations.
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SG an ancient theory and modern contexts ...

followers

PHASE I — domination of the cable: The first papers following Gilbert’s ideas

appeared in the modern engineering literature shortly before year 2000 (before the

massive popularization of wireless communications) and were using mainly the

classic stochastic geometry models (as Voronoi tessellations or Boolean model)

trying to fit them to existing networks.
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SG an ancient theory and modern contexts ...

followers

PHASE I — domination of the cable: The first papers following Gilbert’s ideas

appeared in the modern engineering literature shortly before year 2000 (before the

massive popularization of wireless communications) and were using mainly the

classic stochastic geometry models (as Voronoi tessellations or Boolean model)

trying to fit them to existing networks.

PHASE II — wireless revolution: Nowadays, the number of papers using some form of

stochastic geometry is increasing very fast in conferences like Infocom or Mobicom,

where one of the most important observed trends is an attempt to better take into

accoun t in geometric models specifi c mechanisms of wireless

communications.
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classic SG models in wireless context

• (Spatial) Poisson point process,

• Voronoi tessellation,

• Boolean model,

• Shot-noise fields,

• Matérn hard-core model (a simple model for non-overlapping spheres). (not in

this talk)
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(Spatial) Poisson point process

Planar Poisson point process (p.p.) Φ of intensity λ:

• Number of Points Φ(B) of Φ in subset B of the plane is Poisson random variable

with parameter λ|B|, where | · | is the Lebesgue measure on the plane; i.e.,

P{Φ(B) = k } = e−λ|B| (λ|B|)k

k !
,

• Numbers of points of Φ in disjoint sets are independent.
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Planar Poisson point process (p.p.) Φ of intensity λ:

• Number of Points Φ(B) of Φ in subset B of the plane is Poisson random variable

with parameter λ|B|, where | · | is the Lebesgue measure on the plane; i.e.,

P{Φ(B) = k } = e−λ|B| (λ|B|)k

k !
,

• Numbers of points of Φ in disjoint sets are independent.

Laplace transform of the Poisson p.p.:

LΦ(h) = E[e
∫

h(x) Φ(dx)] = e−λ
∫

(1−eh(x)) dx ,

where h(·) is a real function on the plane and
∫

h(x) Φ(dx) =
∑

Xi∈Φ
h(Xi ).
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Poisson p.p. is a very basic model. Used to represent:

• the repartition of users in all kind of networks,

• locations of nodes in ad hoc, mesh and sensor networks,

• locations of base stations (access points) in irregular cellular network

architectures.
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Poisson p.p. is a very basic model. Used to represent:

• the repartition of users in all kind of networks,

• locations of nodes in ad hoc, mesh and sensor networks,

• locations of base stations (access points) in irregular cellular network

architectures.

:-) Very simple model, allows for explicit calculus

:-( (Homogeneous) Poisson assumption often too simplistic.

Need for models exhibiting more clustering, attraction, repulsion of points ⇒ Cox

models (doubly stochastic Poisson p.p’s), Gibbs p.p., Hard-core p.p. and others
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Voronoi Tessellation (VT)

Given a collection of points Φ = {Xi} on the plane and a given point x , we define the

Voronoi cell of this point Cx = Cx (Φ) as the subset of the plane of all locations that are

closer to x than to any point of Φ; i.e.,

Cx (Φ) = {y ∈ R
2 : |y − x| ≤ |y − Xi | ∀Xi ∈ Φ} .

Borders of Voronoi Cells
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Given a collection of points Φ = {Xi} on the plane and a given point x , we define the

Voronoi cell of this point Cx = Cx (Φ) as the subset of the plane of all locations that are

closer to x than to any point of Φ; i.e.,

Cx (Φ) = {y ∈ R
2 : |y − x| ≤ |y − Xi | ∀Xi ∈ Φ} .

When Φ = {Xi} is a Poisson p.p. we call

the (random) collection of cells {CXi (Φ)}

the Poisson-Voronoi tessellation (PVT).

Borders of Voronoi Cells

Bartek Błaszczyszyn

VT is a frequently used to model the cellular network architectures; points denote

locations of BS’s.

