
Performance Estimation Toolbox (PESTO): automated worst-case
analysis of first-order optimization methods

Adrien B. Taylor, Julien M. Hendrickx, François Glineur

Abstract— We present a MATLAB toolbox that automatically
computes tight worst-case performance guarantees for a broad
class of first-order methods for convex optimization. The
class of methods includes those performing explicit, projected,
proximal, conditional and inexact (sub)gradient steps.

The toolbox relies on the performance estimation (PE) frame-
work, which recently emerged through works of Drori and
Teboulle and the authors. The PE approach is a very systematic
manner of obtaining non-improvable worst-case guarantees for
first-order numerical optimization schemes. However, using the
PE methodology requires modelling efforts from the user, along
with some knowledge of semidefinite programming. The goal
of this work is to ease the use of the performance estimation
methodology, by providing a toolbox that implicitly does the
modelling job. In short, its aim is to (i) let the user write the
algorithm in a natural way, as he/she would have implemented
it, and (ii) let the computer perform the modelling and worst-
case analysis parts automatically.

CODE

The toolbox is fully available on GITHUB (repository
ADRIENTAYLOR/PERFORMANCE-ESTIMATION-
TOOLBOX). The code heavily relies on the YALMIP
modelling language [1] and on the use of an appropriate
SDP solver (e.g., [2], [3], [4]).

The authors would like to particularly thank Yoel Drori
(Google Inc.) and François Gonze (UCLouvain) for insight-
ful feedbacks on preliminary versions of the toolbox.

I. INTRODUCTION

Worst-case analysis belongs to the most iconic and
widespread generic approaches for assessing the efficiency of
numerical algorithms (e.g., worst-case iteration complexity).
Essentially, given a class of problems and an algorithm
designed to solve them, worst-case analysis focuses on the
problem instances on which the algorithm behaves in the
worst possible way — the meaning of worst intentionally
remains vague at this point. The user may then be satisfied
by the algorithm if its behavior on the worst possible problem
instance meets some quality criterion, such as the last iterate
being close enough to an optimal point.

This work is supported by the Belgian Network DYSCO (Dynamical Sys-
tems, Control, and Optimization), funded by the Interuniversity Attraction
Poles Programme, initiated by the Belgian State, Science Policy Office,
and of the Concerted Research Action (ARC) programme supported by
the Federation Wallonia-Brussels (contract ARC 14/19-060). The scientific
responsibility rests with its authors.

A.B. Taylor and J.M. Hendrickx are members of ICTEAM,
Université catholique de Louvain, Belgium. adrien.taylor,
julien.hendrickx@uclouvain.be.

F. Glineur is a member of CORE and ICTEAM, Université catholique
de Louvain, Belgium. francois.glineur@uclouvain.be.

The purpose of this work is to provide easy access to the
performance estimation methodology and to automatically
perform the worst-case analyses of first-order optimization
schemes. This allows researchers to very quickly assess
the performance of their optimization methods, easing the
development of new algorithms.

Before getting to the point, note that multiple alterna-
tives to worst-case analyses exist, such as average-case or
smoothed analyses [5]. However, to the best of our knowl-
edge, those approaches have not yet been applied to first-
order methods methods for convex optimization.

A. Problem settings and formulation

In the sequel, we focus on algorithms tailored for solving
convex composite minimization (CCM) problems:

min
x∈Rd

{
F (x) =

∑
k∈K

F (k)(x)

}
, (CCM)

where each component F (k) : Rd → R is assumed to belong
to some class of proper, closed and convex functions Fk(Rd),
and K is a finite index set. As an example, a common
particular case of (CCM) is the minimization of a single
component objective function (i.e., |K| = 1).

In what follows, we focus on iterative algorithms using
only first-order information (i.e., gradients and subgradients)
in order to solve (CCM). In particular, we are interested in
the worst-case performances of those methods, which we
approach by computing the functions F (x) on which the
methods behave in the worst possible way.

References on the topic of using first-order methods
for solving (CCM) include the works of Nemirovski and
Yudin [6], Polyak [7] and Nesterov [8].

B. Related works

Performance estimation problems were initially developed
in the seminal work of Drori and Teboulle [9]. In their work,
they formulate the problem of finding the worst function
F (x) in (CCM) for fixed-step first-order methods. Their
formulation allows among others treating the gradient, the
heavy-ball and the fast gradient methods when F consists
of a single smooth convex component, that is, |K| = 1 and
F1(Rd) = F0,L(Rd), the class of L-smooth convex functions
(defined in the sequel).

