PENCIL: a Platform-Neutral Compute Intermediate Language for Accelerator Programming

Riyadh Baghdadi Ulysse Beaugnon
Albert Cohen Tobias Gasser
Michael Kruse Chandan Reddy
Sven Verdoolaege
INRIA
first.last@inria.fr

Javed Absar Sven Van Haastregt
Alexey Kravets Anton Lokhmotov
ARM
first.last@arm.com

Adam Betts Alastair F. Donaldson
Jeroen Ketema
Imperial College London
a.betts@imperial.ac.uk
alastair.donaldson@imperial.ac.uk
j.ketema@imperial.ac.uk

Robert David Elnar Hajiyev
RealEyes
robert.david@realeyesit.com elnar@realeyesit.com

Abstract
Programming accelerators such as GPUs with low-level APIs and languages such as OpenCL and CUDA is difficult, error prone, and not performance-portable. Automatic parallelization and domain specific languages (DSLs) have been proposed to hide this complexity and to regain some performance portability. We present PENCIL, a rigorously-defined subset of GNU C99 with specific programming rules and few extensions. Adherence to this subset and the use of these extensions enable compilers to exploit parallelism and to better optimize code when targeting accelerators. We intend PENCIL both as a portable implementation language to facilitate the acceleration of applications, and as a tractable target language for DSL compilers.

We validate the potential of PENCIL as a front-end to a state-of-the-art polyhedral compiler, extending the applicability of the compiler to dynamic, data dependent control flow and non-affine array accesses. To this end, we have the polyhedral compiler generate highly optimized OpenCL code for a set of standard benchmark suites (Rodinia and SHOC), image processing kernels, and DSL embedding scenarios for linear algebra (BLAS) and signal processing radar applications (SpearDE). To assess performance portability, we present experimental results on four GPU platforms: AMD Radeon HD 5670 and Radeon R9 285, Nvidia GTX470, and ARM Mali-T604 GPU.

1. Introduction
The use of special-purpose accelerators such as GPUs can be more appealing than the use of general-purpose processors due to their performance and energy efficiency. Software for such accelerators is currently written using low-level APIs, such as OpenCL [22] and CUDA [17]. These low-level programming models require a high level of expertise to work with, are laborious and error-prone, and do not offer performance portability: the performance of an accelerated application may vary dramatically across platforms. These factors mean that there is a high cost associated with developing software at this level.

A compelling alternative for developers is to work with higher-level programming languages, and to leverage compilation technology to automatically generate efficient low level code. For general-purpose languages in the C family, this approach is hindered by the difficulty of static analysis in the presence of pointer aliasing. The possibility of aliasing often forces a parallelizing compiler to assume that it is not safe to parallelize a region of source code, even though aliasing might not actually occur at runtime. Domain-specific languages (DSLs) can circumvent this problem: it is often clear how parallelism can be exploited given high-level knowledge about standard operations in a given domain, such as linear algebra [4], image processing [21] or partial differential equations. The drawback of the DSL approach is the significant effort required to lower code all the way from the DSL level to highly optimized OpenCL or CUDA. The effort involved is even more significant if optimization is required for multiple platforms.

We present the design and implementation of PENCIL, a platform-neutral compute intermediate language. PENCIL aims to serve both as a portable implementation language to facilitate the acceleration of new and legacy applications on modern accelerators, and as a tractable target language for DSL compilers.

PENCIL is a rigorously-defined subset of GNU C99, and enforces a set of coding rules principally related to restricting the manner in which pointers can be manipulated. These restrictions make PENCIL code “static analysis-friendly”: the rules are designed to enable a compiler to perform better optimization and parallelization when translating PENCIL to a lower-level formalism such as OpenCL. PENCIL is also equipped with specific language constructs, including assume predicates and side effect summaries for functions, that enable communication of domain-specific information to the PENCIL compiler, to be used for optimization.

Because it is based on C, the learning curve for PENCIL is gentle. By design, PENCIL interfaces with non-PENCIL C code, so that legacy C applications can be incrementally ported into PENCIL. From the point of view of DSL compilation, PENCIL offers a tractable target because all a DSL-to-PENCIL compiler must do is faithfully encode the semantics of the input DSL program into PENCIL: auto-parallelization and optimization for multiple accelerator targets is then taken care of by the downstream compiler. Because DSL-to-PENCIL compilers have tight control over the code they generate, such compilers can aid the effectiveness of the downstream PENCIL compiler by careful generation of code, and by
communicating domain-specific information via the language constructs PENCIL provides for this purpose.

We demonstrate the capabilities of PENCIL and its novel static analysis-friendly features in a state-of-the-art polyhedral compilation flow, extended with a PENCIL front-end and implementing advanced combinations of loop and data transfer optimizations. We illustrate this flow on irregular, data-dependent control and dataflow, generating efficient CUDA and OpenCL code on a variety of targets. This is the first time a fully automatic polyhedral compilation flow is capable of parallelizing a variety of real-world, non-static-control applications.

We evaluate PENCIL by considering hand-written benchmark suites and code generated by DSL-to-PENCIL compilers:

- an image processing benchmark suite containing seven kernels written in PENCIL and covering computationally intensive parts of a computer vision stack used by RealEyes, a leader in the automatic recognition of facial emotions and eye tracking\(^1\);
- six kernels generated using the VOBLA linear algebra DSL compiler [4];
- two signal processing radar applications generated from the SpearDE streaming DSL and modeling environment [14].

To assess performance portability, we present an experimental evaluation in which we target four GPU platforms: AMD Radeon HD 5670 and Radeon R9 285, Nvidia GTX470, and ARM Mali-T604. The performance gains compared to the implementation efforts for these applications and benchmarks are very encouraging. For example, for the VOBLA linear algebra DSL, we were able to generate code that has performance close to the cuBlas [18] and cIMath [10] BLAS linear algebra libraries [13]. For the RealEyes image processing benchmark, we were able to match and sometimes outperform the OpenCV image processing library [19].

