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Abstract

We show how text from news articles can be used to predict intraday price movements of financial as-
sets using support vector machines. Multiple kernel learning is used to combine equity returns with text
as predictive features in order to increase classification performance and we develop an analytic center
cutting plane method to solve the kernel learning problem efficiently. This method exhibits linear con-
vergence but requires very few gradient evaluations (each of them a support vector machine classification
problem), making it particularly efficient on the large sample sizes considered in this application.

1 Introduction

Asset pricing models often describe the arrival of novel information by a jump process, but the characteristics
of the underlying jump process are only coarsely, if at all, related to the underlying source of information.
Similarly, time series models such as ARCH and GARCH have been developed to forecast volatility using
asset returns data but these methods also ignore one key source of market volatility: financial news. Our
objective here is to show that text classification techniques allow a much more refined analysis of the impact
of news on asset prices.

Empirical studies that examine stock return predictability can be traced back to Fama (1965) among
others, who showed that there is no significant autocorrelation in the daily returns of thirty stocks from the
Dow-Jones Industrial Average. Similar studies were conducted by Taylor (1986) and Ding et al. (1993),
who find significant autocorrelation in squared and absolutereturns (i.e. volatility). These effects are also
observed on intraday volatility patterns as demonstrated by Wood et al. (1985) and by Andersen & Bollerslev
(1997) on absolute returns. These findings tend to demonstrate that, given solely historical stock returns,
stock returns are not predictable while volatility is. The impact of news articles has also been studied
extensively. Ederington & Lee (1993) for example studied price fluctuations in interest rate and foreign
exchange futures markets following macroeconomic announcements and showed that prices mostly adjusted
within one minute of major announcements. Mitchell & Mulherin (1994) aggregated daily announcements
by Dow Jones & Companyinto a single variable and found no correlation with market absolute returns and
weak correlation with firm-specific absolute returns. However, Kalev et al. (2004) aggregated intraday news
concerning companies listed on the Australian Stock Exchange into an exogenous variable in a GARCH
model and found significant predictive power. These findingsare attributed to the conditioning of volatility
on news. Results were further improved by restricting the type of news articles included.

∗ORFE Department, Princeton University, Princeton, NJ 08544. rluss@princeton.edu
†ORFE Department, Princeton University, Princeton, NJ 08544. aspremon@princeton.edu

1



The most common techniques for forecasting volatility are often based on Autoregressive Conditional
Heteroskedasticity (ARCH) and Generalized ARCH (GARCH) models mentioned above. For example,
intraday volatility in foreign exchange and equity marketsis modeled with MA-GARCH in Andersen &
Bollerslev (1997) and ARCH in Taylor & Xu (1997). See Bollerslev et al. (1992) for a survey of ARCH and
GARCH models and various other applications. Machine learning techniques such as neural networks and
support vector machines have also been used to forecast volatility. Neural networks are used in Malliaris
& Salchenberger (1996) to forecast implied volatility of options on the SP100 index, and support vector
machines are used to forecast volatility of the SP500 index using daily returns in Gavrishchaka & Banerjee
(2006).

Here, we show that information from press releases can be used to predict intraday abnormal returns
with relatively high accuracy. Consistent with Taylor (1986) and Ding et al. (1993), however, the direction
of returns is not found to be predictable. We form a text classification problem where press releases are
labeled positive if the absolute return jumps at some (fixed)time after the news is made public. Support
vector machines (SVM) are used to solve this classification problem using both equity returns and word
frequencies from press releases. Furthermore, we use multiple kernel learning (MKL) to optimally combine
equity returns with text as predictive features and increase classification performance.