Bartek Błaszczyszyn

VT is a frequently used to model the cellular network architectures; points denote

locations of BS’s.

A dual model to Voronoi tessellation, the Delauney triangulation is used as a

(connected) graph of nearest neighbours (e.g. for routing purpose).

Bartek Błaszczyszyn



VT is a frequently used to model the cellular network architectures; points denote

locations of BS’s.

A dual model to Voronoi tessellation, the Delauney triangulation is used as a

(connected) graph of nearest neighbours (e.g. for routing purpose).

:-) VT takes into account distance to nearest BS’s (neighbourhood model)

Bartek Błaszczyszyn

VT is a frequently used to model the cellular network architectures; points denote

locations of BS’s.

A dual model to Voronoi tessellation, the Delauney triangulation is used as a

(connected) graph of nearest neighbours (e.g. for routing purpose).

:-) VT takes into account distance to nearest BS’s (neighbourhood model)

:-( ignores other physical aspects of the communication as path loss, interference.
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Boolean Model (BM)

Let Φ̃ = {(Xi , Gi )} be a marked Poisson p.p., where {Xi} are points and {Gi} are iid

random closed stets (grains). We define the Boolean Model (BM) as the union

Ξ =
⋃

i

Xi ⊕ Gi where x ⊕ G = {x + y : y ∈ G}.
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Boolean Model (BM)

Let Φ̃ = {(Xi , Gi )} be a marked Poisson p.p., where {Xi} are points and {Gi} are iid

random closed stets (grains). We define the Boolean Model (BM) as the union

Ξ =
⋃

i

Xi ⊕ Gi where x ⊕ G = {x + y : y ∈ G}.

Known:
• Poisson distribution of the

number of grains intersecting

any given set.

• Asymptotic results (λ → ∞)

for the probability of complete

covering of a given set.
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• BM is a generic wireless coverage model: points denote locations of BS’s and

grains denote (independent!) coverage regions.

• It can be used to address questions of connectivity in case of ad-hoc and mesh

networks; (see continuum percolation model, E. N. Gilbert (1961)).

Phase transition is interpreted as a passage from a disconnected network to a

connected one.
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• BM is a generic wireless coverage model: points denote locations of BS’s and

grains denote (independent!) coverage regions.

• It can be used to address questions of connectivity in case of ad-hoc and mesh

networks; (see continuum percolation model, E. N. Gilbert (1961)).

Phase transition is interpreted as a passage from a disconnected network to a

connected one.

:-) Simple model, allows for explicit calculus, can account for attenuation effect.

:-( Ignores interference effect (as coverage regions are independent).
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Shot-noise (SN) model

Let Φ̃ = {(Xi , Si )} be a marked p.p., where {Xi} are points and {Si} are some

random variables. Given a real response function L(·) of the distance on the plane we

define the Shot-Noise field

IΦ̃(y ) =
∑

i

SiL(y − Xi ) .
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Shot-noise (SN) model

Let Φ̃ = {(Xi , Si )} be a marked p.p., where {Xi} are points and {Si} are some

random variables. Given a real response function L(·) of the distance on the plane we

define the Shot-Noise field

IΦ̃(y ) =
∑

i

SiL(y − Xi ) .

When Φ̃ is a (say independently) marked Poisson p.p. then we call IΦ̃ the

Poisson SN.

Joint Laplace transform: For Poisson SN, the LT of the vector

(I
Φ̃

(y1), ... , I
Φ̃

(yn)) is known for any y1, ... , yn ∈ R
2 (via Laplace

transform of the Poisson p.p.).
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SN is an excellent model for a total received power in wireless networks:

• marks Si correspond to emitted powers,

• response function L(·) corresponds to attenuation function.

• Can be enriched to account for other wireless transmission aspects as

shadowing, fading, usage of directional antennas, etc.

Φ~ I

noise

usful signal
shot−noise
at the receiver

interference =

Bartek Błaszczyszyn

Extremal SN — a relative of (additive) SN

In the same mathematical scenario as for the SN, one defines extremal Shot-Noise

field as

JΦ̃(y ) = max
i

SiL(y − Xi ) .
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Extremal SN — a relative of (additive) SN

In the same mathematical scenario as for the SN, one defines extremal Shot-Noise

field as

JΦ̃(y ) = max
i

SiL(y − Xi ) .