In summary, our main contributions are:

- **PENCIL**, a platform-neutral compute intermediate language for direct accelerator programming and DSL compilation;
- a polyhedral compilation framework that leverages the features of PENCIL to handle applications that do not fit in the classical restrictions of the polyhedral model, including forms of dynamic, data-dependent control flow and array accesses;
- the evaluation of PENCIL on multiple GPUs and on several real-world, non-static-control applications that were previously out of scope for polyhedral compilation.

2. Overview of PENCIL

PENCIL is a subset of the C99 language carefully designed to capture static properties essential to the implementation of advanced loop nest transformations. It provides a set of language constructs that helps parallelizing compilers to perform more accurate static analyses and to generate efficient target-specific code. These specific constructs provide information that is difficult for a compiler to extract but that can be easily captured from a DSL, or expressed by an expert programmer. Our aim was for PENCIL to be a strict subset of C99. Where necessary, we have exploited the flexibility of GNU extensions to C99 such as type attributes, and pragmas when no alternative was available. The latter have been inspired by standard pragmas used as annotations for SIMDization and thread-level parallelism, but retain strictly sequential semantics in PENCIL.

PENCIL is not coupled to any particular parallelizing compiler or target language. However, we validated PENCIL using a polyhedral compilation toolchain targeting OpenCL, and will thus refer to (a generalized form of) polyhedral compilation generating OpenCL code when discussing the implementation of PENCIL.

2.1 Design Goals

We designed PENCIL with four main goals in mind:

Ease of analysis. The language should simplify static code analysis, to enable a high degree of optimization. The main impact of this is that the use of pointers is disallowed, except in specific cases.

Support for domain-specific information. PENCIL should provide facilities that allow a domain expert or a DSL-to-PENCIL compiler to convey, in PENCIL, domain-specific information that can be exploited by the PENCIL compiler during optimization. For example, PENCIL should allow the user to indicate bounds on array sizes, enabling placement of arrays in the shared memory of a GPU.

Portability. A standard non-parallelizing C99 compiler that supports GNU C attributes should be able to compile PENCIL. This ensures portability to platforms without OpenCL support and allows existing tools to be used for debugging (unparallelized) PENCIL code.

Sequential Semantics. We chose a sequential semantics for PENCIL in order to simplify DSL compiler development and the work of a domain expert directly developing in PENCIL, and more importantly, to avoid committing to any particular pattern(s) of parallelism.

The design of the extensions to C99 that are a part of PENCIL took place in two phases. First, numerous DSLs (and benchmarks) were analyzed, and based on this analysis, a list of the properties that are expressed in these DSLs was created. This list was then filtered and only a few properties were kept and became language constructs in PENCIL. The decision of which properties to include in PENCIL was guided by the principle that all domain-specific optimizations should be performed at the DSL compiler level, while the PENCIL compiler should be responsible only for parallelization, data locality optimization, loop nest transformations, and mapping to OpenCL. This separation means that, in PENCIL, only the properties that are necessary to improve static analysis and GPU mapping are needed. Any domain-specific property that is not necessary for the PENCIL compiler does not have to be conveyed through PENCIL and thus should not be a part of the PENCIL language. This choice has the advantage of keeping PENCIL general-purpose, sequential and lightweight.

![Diagram of PENCIL compilation flow](image.png)

Figure 1: A high-level overview of the PENCIL compilation flow

Figure 1 shows a high-level overview of a typical PENCIL usage scenario. First, a program written in a DSL is translated into PENCIL. Domain specific optimizations are applied during

\(^1\)http://www.realeyesit.com
this translation. Second, the generated-pencil code is combined with hand-written pencil code that implements library functions.
Pencil is used here as a standalone language. The combination of the two pieces of code is then optimized and parallelized (in this paper, we use a polyhedral framework for this purpose). Finally, highly specialized OpenCL code is generated. The generated code is tuned through profiling-based iterative compilation and auto-tuning.

2.2 Pencil Coding Rules

We detail the most important restrictions imposed by pencil from the point of view of enabling GPU-oriented compiler optimizations. The pencil specification [3] contains the rules in full.

Pointer restrictions. Pointer declarations and definitions are allowed in pencil, but pointer manipulation (including arithmetic) is not, except that C99 array references are allowed as arguments in function calls. Pointer dereferencing is also not allowed except for accessing C99 arrays. The restricted use of pointers is important for moving data between different address spaces of hardware accelerators, as it essentially eliminates aliasing problems.

No recursion. Recursive function calls are not allowed, because accelerator programming languages such as OpenCL forbid this.

Sized, non-overlapping arrays. Arrays must be declared using the C99 variable-length array syntax [12]; array function arguments must be declared using pencil_attributes, a macro expanding to the restrict and the const C99 type qualifiers and to the static C99 keyword. During optimization, the pencil compiler thus knows the length of arrays, and that arrays do not overlap.

Structured for loops. A pencil for loop must have a single iterator, an invariant start value, an invariant stop value and a constant increment (step). Invariant in this context means that the value does not change in the loop body. By precisely specifying the loop format we avoid the need for a sophisticated induction variable analysis. Such an analysis is not only complex to implement, but more importantly results in compiler analyses succeeding or failing under conditions unpredictable to the user.

An additional programming guideline (which is not mandatory as it cannot be statically checked in general) is that array accesses should not be linearized. Linearization tends to obfuscate affine subscript expressions, hindering the effectiveness of the pencil compiler. Multidimensional C99 arrays should be used instead.

Pencil also supports the OpenCL scalar builtin functions such as abs, min, max, sin, cos and log, using a target-independent and explicitly typed naming scheme (e.g., prefixes to differentiate float and double).

The main constructs introduced by pencil include the assume builtin function, the independent directive, summary functions and the kill builtin function. They are described below.

2.3 Pencil Assume

An intrinsic function, __pencil_assume(ε), where ε is a logical expression, indicates that ε is guaranteed to hold at a given program point. This knowledge is taken on trust by the pencil compiler, and may enable generation of more efficient code. In the context of DSL compilation, an assume statement allows a DSL-to-pencil compiler to communicate high level facts in the generated code. The truth of an expression ε appearing in an assume statement is not checked at runtime (support for runtime checking could be optionally provided for debugging purposes).