In order to obtain guarantees on the worst-case behaviors
of those methods, they discretize, relax and dualize the worst-
case computation problem, and finally end up with a convex
semidefinite program (SDP) whose feasible solutions are
worst-case guarantees. They provide multiple numerical and

analytical examples showing that their approach improves the
standard guarantees on fixed-step methods, see also Drori’s
PhD thesis [10] for more examples.

The treatment of the worst-case computation problem is
made more systematic in the works of the authors [11], [12],
which add a key element to the equation: a proper non-
conservative discretization scheme relying on the convex in-
terpolation framework. This allows to generically formulate
the worst-case computation problem in a way that ensures
the guarantees to be tight, that is, such that there always exist
functions on which those worst-case guarantees are achieved,
making them non-improvable in general. Also, the approach
is extended to provide tight worst-case guarantees for a larger
class of first-order methods, including projected, proximal,
conditional and inexact gradient schemes, see also [13], [14]
for additional examples.

On the application side, this new methodology was used to
design new optimization schemes. Starting from the original
work of Drori and Teboulle [9], the technique is used to
numerically design a new method, the optimized gradient
method (OGM), whose parameters are chosen by optimizing
the worst-case guarantee provided by their SDP relaxations.
This method is further studied in the work of Kim and
Fessler [15], who found an efficient analytical form for it.
In addition, they show that OGM has a worst-case guarantee
twice better than the celebrated fast gradient method devel-
oped by Nesterov [16], at essentially the same computational
cost per iteration. Recently, Drori showed that OGM achieves
the best possible worst-case guarantee for smooth convex
minimization in [17], and OGM and its variants were further
studied by Kim and Fessler in [18], [19]. Drori and Teboulle
also used related ideas to develop a new bundle-like method
achieving the best possible worst-case iteration complexity
for non-smooth convex minimization in [20].

Finally, the approach was used for developing new (tight)
guarantees for the steepest gradient descent in [13], and
was largely extended in [14] to handle a larger class of
algorithms, including splitting and randomized methods.

Another closely related technique was developed by
Lessard, Recht and Packard in [21]. It relies on interpreting
fixed-step first-order methods applied to convex optimization
problems as dynamical systems, whose convergence can be
studied using the related stability theory. This methodology
is specialized to study time-invariant methods with linear
convergence rates. It does not benefit a priori from tight-
ness guarantees, but leads to asymptotic convergence rates.
However, the method has the advantage of only requiring
the resolution of small semidefinite programs, whereas the
PE approach may require solving much larger SDPs, whose
dimensions scale proportionally to the number of iterations.

C. Organization

The remainder of this work is divided into four main
sections. In Section II, we present the framework on a simple
toy example before introducing the general performance
estimation approach. Then, Section III introduces the toolbox

structure and content. We provide two applicative examples
in Section IV, before drawing some conclusions in Section V.

II. PERFORMANCE ESTIMATION PROBLEMS

In this section, we briefly introduce the performance
estimation approach using the philosophy and formalism
from [11] and [12]. We motivate the general approach start-
ing from a simple example: obtaining the worst-case guar-
antees of a single gradient step on a smooth strongly convex
function. Before doing that, let us recall some definitions and
notations. First, a differentiable function f : Rd → R is
• µ-strongly convex if and only if f(x)−µ2 ‖x‖

2 is convex,
• L-smooth if and only if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rd.

We denote by Fµ,L(Rd) the set of L-smooth µ-strongly
convex functions, and more generally by F0,∞(Rd) the class
of convex, closed and proper functions f : Rd → R∪{+∞}
(i.e., functions whose epigraphs are convex, closed and non-
empty). Finally, we denote by ∂f(x) the subdifferential of
f at x, that is:

∂f(x) = {gx : f(y) ≥ f(x) + 〈gx, y − x〉 ∀y ∈ Rd},

and by x∗ an optimal point of (CCM).

A. Toy example: worst-case analysis of a gradient step

In this section, we exemplify the performance estimation
approach by answering the following simple question.

Let F ∈ Fµ,L(Rd); what can we guarantee on
‖∇F (x1)‖ when x1 was obtained from a gradient step
x1 = x0 − γ∇F (x0) with step size γ ?