Text classification is a well-studied problem in machine learning, (Dumais et al. (1998) and Joachims
(2002) among many others show that SVM significantly outperform classic methods such as naive bayes).
Initially, naive bayes classifiers were used in Wuthrich et al. (1998) to do three-class classification of an
index using daily returns for labels. News is taken from several sources such asReutersand The Wall
Street Journal. Five-class classification with naive bayes classifiers is used in Lavrenko et al. (2000) to
classify intraday price trends when articles are publishedat theYAHOO!Financewebsite. Support vector
machines were also used to classify intraday price trends inFung et al. (2003) usingReutersarticles and in
M.-A.Mittermayer & Knolmayer (2006a) to do four-class classification of stock returns using press releases
by PRNewswire. Text classification has also been used to directly predict volatility (see M.-A.Mittermayer
& Knolmayer (2006b) for a survey of trading systems that use text). Recently, Robertson et al. (2007) used
SVM to predict if articles from theBloomberg serviceare followed by abnormally large volatility; articles
deemed important are then aggregated into a variable and used in a GARCH model similar to Kalev et al.
(2004). ? use Support Vector Regression (SVR) to forecast stock return volatility based on text in SEC
mandated 10-K reports. They found that reports published after the Sarbanes-Oxley Act of 2002 improved
forecasts over baseline methods that did not use text. Generating trading rules with genetic programming
(GP) is another way to incorporate text for financial tradingsystems. Trading rules are created in Dempster
& Jones (2001) using GP for foreign exchange markets based ontechnical indicators and extended in Austin
et al. (2004) to combine technical indicators with non-publicly available information. Ensemble methods
were used in Thomas (2003) on top of GP to create rules based onheadlines posted onYahoointernet
message boards.

Our contribution here is twofold. First, abnormal returns are predicted using text classification tech-
niques similar to M.-A.Mittermayer & Knolmayer (2006a). Given a press release, we predict whether or
not an abnormal return will occur in the next10, 20, ..., 250 minutes using text and past absolute returns.
The algorithm in M.-A.Mittermayer & Knolmayer (2006a) uses text to predict whether returns jump up 3%,
down 3%, remain within these bounds, or are “unclear” within15 minutes of a press release. They consider
a nine months subset of the eight years of press releases usedhere. Our experiments analyze predictability
of absolute returns at many horizons and demonstrate significant initial intraday predictability that decreases
throughout the trading day. Second, we optimally combine text information with asset price time series to
significantly enhance classification performance using multiple kernel learning (MKL). We use an analytic
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center cutting plane method (ACCPM) to solve the resulting MKL problem. ACCPM is particularly efficient
on problems where the objective function and gradient are hard to evaluate but whose feasible set is simple
enough so that analytic centers can be computed efficiently.Furthermore, because it does not suffer from
conditioning issues, ACCPM can achieve higher precision targets than other first-order methods.

The rest of the paper is organized as follows. Section 2 details the text classification problem we solve
here and provides predictability results using using either text or absolute returns as features. Section 3
describes the multiple kernel learning framework and details the analytic center cutting plane algorithm used
to solve the resulting optimization problem. Finally, we use MKL to enhance the prediction performance.

2 Predictions with support vector machines

Here, we describe how support vector machines can be used to make binary predictions on equity returns.
The experimental setup follows with results that use text and stock return data separately to make predictions.

2.1 Support vector machines

Support vector machines (SVMs) form a linear classifier by maximizing the distance, known asmargin,
between two parallel hyperplanes which separate two groupsof data (see Cristianini & Shawe-Taylor (2000)
for a detailed reference on SVM). This is illustrated in Figure 1 (right) where the linear classifier, defined
by the hyperplane〈w, x〉 + b = 0, is midway between the separating hyperplanes. Given a linear classifier,
the margin can be computed explicitly as2‖w‖ so finding the maximum margin classifier can be formulated
as the linearly constrained quadratic program

minimize 1
2‖w‖2 + C

l∑
i=1

ǫi

subject to yi(〈w,Φ(xi)〉 + b) ≥ 1 − ǫi

ǫi ≥ 0

(1)

in the variablesw ∈ Rd, b ∈ R, andǫ ∈ Rl wherexi ∈ Rd is theith data point withd features,yi ∈ {−1, 1}
is its label, and there arel points. The first constraint dictates that points with equivalent labels are on the
same side of the line. The slack variableǫ allows data to be misclassified while being penalized at rateC in
the objective, so SVMs also handle nonseparable data. The optimal objective value in (1) can be viewed as
an upper bound on the probability of misclassification for the given task.

These results can be readily extended to nonlinear classification. Given a nonlinear classification task,
the functionΦ : x → Φ(x) maps data from an input space (Figure 1 left) to a linearly separable feature
space (Figure 1 right) where linear classification is performed. Problem (1) becomes numerically difficult
in high dimensional feature spaces but, crucially, the complexity of solving its dual

maximize αT e − 1
2αT diag(y)Kdiag(y)α

subject to αT y = 0
0 ≤ α ≤ C

(2)

in the variablesα ∈ Rl, does not depend on the dimension of the feature space. The input to problem (2) is
now anl × l matrixK whereKij = 〈Φ(xi),Φ(xj)〉. GivenK, the mappingΦ need not be specified, hence
this l-dimensional linearly constrained quadratic program doesnot suffer from the high (possibly infinite)
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Figure 1: Input Space vs. Feature Space. For nonlinear classification, data is mapped from the input
space to the feature space. Linear classification is performed by support vector machines on mapped
data in the feature space.

dimensionality of the mappingΦ. An explicit classifier can be constructed as function ofK

f(x) = sgn(
l∑

i=1

yiα
∗
i K(xi, x) + b∗) (3)

wherexi is theith training sample in input space,α∗ solves (2), andb∗ is computed from the KKT conditions
of problem (1).