Joint Probability Distribution Function: For the Poisson extremal

SN, the joint PDF of the vector (J
Φ̃

(y1), ... , J
Φ̃

(yn)) is known for any

y1, ... , yn ∈ R
2.

In fact PDF of the extremal SN can be expressed via Laplace transform of the

additive SN.

Extremal SN is a useful model when one wants to pick some particular, optimal in

some sense receiver; e.g. the strongest one, the nearest, with the best channel

statistics, etc.
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SINR COVERAGE MODEL
a coverage model with dependent grains

“in between” Voronoi and Boolean

• Definition,

• Snapshots,

• Outline of works and existing re-

sults,

• Zoom: typical cell coverage prob-

ability in M/M case.
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DEFINITION
of the SINR coverage model

Φ = {Xi , (Si , Ti )} marked point process (Poisson)

{Xi} points of the p.p. on R
2 — antenna locations,

(Si , Ti ) ∈ (R+)2 possibly random mark of point Xi — (power,threshold)

cell attached to point Xi : Ci (Φ, W ) =
{

y :
Si l(y − Xi )

W + κIΦ(y)
≥ Ti

}

where Iφ(y) =
∑

i 6=0 Si l(y − Xi ) shot noise process, κ interference

cancellation factor, W ≥ 0 external noise, l(·) response (attenuation) function.

Ci is the region where the SINR from Xi is bigger than the threshold Ti .
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DEFINITION
of the SINR coverage model

Φ = {Xi , (Si , Ti )} marked point process (Poisson)

{Xi} points of the p.p. on R
2 — antenna locations,

(Si , Ti ) ∈ (R+)2 possibly random mark of point Xi — (power,threshold)

cell attached to point Xi : Ci (Φ, W ) =
{

y :
Si l(y − Xi )

W + κIΦ(y)
≥ Ti

}

where Iφ(y) =
∑

i 6=0 Si l(y − Xi ) shot noise process, κ interference

cancellation factor, W ≥ 0 external noise, l(·) response (attenuation) function.

Ci is the region where the SINR from Xi is bigger than the threshold Ti .

Coverage PROCESS: Ξ(Φ; W ) =
⋃

i∈N

Ci (Φ, W ).
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SNAPSHOTS
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κ = 0.5 κ = 0.1 κ = 0.01 κ = 0
Constant emitted powers Si , T = 0.4 and

interference factor κ → 0.

Small interference factor allows one to approximate SINR cells by a Boolean model

(quantitative results via perturbation methods).
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Constant emitted powers Si , T = 0.4, W = 0, l(r ) = (Ar )−β and

attenuation exponent β → ∞.

SIR cells tend to Voronoi cells whenever attenuation is stronger, e.g. in urban areas.
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G/D model G/M model

Cells without and with point dependent fading.

Fading reflects variations in time and space of the channel quality about its average

state.
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Cells with macrodiversity K = 1 and the gain of the macrodiversity K = 2.

Macrodiversity K : possibility of being connected simultaneously to K stations and to

combine signals from them.
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OUTLINE OF WORKS AND EXISTING RESULTS

Baccelli & BB (2001), Adv. Appl. Probab.

• Existence conditions for the random closed set (local finiteness of the pattern),
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OUTLINE OF WORKS AND EXISTING RESULTS

Baccelli & BB (2001), Adv. Appl. Probab.

• Existence conditions for the random closed set (local finiteness of the pattern),

• Relation to classical models ( “in between” Boolean and Voronoi),

• maximal overlapping phenomena (maximal number of overlapping cells can be

controlled by the model parameters),

• typical cell characteristics (via Fourier transforms Rieman Boundary Problem and

via perturbations of the limiting BM),

• number of cells covering a point (via moment expansions , Little formula).
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Tournois (2002), INRIA report 4348,

• contact distribution functions (estimates via perfect simulation)
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Douse et al. (2003) IEEE/ACM Tran. Networking, (2006) Adv. Appl. Probab.