For this question to be well posed, we introduce an initial
condition, as otherwise the worst-case value ‖∇F (x1)‖
would be unbounded. Here, we arbitrarily choose to assume

‖∇F (x0)‖2 ≤ R2 (R is some constant parameter).

Then, we want to answer the previous question without being
conservative (i.e., we want the exact, or tight guarantee), and
therefore choose to formulate it as the optimal value to the
following worst-case computation problem, or performance
estimation problem (PEP):

max
F,x0,x1

‖∇F (x1)‖2 (Gradient-PEP)

s.t. F ∈ Fµ,L(Rd) Functional class,
x1 = x0 − γ∇F (x0) Algorithm,

‖∇F (x0)‖2 ≤ R2 Initial condition.

Observe that this problem is inherently infinite-dimensional,
as it contains the function F among the variables (this is
essential, as the goal is to identify the worst-case function).
To deal with this variable, we first note that we only evaluate
the values and gradients of the function at certain points: the
iterates. This motivates the introduction of new variables:
the iterates x0, x1, and the corresponding gradients g0, g1,
and function values f0, f1. We then require the existence
of a function of the class Fµ,L(Rd) which explains (or

interpolates) those data points, instead of considering the
whole function F :

max
{(xi,gi,fi)}i=0,1

‖g1‖2 (Discr-Gradient-PEP)

s.t. ∃F ∈ Fµ,L(Rd) : fi = F (xi), gi = ∇F (xi) (i = 0, 1),

x1 = x0 − γg0,
‖g0‖2 ≤ R2.

Thanks to the first constraint guaranteeing the existence of
an interpolating function F ∈ Fµ,L(Rd), the optimal values
of (Discr-Gradient-PEP) and (Gradient-PEP) are equal. In-
deed, any feasible solution to one of those problems can be
converted to a feasible solution for the other one.

In order to transform this last formulation into a tractable
problem, we use the following smooth strongly convex inter-
polation theorem.

Theorem 1: [12, Theorem 4] Let I be an index set and
S = {(xi, gi, fi)}i∈I be such that xi, gi ∈ Rd and fi ∈ R
for all i ∈ I . There exists a function F ∈ Fµ,L(Rd) such
that fi = F (xi) and gi = ∇F (xi) (i ∈ I) if and only if for
all pairs i 6= j ∈ I we have

fi ≥ fj + 〈gj , xi − xj〉+ 1
2(1−µ/L)

(
1
L‖gi − gj‖

2

+µ‖xi − xj‖2 − 2 µL 〈gj − gi, xj − xi〉
)
.

(1)

From the smooth strongly convex interpolation theorem,
one can reformulate (Discr-Gradient-PEP) in the following
equivalent form:

max
{(xi,gi,fi)}i=1,2

‖g1‖2 (QCQP-Gradient-PEP)

s.t. interpolation constraints (1) hold ∀i 6= j ∈ {0, 1},
x1 = x0 − γg0,
‖g0‖2 ≤ R2.

This new formulation (QCQP-Gradient-PEP) is a non-convex
quadratically constrained quadratic program, a class of prob-
lems that is NP-hard in general. To tackle the problem, we
perform the following simple operations:

• we substitute x1 from the variables using the gradient
step constraint x1 = x0 − γg0,

• we introduce a 3× 3 Gram matrix:

G =

〈x0, x0〉 〈g0, x0〉 〈g1, x0〉〈x0, g0〉 〈g0, g0〉 〈g1, g0〉
〈x0, g1〉 〈g0, g1〉 〈g1, g1〉

 � 0, (2)

with the following known facts:

– given any set of vectors x0, g0, g1 ∈ Rd, we have
G � 0, and G has rank at most d,

– given a matrix G � 0 and rank G ≤ d, we can
recover x0, g0, g1 ∈ Rd such that G is given by (2).

This allows reformulating (QCQP-Gradient-PEP) into an
equivalent rank-constrained semidefinite program (SDP):

max
G∈S3,f∈R2

G3,3 (SDP-Gradient-PEP(d))

such that fj − fi +Tr (GAij) ≤ 0, i 6= j ∈ {0, 1},
G2,2 −R2 ≤ 0,

G � 0,

rank G ≤ d.