The general 2D convolution example of Figure 2 illustrates the use of __pencil_assume. This image processing kernel calculates the weighted sum of the area around each pixel using a kernel matrix for weights. This kernel is part of an image processing benchmark written by RealEyes, and is presented in detail in Section 4.1.

```c
#define clampi(val, min, max) \n{ \n  (val < min) ? (min) : (val > max ) ? (max):(val) \n}

__pencil_assume(ker_mat_rows <= 15);
__pencil_assume(ker_mat_cols <= 15);

for (int i = 0; i < rows; i++)
  for (int j = 0; j < cols; j++) {
    float prod = 0.;
    for (int e = 0; e < ker_mat_rows; e++)
      for (int r = 0; r < ker_mat_cols; r++) {
        row = clampi(i+e-ker_mat_rows/2, 0, rows-1);
        col = clampi(j+r-ker_mat_cols/2, 0, cols-1);
        prod += src[row][col] * kern_mat[e][r];
      }
    conv[i][j] = prod;
  }
```

Figure 2: General 2D convolution

It is sufficient, for RealEyes’ requirements in production, to consider that the size of the array kern_mat does not exceed 15 × 15, as conveyed by the assume statements.

While well known to image processing experts, the compiler does not know this knowledge and must assume that the kernel matrix can be arbitrarily large. When compiling for a GPU target the compiler must thus allocate the kernel matrix in GPU global memory, rather than in fast shared memory, or must generate multiple variants of the kernel – one to handle large kernel matrix sizes and another optimized for smaller kernel matrix sizes – selecting between variants at runtime. The use of __pencil_assume tells the compiler about the limits on the size of the array, allowing it to store the whole array in shared memory.

2.4 Independent Directive

The independent directive is used to annotate loops, and is semantically similar to the High Performance Fortran directive of the same name [15]. It indicates that the desired result of the loop execution does not depend in any way upon the execution order of the data accesses from different iterations. In particular, data accesses from different iterations may be executed simultaneously. In practice, the independent directive can be used to indicate that the marked loop does not have any loop carried dependence (i.e., it could be run in parallel).

The independent directive can also be used when some dependences exist but the user nonetheless wants to ignore them. In such cases the execution order of the data accesses may have to be constrained using specific synchronization constructs. Examples include reductions implemented via atomic regions, and the use of low-level atomic to give semantics to so-called “benign races”, where the same value is written to a location by multiple threads in parallel. In general, it can sometimes be necessary to invoke external non-pencil functions when parallelizing an algorithm that can tolerate arbitrarily-ordered execution of intermediate steps.

The independent directive has an effect only on the marked loop, not on any nested or outside loops. It accepts a reduction clause which, for brevity, we do not discuss here.

Figure 3 shows a code fragment of our pencil implementation of the breadth-first search benchmark from the Rodinia [8] benchmark suite. This benchmark computes the minimal distance from a given source node to each node of the input graph. The algorithm maintains a frontier and computes the next frontier by examining all unvisited nodes adjacent to the nodes of the current frontier. All nodes in a frontier have the same distance from the source node.

The for loop shown in Figure 3 can be parallelized since each node of the current frontier can be processed independently. This creates a possible race condition on the cost and next_frontier arrays. The race condition can be ignored, however, because each conflicting thread will write the same values. By specifying the
2.5 Summary Functions

The effect of a function call on its array arguments is derived from an analysis of the called function. In some cases, the results of this analysis may be too inaccurate. In the extreme case, no code may be available for the function and the compiler can then only assume that every element of the passed arrays is accessed. In order to obtain more accurate information on memory accesses, the user may tell the compiler to derive the memory accesses not from the actual function body, but from some other function with the same signature. Such a function is called a summary function.

In practice, summary functions are used to describe the memory access patterns of:

- **library functions** called from PENCIL code, for which source code is not available for analysis;
- **non-PENCIL functions** called from PENCIL code, as they are otherwise difficult to analyze.

The use of summary functions enables more precise static analysis. The accesses to each array passed as argument to the function must be described by the summary function. To indicate the summary function of a function foo(), one uses the attribute `pencil_access(summary)`, where `summary` is the name of the summary function that describes the memory accesses in foo(). The summary function is not meant to be executed, and is instead used for the analysis of memory footprints. Each and every array element accessed in a function should be accessed in its summary.

Yet a summary is generally simpler than the function it summarizes: it only captures sets of accesses, not their ordering and number of occurrences.

The builtin functions `pencil_use` and `pencil_def` are designed to be used in summary functions to mark memory accesses. A `pencil_use(A[e])` annotation indicates that a read may occur from array A at index e, while a `pencil_def(A[e])` annotation indicates that a write must occur to array A at index e. In the case of writes, it can also be useful to communicate may information. This can be achieved using the `pencil_maybe` construct, which has the semantics of evaluating to a nondeterministic Boolean value. It allows a single summary to carry both must and may information. More specifically, the conditional

\[
\text{if } (_\text{pencil_maybe}) \text{ _\text{pencil_def}(A[e])};
\]

indicates that a write may occur to array A at index e. This nicely fits any static analysis capable of extracting may and/or must information from conditional expressions and is also consistent with the usage of wildcards in intermediate verification languages.\(^2\)

2.6 PENCIL Kill

The `pencil_kill` builtin function allows the user to refine dataflow information within and across any control flow region in the program. It is a polymorphic function that signifies that its argument (a variable or an array element) is dead at the program point where `pencil_kill` is inserted, meaning that no data flows from any statement instance executed before the kill to any statement instance executed after.

This information is used in several ways, as explained in detail in [24]. The effect of the `kill` builtin is illustrated on the following example code:

```c
if (\_pencil\_maybe) \_pencil\_def(\_A[e]);
```

`_attribute_((pencil_access(summary_fft32)))`
in A is not expected to be preserved by the region and that therefore this copy-in can be omitted.