• connectivity — existence of the giant component (percolation)
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Striking fact: Increasing node density may disconnect the network!
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typical cell coverage probability in M/M case

Baccelli, BB, Muhlethaler (2006) IEEE Trans. Information Theory

Th. Assume Poisson repartition of nodes and that {Si} are exponential r.vs. with par.

µ, Ti = T are constant and denote LW the Laplace transform of W . Then the

probability for C0 to cover a given point located at the distance R is equal to

pR = exp
{

− 2πλ

∫ ∞

0

u

1 + l(R)/(Tl(u))
du

}

LW (µT/l(R)) .
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typical cell coverage probability in M/M case

Baccelli, BB, Muhlethaler (2006) IEEE Trans. Information Theory

Th. Assume Poisson repartition of nodes and that {Si} are exponential r.vs. with par.

µ, Ti = T are constant and denote LW the Laplace transform of W . Then the

probability for C0 to cover a given point located at the distance R is equal to

pR = exp
{

− 2πλ

∫ ∞

0

u

1 + l(R)/(Tl(u))
du

}

LW (µT/l(R)) .

proof: Say the emitter is at the origin and consider the corresp. Palm distribution P;

pR = P(S ≥ T (W + IΦ/l(R)))

=

∫ ∞

0

e−µsT/l(R) dP(W + IΦ ≤ s)

= LIΦ (µT/l(R))LW (µT/l(R)) ,

where LIΦ (·) is the Laplace transform of the value of the hom. Poisson SN IΦ.

Bartek Błaszczyszyn

Cor. For the attenuation function l(u) = (Au)−β and W = 0

pR(λ) = e−λR2T 2/βC ,

where C = C(β) =
(

2πΓ(2/β)Γ(1 − 2/β)
)

/β.
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SOME MORE (APPLIED) WORKS

using SG framework

• Wireless cellular networks: CDMA/HSDPA, power control, large multi-cell

networks, blocking/cuts in streaming traffic, throughput in data traffic; 7 papers,

incl. 4 INFOCOM; ⇒ reach industrial collaboration

currently with M.K. Karray
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using SG framework

• Wireless cellular networks: CDMA/HSDPA, power control, large multi-cell

networks, blocking/cuts in streaming traffic, throughput in data traffic; 7 papers,

incl. 4 INFOCOM; ⇒ reach industrial collaboration

currently with M.K. Karray

• Mobile ad hoc networks: MAC, routing, MAC/routing interplay, opportunistic

schemes, transport capacity; 5 papers, incl. IEEE IT ⇒ a highly cited result

with F. Baccelli and P. Mühlethaler

• Sensor networks: hybrid architectures, transport only sensors, reliable

transport; 2 papers, incl. 1 INFOCOM ⇒
with B. Radunovič

Cambridge lab
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Why SG?
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CONCLUSIONS & PERSPECTIVES

Why SG?

The geometry of the location of nodes plays a key role for wireless networks.

SG modeling of communication networks seems particularly relevant for large scale

network performance analysis.

We believe this methodology will play the same role as queuing theory in wireline

systems, where it was instrumental in designing the first multiprogramming computers

and the basic protocols used in computer networks and in particular in the Internet.
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Perspectives — beyond Poisson assumption

• Sometimes Cox point processes lead to (semi)-explicit analysis. Comparison of

Poisson and Cox scenario. Ross’s type conjectures in SINR context?

⇒ BB & Yogeshwaran D. (2008) Directionally convex ordering of random

measures, shot-noise fields and some applications to wireless communications,

in preparation.

Bartek Błaszczyszyn

Perspectives — beyond Poisson assumption

• Sometimes Cox point processes lead to (semi)-explicit analysis. Comparison of

Poisson and Cox scenario. Ross’s type conjectures in SINR context?

⇒ BB & Yogeshwaran D. (2008) Directionally convex ordering of random

measures, shot-noise fields and some applications to wireless communications,

in preparation.

• “Spatial birth-and death” dynamics often leads to Gibbs distributions in steady

state. In unbounded (space) domain and non-localized dependencies even

existence of the model in the steady state is a non-trivial problem.

⇒ An idea in: T. Schreiber & J. Yukich (2008) Stabilization and limit theorems for

geometric functionals of Gibbs point processes, preprint.
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