(where constant matrices A01 and A10 are obtained
from (1), see [12] Section 3.3). Note that the optimal value
of (SDP-Gradient-PEP(d)) is an increasing function of the
dimension d, and that the rank constraint becomes void as
soon as d ≥ 3. Hence, solving the following convex relax-
ation allows obtaining worst-case guarantees independently
of the value of d:

max
G∈S3,f∈R2

G3,3 (SDP-Gradient-PEP)

such that fj − fi +Tr (GAij) ≤ 0, i 6= j ∈ {0, 1},
G2,2 −R2 ≤ 0,

G � 0.

In addition, we have the guarantee that the optimal value
of (SDP-Gradient-PEP) can be achieved by a worst-case
function of dimension d at most 3. Furthermore, this optimal
value is the best possible guarantee with no dependence on d,
and it is valid for any value of d (this is called the large-scale
setting in standard references, see for example [8]).

The advantage of formulation (SDP-Gradient-PEP) as
compared to the previous ones is our ability to solve it
numerically to global optimality.

In the case at hand, i.e. that of one step of the gradient
method for minimizing a smooth strongly convex function,
it turns out it is also feasible to find the optimal value
analytically (see [22, Theorem 3.2]), which is given by

max{‖∇F (x1)‖2} = max{(1− γµ)2, (1− γL)2}R2,

with the functions achieving those two worst-case values
being respectively the one-dimensional functions F (x) =
µ
2 |x|

2 and F (x) = L
2 |x|

2. Hence, the relaxation of the rank
constraint had no effect in this particular case: this is in fact
common for this kind of methods (see [12, Section 4]).

B. Performance estimation problems: general case

Let us now describe the current approach for handling
other functional classes, methods, performance measures and
initial conditions (see [11], [14] for the details). We consider
the composite minimization model (CCM), a performance
measure P such as ‖∇F (xN)‖2 or ‖xN − x∗‖2, and a first-
order method M. Using the index set I = {∗, 0, 1, . . . , N},

the general performance estimation problem of interest is

sup
{F (k)}

k∈K
,{xi}i∈I

P
({

xi,∇F (k)(xi), F
(k)(xi)

}
i∈I,k∈K

)
(PEP)

s.t. F (k) ∈ Fk(Rd) for all k ∈ K,
x0 satisfies some initialization conditions,
xi is computed by M for all 1 ≤ i ≤ N ,
x∗ is a minimizer of F (x).

Essentially, (PEP) can be translated into a linear SDP simi-
lar to (SDP-Gradient-PEP(d)), with a corresponding convex
relaxation similar to (SDP-Gradient-PEP)), as soon as the
method, interpolation conditions, performance measure and
initial conditions can be formulated linearly (and finitely)
in terms of the function values and of the entries of a
Gram matrix containing scalar products between iterates and
(sub)gradients. In that case, all those ingredients are called
linearly Gram-representable [11, Section 2.2].

The linearly Gram-representability assumption is met in
surprisingly many standard situations, including:
• functions: the class of smooth (possibly strongly) con-

vex functions, of smooth and non-smooth convex func-
tions involving bounded (sub)gradients, of (possibly
strongly) convex functions involving bounded domains,
of convex indicator and support functions, or even the
class of non-convex smooth functions;

• methods: first-order methods involving (sub)gradient,
projection, proximal, conditional or even inexact steps;

• performance measure: F (xN) − F (x∗), ‖xN − x∗‖2,
‖∇F (xN)‖2, min0≤i≤N F (xi)− F (x∗), etc.;

• initialization: F (x0) − F (x∗) ≤ R, ‖x0 − x∗‖2 ≤ R2,
‖∇F (x0)‖2 ≤ R2, etc.

All those ingredients are detailed in [11, Section 2]; the
corresponding interpolation procedures (i.e., how to construct
the interpolating functions in practice) are provided in [14,
Chapter 3].

III. PERFORMANCE ESTIMATION TOOLBOX

From the previous sections, the modelling process coming
along with the performance estimation approach may appear
as a difficult or even a discouraging task. This observation
motivates the introduction of PESTO, a MATLAB toolbox .

The main goal is to alleviate the modelling process as
much as possible, by providing a framework in which the
user can describe the algorithm nearly as he would have
implemented it. PESTO then takes care of the worst-case
analysis, relying on the PE approach.

The following paragraphs illustrate the use of the toolbox
to perform a worst-case analysis for N steps of the gradient
method (the setting slightly differs from Section II).