3. Polyhedral Compilation of PENCIL Code

We now explain how specific PENCIL features can be compiled using a polyhedral compiler, although PENCIL itself is not tied to any particular compilation technique.

In polyhedral compilation, an abstract mathematical representation is used to model the program. Each statement in the program is represented using three pieces of information: an iteration domain, access relations and a schedule. This representation is first extracted from the program AST, it is then analyzed and transformed (loop optimizations are applied during this step), and finally it is converted back into an AST.

The iteration domain of a statement is a set that contains all the execution instances of the statement (a statement in a loop has an execution instance for each execution where it is executed). Each execution instance of the statement in the loop nest is represented individually by an identifier for the statement and a sequence of integers (typically, the values of the outer loop iterators) that uniquely identifies the execution instance. Instead of listing all the integer tuples in the iteration domain, the integer tuples are described using quasi-affine constraints. For example, the statement in Line 9 in Figure 2 has the following iteration domain (let us call the statement S_0): \{ (i, j) : 0 \leq i < \text{rows} \text{ and } 0 \leq j < \text{cols} \}. A quasi-affine constraint is a constraint over integer values and integer variables involving only the operators \(+, -, *, /, \%, &&, ||, \lt\lt, \lt\lt\lt\lt, \lt\lt\lt\lt\lt\lt, \gt\gt, \gt\gt\gt\gt, \gt\g
Independent directive. When the independent directive is used to annotate a loop, the iterations of that loop may be freely reordered with respect to each other, including reorderings that result in (partial) overlaps of distinct iterations. In particular, the user asserts through this directive that no dependences need to be introduced to prevent such reorderings. The directive assumes that a variable that is declared inside the loop is considered private to any given iteration. \texttt{pet} currently handles the independent directive by building a relation between the statement instances that are excluded from depending on each other, as well as the set of variables that are local to the marked loop. This set of local variables is used by \texttt{PCCG} to ensure that their live ranges do not overlap in any affine transformation in a way similar to [2], and to privatize them if needed when generating parallel code.

Summary functions. \texttt{pet} has been modified to extract access information from called functions. Whenever a summary function is provided, this information is extracted from the summary function instead of the actually called function.

4. PENCIL Evaluation

We evaluate the performance of OpenCL code generated from PENCIL using a development version of \texttt{PCCG} [26]. To show that PENCIL can be used as a standalone language as well as an intermediate language for DSL compilers, we present experimental results covering benchmark suites (written in PENCIL) and code generated by DSL compilers. The benchmark suites written in PENCIL are the RealEyes image processing benchmark suite (Section 4.1), and a selected set of benchmarks from Rodinia and SHOC (Section 4.2). The DSL compilers are the VOBLA DSL compiler (Section 4.3) and the SpearDE DSL compiler (Section 4.4).

The experiments evaluate whether PENCIL enables the parallelization (mapping to OpenCL) of kernels that cannot be parallelized with the current state-of-the-art polyhedral compilers (Pluto [5]). They also evaluate whether PENCIL enables the generation of more efficient code and how close the performance of the automatically generated code is to hand-crafted code. The experiments evaluate the whole PENCIL framework on a relatively large set of real world applications and test platforms.

We developed an autotuning compiler framework to facilitate the retargeting of our framework to very different GPU architectures. We only apply autotuning to the \texttt{PCCG}-generated code. For one, autotuning the reference code (which in mostly implemented as libraries) does not make sense because library code is not designed to be autotuned (for example, workgroup sizes are hardcoded in the libraries, the use of shared and private memory requires manual code modification of the kernels, etc.). Moreover, BLAS libraries (cMath [10] and cuBlas [18]) do not require autotuning because these libraries are already configured with a set of optimal parameters for their target architectures. Our autotuning framework searches for the most appropriate optimizations (compiler flags) by generating many different code variants and executing each of them on the target hardware. It searches through combinations of PCCG’s compiler flags that include the work group sizes, tile sizes, whether to use shared memory, whether to use private memory and which loop distribution heuristic to use (out of two possible heuristics). The autotuning of each benchmark suite takes several hours (except for the six kernels generated from VOBLA, which altogether take up to two days as the search space is larger).

The code generated by \texttt{PCCG} for a given kernel is optionally instrumented to measure the wall clock execution time of that kernel. This time includes kernel execution, data copy (between host memory and GPU device memory), and any kernel code executed on the host CPU. It does not include device initialization and release, nor kernel compilation time. This measured wall clock execution time is the time we report below. In order to exclude compilation time, we either invoke a dry-run computation that is not timed beforehand (caching the compiled kernels), or subtract the compilation time from the total duration, depending on how the reference benchmark compiles and invokes its kernels. We use OpenCL profiling tools to further analyze the performance of the reference code and the \texttt{PCCG} generated code (to get the number of cache misses, the number of device global memory accesses, the GPU occupancy, etc.). Each test is run 30 times and the median of the speedups over the reference benchmark is reported.

We use four GPU platforms for the experimental evaluation: an Nvidia GTX470 GPU (with AMD Opteron Magny-Cours, 2 × 12 cores and 16GB of RAM), an ARM Mali T604 GPU (with dual-core ARM Cortex-A15 CPU and 2 GB of RAM), an AMD Radeon HD 5670 GPU (with Intel Core2 Quad CPU Q6700 and 8 GB RAM) and an AMD Radeon R9 285 GPU (with Intel Xeon CPU E5-2640, 8 cores and 32 GB of RAM).

4.1 Image Processing Benchmark Suite

We studied a set of image processing kernels covering computationally intensive parts of a computer vision stack of RealEyes. The benchmark-suite includes simple image filters as well as composite image processing algorithms. For each kernel in the benchmark suite, we compare a straightforward PENCIL implementation of the kernel (without any optimization), with a call to the equivalent kernel in the OpenCL implementation of the OpenCV image processing library [19].

The benchmark suite contains 7 image processing kernels: affine warping, image resize, general 2D convolution, gaussian smoothing, color conversion, dilate and basic image histogram (calculates the tonal distribution in an image).