The data features are entirely described by the matrixK, which is called a kernel and must satisfy
K � 0, i.e. K is positive-semidefinite (this is called Mercer’s condition in machine learning). IfK � 0,
then there exists a mappingΦ such thatKij = 〈Φ(xi),Φ(xj)〉. Thus, SVMs only require as input akernel
function k : (xi, xj) → Kij such thatK � 0. Table 1 lists several classic kernel functions used in text
classification, each corresponding to a different implicitmapping to feature space.

Linear kernel k(xi, xj) = 〈xi, xj〉
Gaussian kernel k(xi, xj) = e−‖xi−xj‖

2/σ

Polynomial kernel k(xi, xj) = (〈xi, xj〉 + 1)d

Bag-of-words kernel k(xi, xj) =
〈xi,xj〉
‖xi‖‖xj‖

Table 1: Several classic kernel functions.

Many efficient algorithms have been developed for solving the quadratic program (2). A common tech-
nique uses sequential minimal optimization (SMO), which iscoordinate descent where all but two variables
are fixed and the remaining two-dimensional problem is solved explicitly. All experiments in this paper use
the LIBSVM Chang & Lin (2001) package implementing this method.
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2.2 Data

Data vectorsxi in the following experiments are formed using text featuresand equity returns features. Text
features are extracted from press releases as abag-of-words. A fixed set of important words referred to
as the dictionary is predetermined; in this instance, 619 words such asincrease, decrease, acqui, lead, up,
down, bankrupt, powerful, potential, and integrat are considered. Stems of words are used so that words
such asacquiredandacquisitionare considered identical. We use the followingMicrosoftpress release and
its bag-of-words representation in Figure 2 as an example. Here,xij is the number of times that thejth word
in the dictionary occurs in theith press release.

LONDON Dec. 12, 2007 Microsoft Corp. hasacquired Multimap, one of the United Kingdoms top 100 technology
companies and one of theleading online mapping services in the world. Theacquisition gives Microsoft apowerful
new location and mapping technology to complement existingofferings such as Virtual Earth, Live Search, Windows
Live services, MSN and the aQuantive advertising platform,with future integration potential for a range of other
Microsoft products and platforms. Terms of the deal were notdisclosed.

increas decreas acqui lead up down bankrupt powerful potential integrat
0 0 2 1 0 0 0 1 1 1

Figure 2: Example ofMicrosoft press release and the corresponding bag-of-words representation.
Note that words in the dictionary are stems.

These numbers are transformed using term frequency-inverse document frequency weighting (tf-idf)
defined by

TF-IDF(i, j) = TF(i, j) · IDF(i), IDF(i) = log N
DF(i) (4)

where TF(i, j) is the number of times that termi occurs in documentj (normalized by the number of
words in documentj) and DF(i) is the number of documents in which termi appears. This weighting
increases the importance of words that show up often within adocument but also decreases the importance
of terms that appear in too many documents because they are not useful for discrimination. Other advanced
text representations include latent semantic analysis (Deerwester et al. 1990), probabilistic latent semantic
analysis (Hofmann 2001), and latent dirichlet allocation (Blei et al. 2003). In regards to equity return
features,xi corresponds to a time series of 5 returns (taken at 5 minute intervals and calculated with 15
minute lags) based on equity prices leading up to the time when the press release is published. Press releases
published before 10:10 am thus do not have sufficient stock price data to create the equity returns features
used here and most experiments will only consider news published after 10:10 am.

Experiments are based on press releases issued during the eight year period 2000-2007 byPRNewswire.
We focus on news related to publicly traded companies that issued at least 500 press releases through
PRNewswirein this time frame. Press releases tagged with multiple stock tickers are discarded from ex-
periments. Intraday price data is taken from theNYSE Trade and Quote Database (TAQ)throughWharton
Research Data Services.