A. Short example: the gradient method

First of all, the main elements are manipulated/initialized
by a pep object. Such an object is initialized as follows.

1 % I n i t i a l i z e an empty PEP :
P=pep () ;

1) Setting up the objective function: The following step
is to specify the family of objective function (CCM) that is
to be minimized by the algorithm. For the gradient example,
it suffices to write the following lines.

param . mu= 0 . 1 ; % S t r o n g c o n v e x i t y p a r a m e t e r
2 param . L=1; % Smoothness p a r a m e t e r

4 % F i s t h e o b j e c t i v e f u n c t i o n
F=P . D e c l a r e F u n c t i o n (’ SmoothSt ronglyConvex ’ , param) ;

2) Setting up the initial conditions: Introducing a starting
point x0 can be done via the following line (this can be
repeated to generate multiple starting points).

1 % x0 i s some s t a r t i n g p o i n t :
x0=P . S t a r t i n g P o i n t () ;

The next step is then to specify an initial condition: we
choose to bound the initial objective function accuracy
F (x0)− F (x∗) ≤ 1.

% xs i s an o p t i m a l p o i n t , and f s =F (xs) :
2 [xs , f s]=F . O p t i m a l P o i n t () ;

4 % I n i t i a l c o n d i t i o n F (x0)−F (xs)<=1:
P . I n i t i a l C o n d i t i o n (F . v a l u e (x0)−f s <=1) ;

3) Description of the algorithm: We perform the worst-
case analysis for N iterations of the gradient method with
fixed step sizes γi (we define and vary the value of the param-
eters γi and N in the numerical examples from Section IV).

1 x=x0 ;
f o r i =1 :N

3 % O v e r w r i t e t h e p r e v i o u s v a l u e o f x :
x=x−gamma (i) ∗F . g r a d i e n t (x) ;

5 end
xN=x ;

4) Performance criterion: Finally, we pick the per-
formance criterion to be the residual gradient norm
‖∇F (xN)‖2.

% E v a l u a t e t h e g r a d i e n t a t t h e l a s t i t e r a t e :
2 gN=F . g r a d i e n t (xN) ;

4 % Worst−c a s e e v a l u a t e d as | | gN | | ˆ 2 :
P . P e r f o r m a n c e M e t r i c (gN ˆ 2) ;

5) Worst-case analysis: The performance estimation
problem is then solved by typing P.solve(). The results
can be found in the numerical examples from Section IV.

6) Output: After solving the PEP, any iterate, gradient or
function value used and saved in the modelling process can
be evaluated using the double() command. For example,
double(gNˆ2) would output the value of the performance
measure, and double(gN) would output a valid vector gN .

B. Toolbox content

The toolbox structure is primarily designed to favor the
simplicity of the user’s code. It is easy to add new functional
classes, primitive operations (e.g., gradient steps, projections,
etc.) and new types or oracles (e.g., subgradients, inex-
act subgradients). More details and further examples can
be found in the toolbox demonstration files available on
GITHUB.

1) Functional classes: The functional classes available
within the current version of the toolbox are the following:
• convex functions,
• smooth strongly convex functions,
• smooth convex functions with bounded subdifferentials,
• strongly convex functions with bounded domains,
• indicator functions with bounded domains,
• support functions with bounded subdifferentials,
• non-convex smooth functions.

2) Basic oracles: It is currently possible to evaluate two
types of first-order oracles within the toolbox:
• (sub)gradients,
• inexact (sub)gradients (absolute [11] and relative [13]

inaccuracy).

3) Basic algorithmic operations: The following basic
algorithmic operations are currently available:
• gradient steps,
• projection/proximal steps,
• linear optimization steps (e.g., for conditional gradient),
• exact line-search steps.

4) Performance measures: The default performance cri-
terion is set to be the minimum among all specified per-
formance metrics mini{Pi(f,G)}, where each performance
metric Pi(f,G) is an affine combination of the function
values and of the scalar products between gradients and coor-
dinates (entries of the Gram matrix). This allows dealing with
performance measures such as min0≤i≤N{F (xi)−F (x∗)}.

5) Initial conditions: Again we allow to bound any affine
combination of the function values and of the scalar products
between gradients and coordinates.

Finally, the toolbox contains an extensive list of exam-
ples applied to many algorithms (including subgradient,
conditional gradient and splitting methods), as well as an
exploration of properties of convex functions not directly
related to optimization algorithms, along with step-by-step
demo files to familiarize users with the code. Typing demo
in the prompt provides a quick summary of what is available.