One important characteristic of image processing kernels is that they contain non static-affine code: non static-affine array accesses, non static-affine if conditionals and non static-affine loop bounds that a classical polyhedral compiler does not handle efficiently since they do not fit the traditional restrictions of the polyhedral model. The conditional if \(\text{se}[e][r] != 0 \) in Figure 5 is an example of such non static-affine code.

The benchmark exhibits many patterns of non static-affine code: 5 out of 7 kernels have non static-affine conditionals, 5 out of 7 kernels have non static-affine read accesses, 1 kernel has non static-affine write accesses. To be able to efficiently handle these kernels, a polyhedral compiler needs to be able to handle not only the non static-affine conditionals, and the non static-affine read accesses, but also the non static-affine write accesses. Write array accesses are more difficult to handle because they prevent the compiler, in general, from determining whether the loop is parallel or not.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Support for non static-affine code</th>
<th>independent</th>
<th>assume</th>
<th>kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>residue</td>
<td>required</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>dilate</td>
<td>required</td>
<td>-</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>color conversion</td>
<td>required</td>
<td>-</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>affine warping</td>
<td>required</td>
<td>-</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>2D convolution</td>
<td>required</td>
<td>-</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>gaussian smoothing</td>
<td>required</td>
<td>-</td>
<td>-</td>
<td>20%</td>
</tr>
<tr>
<td>basic histogram</td>
<td>required</td>
<td>-</td>
<td>47%</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Effect of enabling support for individual PENCIL features on the ability to generate code and on gains in speedups

The kernels in this benchmark require the following PENCIL features: support for non static-affine code, \texttt{independent} directive, and the \texttt{pencil_assume} and \texttt{pencil_kill} builtins. Table 1 shows the list of PENCIL features that were useful in the image processing benchmark suite. It shows whether a given PENCIL feature is required for OpenCL code generation and shows the gain in speedup obtained when support for that feature is enabled (compared to the case where support for that feature is disabled). We only show the effect on performance on one test platform (Nvidia GTX), the effect on the other platforms is similar.
symbol “¬” indicates that the absence of the feature does not have any effect on the generated code.

The table shows that support for non static-affine code is required to be able to generate OpenCL code for 3 out of 7 kernels in the benchmark. In basic histogram, the use of the independent directive enables the parallelization and OpenCL code generation for the kernel which is difficult otherwise. In dilate, assuming that the size of the structuring element (the array that represents the neighborhood used to compute each pixel) is less than 16×16 enables PPCG to map that array to shared memory. Using this assumption allows PPCG to generate code that is 28% faster compared to the case where the assumption is not used. Using _pencil_kill allows PPCG to generate code that is 28% faster compared to the case where the _kutil1 built-in is not used. _pencil_kill in this case mainly eliminates extra data copies that PPCG generates to move data between host and device memories.

Table 2 shows the speedups of the PPCG generated OpenCL code over the baseline OpenCV 2.4.10 OpenCL implementation. We use the same image to evaluate all the kernels ($2880 \times 1607, 1.5$ MB image).

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Nvidia GTX 470</th>
<th>ARM Mali T604</th>
<th>AMD Radeon HD 6370</th>
<th>AMD Radeon R9 285</th>
</tr>
</thead>
<tbody>
<tr>
<td>route</td>
<td>1.00</td>
<td>1.06</td>
<td>2.49</td>
<td>3.09</td>
</tr>
<tr>
<td>dilate</td>
<td>0.59</td>
<td>0.32</td>
<td>0.25</td>
<td>2.91</td>
</tr>
<tr>
<td>color conversion</td>
<td>1.32</td>
<td>1.51</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>affine warping</td>
<td>1.06</td>
<td>1.93</td>
<td>2.44</td>
<td>2.85</td>
</tr>
<tr>
<td>2D correlation</td>
<td>0.93</td>
<td>0.95</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>gaussian smoothing</td>
<td>0.92</td>
<td>0.97</td>
<td>0.51</td>
<td>1.16</td>
</tr>
<tr>
<td>basic histograms</td>
<td>0.45</td>
<td>0.42</td>
<td>0.18</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table 2: Speedups of the OpenCL code generated by PPCG over OpenCV

_pencil_kill helps PPCG to eliminate spurious data copies but no other optimization on the data copies is applied by PPCG. In all the kernels, the amount of data copied by the PPCG generated code (when _pencil_kill is used) is exactly equal to the amount of data copied by the reference benchmark code. As a consequence, the speedups (or slowdowns) listed in the table are due to faster (or slower) kernel executions and not to a difference in data copy time. This is true for all the test platforms except for the AMD Radeon R9 285 platform. The particularity of this platform is discussed later in this section.

The speedup in color conversion and in resize for the Nvidia, ARM and AMD Radeon HD 5670 test platforms is due to the tiling of the 2D loop nest in each of these two kernels which enhances data locality considerably (up to 56%, less L1 cache misses on the Nvidia platform for color conversion). In affine warping, the speedup is due to two optimizations: thread coarsening where multiple work-items are merged together leading to less redundant computations and tiling which enhances data locality (up to 65% less L1 cache misses on the Nvidia platform).

In the basic histogram kernel, the code automatically generated by PPCG still does not meet the performance of the hand optimized OpenCV implementation of the histogram for all the test platforms. The OpenCV code is faster because each workgroup computes its own local histogram placed in shared memory, and then the different local histograms are combined into one final histogram (a reduction). Automatic generation of OpenCL code that exploits this kind of reductions is not yet supported by PPCG.

For dilate, the OpenCV code is vectorized while the current PPCG OpenCL backend still does not support the generation of vectorized code. The lack of vectorization in the PPCG generated code affects the performance more on the AMD and the ARM test platforms. Moreover, in the OpenCV code for dilate, the input image array is mapped into shared memory while PPCG’s shared memory heuristic decides not to map this array into shared memory. As a consequence, the PPCG generated code accesses global GPU memory $175\times$ more often compared to the OpenCV code, which leads to a decrease in performance. The same problem in the shared memory heuristic applies to gaussian smoothing.

While PPCG can generate code for 2D convolution, the OpenCV reference implementation for 2D convolution could not be run on the ARM Mali GPU, as it uses hardcoded shared memory and workgroup sizes that both exceed its limits.

On the AMD Radeon R9 285 platform, the speedups of the PPCG generated kernels over the OpenCV kernels are due to the slow data copies that OpenCV performs. The data copies are slower because OpenCV, on this platform, decides to add padding to the input image for aligned memory accesses. In order to do that, OpenCV uses the OpenCL clEnqueueWriteBufferRect function which copies data from host to device memory and adds padding at the same time. PPCG in contrast uses the clEnqueueWriteBuffer OpenCL function which only copies data from host to device memory. Using clEnqueueWriteBufferRect is $7\times$ slower than the use of clEnqueueWriteBuffer. This difference explains the high speedups that were obtained for the PPCG generated code on this platform. Other than this difference in data copies, there is no other significant difference between the speedups obtained on the AMD Radeon R9 285 platform and the AMD Radeon HD 5670 platform. Note that, although the use of clEnqueueWriteBufferRect may be less efficient in these tests, it may be more efficient in other cases where only one data copy is performed and many filters are applied on the same input image.

4.2 Rodinia and SHOC Benchmark Suites

When choosing benchmarks from the Rodinia [8] and SHOC [11] benchmark suites for writing in PENCIL (reverse-engineering from OpenCL to PENCIL), we decided to focus our resources on a selection of benchmarks that offer diversity (cover different Berkeley “motifs” [1] such as dense and sparse linear algebra, structured grids, and graph traversal), and pose a challenge to traditional polyhedral compilers arising from non static-affine code. We chose six benchmarks (presented in Table 3). Four of these benchmarks are particularly challenging for a polyhedral compiler as they exhibit patterns of non static-affine code. We show the benefit of using PENCIL to implement these benchmarks and compare the performance of the PPCG generated code for each benchmark with the reference Rodinia/SHOC implementations.

Table 3: Selected benchmarks from Rodinia and SHOC

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Size</th>
<th>Integer sizes</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Stencil</td>
<td>SRAM</td>
<td>1M instructions, 6096 × 4096 grid</td>
<td>Topology generation</td>
<td>Reduced memory</td>
</tr>
<tr>
<td>Radix Sort</td>
<td>Mem</td>
<td>100 million, 502 × 458 image</td>
<td>Radix sort</td>
<td>Reduced memory</td>
</tr>
<tr>
<td>2D Stencil</td>
<td>Mem</td>
<td>1M instructions, 6096 × 4096 grid</td>
<td>Topology generation</td>
<td>Reduced memory</td>
</tr>
<tr>
<td>2D Stencil</td>
<td>Mem</td>
<td>1M instructions, 6096 × 4096 grid</td>
<td>Topology generation</td>
<td>Reduced memory</td>
</tr>
<tr>
<td>2D Stencil</td>
<td>Mem</td>
<td>1M instructions, 6096 × 4096 grid</td>
<td>Topology generation</td>
<td>Reduced memory</td>
</tr>
<tr>
<td>BFS</td>
<td>Mem</td>
<td>1M instructions, 6096 × 4096 grid</td>
<td>Breadth-first search on a graph</td>
<td>Reduced memory</td>
</tr>
</tbody>
</table>

Table 4: PENCIL Features that are useful for SHOC and Rodinia benchmarks

The benchmarks require support for non static-affine code and the use of the independent directive. Table 4 shows the effect of these features on the ability of PPCG to generate OpenCL code. Other PENCIL features do not have any effect on these benchmarks.

The tables shows that supporting non static-affine code is required for OpenCL code generation in 4 out of 6 benchmarks. The
non static-affine code patterns in these benchmarks include non-affine read accesses, non-affine conditionals and non-affine write accesses. The non-affine write accesses, in BFS and in Radix Sort, are particularly difficult to handle since they prevent the compiler from parallelizing the code, requiring the use of the independent directive.

Table 5 shows speedups. The speedups in Stencil and Gaussian are mainly due to tiling which enhances data locality and reduces cache misses (4× less L1 cache misses for Stencil on Nvidia GTX 470). For SRAD, the PENCIL-generated OpenCL code is significantly slower than the reference benchmark, mainly because PPCG did not map a reduction in SRAD to OpenCL (as PPCG does not support the generation of parallel reductions yet). This leads to unnecessary data transfers between the part of SRAD mapped to host and the part of SRAD mapped to device hence the slowdown. In BFS, the generated OpenCL code is slightly slower than the reference code also due to unnecessary data transfers that PPCG generates. This happens because PPCG does not handle while loops yet (currently only the whole loop body is mapped to GPU, which makes PPCG generate a data copy between host and device at the beginning and end of each while loop iteration).

Table 5: Speedups for the OpenCL code generated by PPCG for selected Rodinia and SHOC benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Nvidia GTX 470</th>
<th>AMD Multi GPU</th>
<th>AMD Radeon R9 M295X</th>
<th>AMD Radeon HD 7970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stencil</td>
<td>3.44</td>
<td>2.14</td>
<td>1.43</td>
<td>1.85</td>
</tr>
<tr>
<td>Gauss Dem.</td>
<td>0.67</td>
<td>0.84</td>
<td>1.04</td>
<td>4.03</td>
</tr>
<tr>
<td>SRAD</td>
<td>0.22</td>
<td>0.34</td>
<td>0.43</td>
<td>0.45</td>
</tr>
<tr>
<td>SpMV</td>
<td>2.17</td>
<td>1.67</td>
<td>1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>Rodix</td>
<td>0.15</td>
<td>0.06</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>BFS</td>
<td>0.65</td>
<td>0.70</td>
<td>0.43</td>
<td>0.72</td>
</tr>
</tbody>
</table>

We used VOBLA to implement a set of linear algebra kernels including gemver (vector multiplication and matrix addition), 2mm (2 matrix multiplications), 3mm (3 matrix multiplications), gemm (general matrix multiplication), dotax (matrix transpose and vector multiplication) and gesummv (scalar, vector and matrix multiplication). Many of these kernels are a sequence of BLAS function calls.