IV. NUMERICAL EXAMPLES

The code from the following numerical examples is avail-
able within the toolbox. Those examples illustrate the use
of the toolbox for settings for which no comparable results
were found in the literature. However, detailed comparisons
with the standard results on first-order methods can be found
in the main references on PEPs by Drori and Teboulle [9],
Drori [10] and the authors [11], [12], [14].

A. Gradient method
In this section, we execute the code proposed in Section III

for evaluating the worst-case value of ‖∇F (xN)‖2 for the
gradient method when the initial objective function accuracy
satisfies F (x0) − F (x∗) ≤ 1. We perform the analysis for
various step sizes γ in the interval [0, 2

L], and for N ∈
{2, 5, 10}; the results are shown on Figure 1.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Step size

R
e
s
id

u
a
l
g
ra

d
ie

n
t
n
o
rm

Fig. 1. Gradient method for minimizing a 1-smooth 0.1-strongly convex
function. Worst-case value of ‖∇f(xN)‖2 as a function of the step size
γ ∈ [0, 2

L
] for N = 2 (green), N = 5 (red), and N = 10 (blue).

From Figure 1, one can observe that this kind of methodol-
ogy can serve to (i) determine worst-case guarantees for the
method (even if this was previously known in this simple
case), and (ii) determine optimal step size policies for the
settings under consideration; for example, it appears that
using the classical so-called optimal step size 1/L is not
the best choice for minimizing the worst-case. Indeed, for
all three examples, the optimal step size is an increasing
function of N lying within [1.5L ,

2
L]. The choice of the

optimal step size very roughly allows to gain a factor 2
on the worst-case behavior. Also, evaluating the worst-cases
allows to (iii) observe the shapes of the identified worst-
case functions, which can be used to develop new insights
on the methods. In this case, the worst-case functions are
one-dimensional Huber losses and quadratics.

B. A fast gradient method using inexact information
In this section, we report a worst-case analysis on the

fast gradient method for minimizing an L-smooth convex
function F using inexact gradients ∇̃F satisfying a relative
accuracy criterion (i.e., bounded relative error):

‖∇̃F (xi)−∇F (xi)‖ ≤ ε‖∇F (xi)‖. (3)

Fast Gradient Method (FGM)
Input: F ∈ F0,L(Rd), x0 = y0 ∈ Rd.

For i = 1 : N

yi = xi−1 −
1

L
∇F (xi−1)

xi = yi +
i− 1

i+ 2
(yi − yi−1)

The PE methodology easily allows studying FGM using
this inexact first-order information, replacing the gradient
evaluation by its approximate version ∇̃F (xi). In this ex-
ample, we assume an initial condition ‖x0 − x∗‖ ≤ 1, and
evaluate the objective function accuracy F (xN)− F (x∗) in
the worst-case. Numerical results for N ∈ {1, ..., 30} and
ε ∈ {0, 0.1, 0.3, 0.5} are reported on Figure 2.

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

Iteration count (log scale)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 a

c
c
u
ra

c
y
 (

lo
g
 s

c
a
le

)

Fig. 2. Fast gradient method for minimizing a 1-smooth convex function
using an inexact gradient with bounded relative error. Worst-case value of
F (xN) − F (x∗) as a function of the iteration counter for ε = 0 (green),
ε = 0.1 (red), ε = 0.3 (blue), and ε = 0.5 (magenta).

Although the model is, as far as we know, not used in the
literature, we arrive to similar conclusions as in [23]: the fast
gradient method accumulates error, and can apparently only
reach a certain minimum accuracy before starting to diverge,
as we suspect from the case ε = 50%.

We can also observe that after N = 30 iterations, a relative
accuracy of ε = 30% degrades the worst-case objective
function accuracy by about 250% compared to the exact
case, whereas using a relative accuracy of ε = 10% only
degrades the worst-case accuracy by about 20%. In others
words, N = 30 iterations of FGM with ε = 10% allows
obtaining the same guarantee as N = 27 with ε = 0.

V. CONCLUSION

In this work, we introduced PESTO, a performance esti-
mation toolbox whose goal is to give an easy access to the
performance estimation methodology, alleviating the need for
demanding modelling steps. We have demonstrated the use
of PESTO on a gradient and a fast gradient method, showing
that the worst-case analyses could be performed using only a
few lines of code, whereas the equivalent full developments
could potentially represent a theoretical challenge.