We compare the code generated from PPCG for these kernels with equivalent code that calls BLAS library functions. The VOBLA implementation is first compiled to PENCIL using the VOBLA-to-PENCIL compiler and then PENCIL is mapped to the GPU using PPCG. We compare the generated code with two highly optimized BLAS library implementations.

- We use the cMath 2.2.0 [10] BLAS library provided by AMD for comparison on AMD platforms.
- We use the cuBlas 5.5 [18] BLAS library provided by Nvidia for comparison on the Nvidia platform. In this case we use PPCG to generate CUDA code instead of OpenCL code.

We do not provide a comparison on the Mali GPU as no reference BLAS library is available for Mali to this date. We use 4096 × 4096 as a matrix size for all the benchmarks.

The only PENCIL features that are beneficial to the VOBLA generated code are the assume builtin and the restrict type qualifier. The independent directive is not needed as the kernels do not contain any non-affine write accesses. The restrict type qualifier is mandatory to eliminate aliasing problems.

Table 6 shows the gains in speedups obtained when support for the assume builtin is enabled (measured on the Nvidia platform). When the assume builtin is used, the generated code is significantly faster. For example, the generated code for gemm, when assume is used, is 71% faster than the generated code without assume. This happens because PPCG simplifies the control flow in the generated kernels using the information provided through the assume builtin.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>assume</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemver</td>
<td>90%</td>
</tr>
<tr>
<td>2mm</td>
<td>84%</td>
</tr>
<tr>
<td>3mm</td>
<td>91%</td>
</tr>
<tr>
<td>gemm</td>
<td>71%</td>
</tr>
<tr>
<td>dotax</td>
<td>1.3%</td>
</tr>
<tr>
<td>gesummv</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Table 6: Gains in performance obtained when support for the assume builtin is enabled
Table 7: Speedups obtained with PPCG over highly optimized BLAS libraries

Table 7 shows the speedups of the kernels generated by PPCG over BLAS libraries. The PPCG generated kernels for the Nvidia and the AMD HD 5670 platforms were close in performance to the highly optimized BLAS library calls for 2nm, 3nm, atax and gemm (e.g. 0.69 × for gemm on the AMD platform). The main optimizations applied in these kernels are tiling, loop fusion, and the use of shared and private memories. The BLAS code still outperforms the PPCG generated code as it implements many other optimizations including vectorization (clMath) and the use of register tiling (cuBlas) which are not yet supported by PPCG. The speedups for gesummm and gemver are due to loop fusion and tiling that are performed across different library calls. The gemver kernel, for example, is a sequence of 6 BLAS library calls. Although the individual BLAS library functions are highly optimized, better performance can be obtained by fusing and tiling across function calls. PPCG is able to perform these optimizations, and thus outperforms the sequence of BLAS library calls by a factor of 2.14 × on AMD Radeon. clMath is highly vectorized and tuned for the AMD Radeon. clMath is highly vectorized and tuned for the AMD Radeon R9 285, since PPCG still does not support vectorization it fails to reach the performance levels for clMath on this platform.

4.4 SpearDE DSL for Data-Streaming Applications

SpearDE [14] is a domain-specific modeling and programming framework for signal processing applications, designed by Thales Research and Technology. We evaluate PENCIL using two representative SpearDE applications: Space-Time Adaptive Processing (STAP) and Adaptive Beamformer (ABF). Both are common signal processing applications for radar systems. We compare the PPCG parallelized code with the sequential CPU version because no parallel version is available to us.

The code for these two applications is relatively large. The ABF code consists of 38 statements in the polyhedral representation (with a loop depth reaching five) while STAP consists of 88 statements (with a loop depth reaching seven). The STAP code is distributed across 12 separate PENCIL functions that are optimized independently. The code is separated because PPCG’s optimization pass currently does not scale to a fully inlined version reaching about 1000 lines of code in each benchmark.

ABF and STAP benefit from the following PENCIL features: support for non static-affine code (data-dependent conditionals and non-affine array subscripts), the independent directive, summary functions and the __pencil_kill builtin. Table 8 shows how ABF and STAP benefit from these PENCIL features.

ABF calls the fft32 (Fast Fourier Transform) function presented in Section 2.5. Without a summary function, the compiler assumes that the function modifies its whole input array and thus cannot parallelize a part of the code. The use of the independent directive in STAP enables the parallelization of a loop with non-affine array accesses.

In both, ABF and STAP, PENCIL is only used for compute intensive parts of the code. Many temporary arrays used in these parts are allocated in non-PENCIL regions of the code. The PENCIL compiler however does not assume that these arrays are temporary as it does not analyze non-PENCIL regions. The use of __pencil_kill in this case, allows PPCG to infer that the arrays do not need to be copied between host and device memory. In the case of STAP, copying these temporary arrays to and from host memory cannot be avoided completely as the PENCIL code is distributed across multiple PENCIL functions and the temporaries are used in more than one of these functions. __pencil_assume had very little effect on ABF and STAP (on ABF for example, only some expressions could be simplified). None of these effects caused a noticeable change in performance.

Table 8: Effect of enabling support for individual PENCIL features on the ability to generate code and on gains in speedups

Table 9 shows the speedups of PPCG generated code compared to sequential CPU code for STAP and ABF.

Let us comment on the performance anomalies for both STAP and ABF.

On all platforms, the speedup in ABF comes from parallelization and tiling. The generated code did not make use of shared/local memory, but privatization of scalars was essential for making parallelization possible. This is also the case for STAP, except that the generated kernel code does not perform well on the short-vector SIMD architectures (ARM Mali and on AMD Radeon HD 5670). Especially that the embedded ARM Mali system suffered from the lack of automatic vectorization in our flow. The lack of explicit vectorization is clearly identified as a weakness of the current optimization flow.

Also, we only explored a small search space for autotuning as PPCG compilation time for these two applications is significant. The generated code consists of many OpenCL kernels (ABF: up to 16, STAP: up to 26; depends on optimization options), each with different characteristics and a different amount of parallelism and therefore a different set of optimal optimization options. Currently, our tuning framework only allows the use of one set of optimization options for all the kernels, which is far from being optimal.