The main design choice of the toolbox, focus on the
simplicity of the formulations, comes at the cost of reduced
computational efficiency — essentially caused by the pre-
processing steps. Advanced users can however easily design
their own (more efficient) codes for solving PEPs, tailored
for their particular applications. PESTO can then be used for
validating those new codes.

The approach allows obtaining numerical bounds on the
worst-case performances of the algorithms under considera-

tion. Obtaining analytical guarantees is, on the other hand,
often more complicated, and typically requires to perform
the modelling process that was avoided by the use of the
toolbox. Indeed, developing analytical guarantees coming
along with the PE methodology usually amounts to finding
feasible solutions to the dual SDP problems (examples in [9],
[10], [11], [13]), which is performed on a case-by-case basis.

REFERENCES

[1] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, 2004.

[2] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “Sdpt3a matlab software
package for semidefinite programming, version 1.3,” Optimization
methods and software, vol. 11, no. 1-4, pp. 545–581, 1999.

[3] A. Mosek, “The MOSEK optimization software,” Online at
http://www.mosek.com, vol. 54, 2010.

[4] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol. 11–
12, pp. 625–653, 1999.

[5] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time,” Journal
of the ACM (JACM), vol. 51, no. 3, pp. 385–463, 2004.

[6] A. S. Nemirovski and D. B. Yudin, “Problem complexity and method
efficiency in optimization,” Willey-Interscience, New York, 1983.

[7] B. T. Polyak, Introduction to Optimization. Optimization Software
New York, 1987.

[8] Y. Nesterov, Introductory lectures on convex optimization: A basic
course, vol. 87. Springer Science & Business Media, 2004.

[9] Y. Drori and M. Teboulle, “Performance of first-order methods for
smooth convex minimization: a novel approach,” Mathematical Pro-
gramming, vol. 145, no. 1-2, pp. 451–482, 2014.

[10] Y. Drori, Contributions to the Complexity Analysis of Optimization
Algorithms. PhD thesis, Tel-Aviv University, 2014.

[11] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Exact worst-case per-
formance of first-order methods for composite convex optimization,”
SIAM Journal on Optimization, vol. 27, no. 3, pp. 1283–1313, 2017.

[12] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Smooth strongly
convex interpolation and exact worst-case performance of first-order
methods,” Mathematical Programming, vol. 161, no. 1-2, pp. 307–345,
2017.

[13] E. de Klerk, F. Glineur, and A. B. Taylor, “On the worst-case
complexity of the gradient method with exact line search for smooth
strongly convex functions,” Optimization Letters, 2016.

[14] A. B. Taylor, Convex Interpolation and Performance Estimation of
First-order Methods for Convex Optimization. PhD thesis, Université
catholique de Louvain, 2017.

[15] D. Kim and J. A. Fessler, “Optimized first-order methods for smooth
convex minimization,” Mathematical Programming, vol. 159, no. 1-2,
pp. 81–107, 2016.

[16] Y. Nesterov, “A method of solving a convex programming prob-
lem with convergence rate O(1/k2)),” Soviet Mathematics Doklady,
vol. 27, pp. 372–376, 1983.

[17] Y. Drori, “The exact information-based complexity of smooth convex
minimization,” Journal of Complexity, 2016.

[18] D. Kim and J. A. Fessler, “Generalizing the optimized gradient method
for smooth convex minimization,” preprint arXiv:1607.06764, 2016.

[19] D. Kim and J. A. Fessler, “Another look at the ”Fast Iterative Shrink-
age/Thresholding Algorithm (FISTA)”,” preprint arXiv:1608.03861,
2016.

[20] Y. Drori and M. Teboulle, “An optimal variant of kelley’s cutting-plane
method,” Mathematical Programming, vol. 160, no. 1, pp. 321–351,
2016.

[21] L. Lessard, B. Recht, and A. Packard, “Analysis and design of opti-
mization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, vol. 26, no. 1, pp. 57–95, 2016.

[22] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Exact worst-case
convergence rates of the proximal gradient method for composite
convex minimization,” preprint arXiv:1705.04398, 2017.

[23] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of
smooth convex optimization with inexact oracle,” Mathematical Pro-
gramming, vol. 146, no. 1-2, pp. 37–75, 2014.