The current performance of ABF and STAP is also affected by limitations in the loop fusion/distribution heuristic that is implemented in PPCG. PPCG currently supports only two loop fusion/distribution heuristics. The first heuristic tries to fuse loops as much as possible, which maximizes temporal locality, possibly breaking out of resource limits (register pressure), resulting in a loss of parallelism on GPUs. The second heuristic tries to distribute loops as much as possible, which maximizes parallelism but may damage locality (for example, the imaginary and real parts of complex-valued arithmetic are computed in separate OpenCL kernels when this heuristic is applied). The implementation of a heuristic similar to the smartfuse heuristic implemented by Pluto [5] would allow a better trade-off between parallelism and data locality and would enhance performance.

The platforms Nvidia GTX 470 and AMD Radeon R9 285 are powerful enough to compensate for the suboptimal block sizes and code partitioning selected by the autotuner. Some loop dimensions in ABF and STAP have less than 10 iterations which limits the amount of parallelism that can be extracted by PPCG and makes the current dimension-per-dimension mapping heuristic in PPCG inefficient.

Overall, while PENCIL may convey sufficient information for a compiler to apply target-specific optimizations competitive with

Table 7

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Nvidia GTX 470</th>
<th>AMD Radeon HD 6570</th>
<th>AMD Radeon R9 285</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesummm</td>
<td>1.77</td>
<td>2.35</td>
<td>0.20</td>
</tr>
<tr>
<td>2nm</td>
<td>0.91</td>
<td>1.02</td>
<td>0.14</td>
</tr>
<tr>
<td>3nm</td>
<td>0.87</td>
<td>0.66</td>
<td>0.12</td>
</tr>
<tr>
<td>atax</td>
<td>0.89</td>
<td>1.79</td>
<td>0.37</td>
</tr>
<tr>
<td>gemver</td>
<td>1.03</td>
<td>1.83</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 8

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>PENCIL</th>
<th>Flag</th>
<th>Support for non-static affine code</th>
<th>Independent</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAP</td>
<td>2.94</td>
<td>0.51</td>
<td>0.89</td>
<td>1.72</td>
<td></td>
</tr>
</tbody>
</table>

Table 9

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Nvidia GTX 470</th>
<th>ARM Mali</th>
<th>AMD Radeon HD 6570</th>
<th>AMD Radeon R9 285</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAP</td>
<td>2.94</td>
<td>0.51</td>
<td>0.89</td>
<td>1.72</td>
</tr>
</tbody>
</table>
Discussion of the results. The evaluation section shows how PENCIL features improve the ability of PPCG to generate OpenCL code in two ways: first, by enabling the generation of OpenCL (through features such as the independent directive, and summary functions), and second, by enhancing the quality of the generated code (through features such as the assume and kill builtins). Second, the experiments provide an assessment about the efficiency of the generated code compared to a large set of highly optimized reference codes: 72% of the generated kernels have speedups above 0.5× and 47% outperform the reference implementations. Yet, the evaluation also shows some limitations in the current tools including limitations in generating parallel reductions, loop fusion heuristics, in handling while loops and the lack of vectorization and register tiling. Although the auto-tuning framework was very suitable for small kernels, it was less suitable for larger applications such as STAP and AFB as the exploration of possible optimizations for each kernel creates a large search space. This motivates the integration of parametric tiling and better heuristics in the compilation flow.

5. Related Work

PENCIL language constructs such as the independent directive are inspired from directive-based languages such as OpenMP [20] and OpenACC [6], but unlike those, PENCIL has sequential semantics. In PENCIL, the independent directive describes the absence of loop carried dependences and such information can be used to enable a range of loop nest transformations rather than enabling loop parallelization alone. A semantically similar directive, also called independent, has been part of High Performance Fortran [15].

PENCIL constructs such as __pencil_assume, not defined in OpenMP or in OpenACC, allow the compiler to receive additional information from the DSL (or directly from an expert programmer), and to exploit this information to enable further optimizations. Microsoft Visual C supports a proprietary __assume statement and a __builtin_assume statement has been introduced in clang 3.6. Such builtins have semantics identical to __pencil_assume and could be used as substitutes if available. As a subset of C, PENCIL is designed to allow advanced compilers to perform better static analysis, enabling automatic parallelization which is not addressed by OpenMP and OpenACC.

DSL compilers in general map the DSL code directly to GPU relying on parallelism information provided by the domain specific language constructs that express parallelism. Using such an approach, DSL compilers like Halide [21] and Diderot [9], designed for image processing, and OoLaLa [16], designed for linear algebra, show promising results. Our goal is complementary, as we aim to build a more generic and reusable framework and intermediate language that can be used for different domain specific optimizers.

Delite [7] is a more generic DSL framework and run-time designed to simplify building DSL compilers. Delite relies on information from the DSL to decide whether a loop is parallel and does not use any framework for advanced loop nest transformations. We believe that the use of PENCIL and the polyhedral framework with generic DSL frameworks like Delite can leverage automatic parallelism detection and more complex loop nest transformations.

6. Conclusion

We presented PENCIL, an intermediate language for DSL compilers, domain experts, and optimization experts, designed to simplify static code analysis. The design of PENCIL is unique in its combination of sequential semantics, strict compliance with the syntax and semantics of C, and a rich set of static analysis helpers through attributes and pragmas. It makes many forms of non static-affine code and access patterns amenable to advanced loop transformation and parallelization techniques based on the polyhedral framework. We ported a representative set of benchmarks to PENCIL, some of which written in a DSL and compiled to PENCIL. We parallelized these applications automatically on GPU platforms, demonstrating unprecedented expressiveness capabilities for a polyhedral framework. Our experiments validate the use of PENCIL together with an optimizing compiler as building blocks for the implementation of languages and compilers aiming for performance portability.

Acknowledgments. This work was partly supported by the European FP7 project CARP id. 287767.

References