The eight year horizon is divided into monthly data. In orderto simulate a practical environment, all
decision models are calibrated on one year of press release data and used to make predictions on articles
released in the following month; thus all tests are out-of-sample. After making predictions on a particular
month, the one year training window slides forward by one month as does the one month test window.

Price data is used for each press release for a fixed period prior to the release and at each 10 minute
interval following the release of the article up to 250 minutes. When, for example, news is released at 3
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pm, price data exists only for 60 minutes following the news (because the business day ends at 4 pm), so
this particular article is discarded from experiments thatmake predictions with time horizons longer than
60 minutes. Overall, this means that training and testing data sizes decrease with the forecasting horizon.
Figure 3 displays the overall amount of testing data (left) and the average amount of training and testing
data used in each time window (right).
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Figure 3: Aggregate (over all windows) amount of test press releases (left) and average train-
ing/testing set per window (right). Average training and testing windows are one year and one
month, respectively. Aggregated test data over all windowsis used to calculate all performance
measures.

2.3 Performance Measures

Most kernel functions in Table 1 contain parameters requiring calibration. A set of reasonable values for each
parameter is chosen, and for each combination of parameter values, we performn-fold cross-validation to
optimize parameter values. Training data is separated inton equal folds. Each fold is pulled out successively,
and a model is trained on the remaining data and tested on the extracted fold. A predefined classification
performance measure is averaged over then test folds and the optimal set of parameters is determined as
those that give the best performance. Since the distribution of words occurring in press releases may change
over time, we perform chronological one-fold cross validation here. Training data is ordered according to
release dates, after which a model is trained on all news published before a fixed date and tested on the
remaining press releases (the single fold). Several potential measures are defined in Table 2. Note that the
SVM Problem (2) also has a parameterC that must be calibrated using cross-validation.

Beyond standard accuracy and recall measures, we measure prediction performance with a more fi-
nancially intuitive metric, the Sharpe ratio, defined here as the ratio of the expected return to the standard
deviation of returns, for the following (fictitious) trading strategy: every time a news article is released, a
bet is made on the stock return and we either win or lose $1 according to whether or not the prediction is
correct. Daily returns are computed as the return of playingthis game on each press release published on
a given day. The Sharpe ratio is estimated using the mean and standard deviation of these daily returns,
then annualized. Additional results are given using the classic performance measure: accuracy, defined as
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Annualized sharpe ratio:
√

T E[r]
σ

Accuracy: TP+TN
TP+TN+FP+FN

Recall: TP
TP+FN

Table 2: Performance measures.T is the number of periods per year (12 for monthly, 252 for
daily). E[r] is the expected return per period of a given trading strategy, andσ is the standard
deviation ofr. For binary classification,TP , TN , FP , andFN are, respectively, true positives,
true negatives, false positives, and false negatives.

the percentage of correct predictions made, however all results are based on cross-validating over Sharpe
ratios. Accuracy is displayed due to its intuitive meaning in binary classification, but it has no direct finan-
cial interpretation. Another potential measure is recall,defined as the percentage of positive data points that
are predicted positive. In general, a tradeoff between accuracy and recall would be used as a measure in
cross-validation. Here instead, we tradeoff risk versus returns by optimizing the Sharpe ratio.

2.4 Predicting equity movements with text or returns

Support vector machines are used here to make predictions onstock returns when news regarding the com-
pany is published. In this section, the input feature vectorto SVM is either a bag-of-words text vector or a
time series of past equity returns, as SVM only inputs a single feature vector. Predictions are considered at
every 10 minute interval following the release of an articleup to either a maximum of 250 minutes or the
close of the business day; i.e. if the article comes out at 10:30 am, we make predictions on the equity returns
at 10:40 am, 10:50 am, ... , until 2:40 pm. Only articles released during the business day are considered
here.

Two different classification tasks are performed. In one experiment, the direction of returns is predicted
by labeling press releases according to whether the future return is positive or negative. In the other ex-
periment, we predict abnormal returns, defined as an absolute return greater than a predefined threshold.
Different thresholds correspond to different classification tasks and we expect larger jumps to be easier to
predict than smaller ones because the latter may not correspond to true abnormal returns. This will be
verified in experiments below.

Performance of predicting the direction of equity returns following press releases is displayed in Figure 4
and shows the weakest performance, using either a time series of returns (left) or text (right) as features. No
predictability is found in the direction of equity returns (since the Sharpe ratio is near zero and the accuracy
remains close to 50%). This is consistent with the literature regarding stock return predictability. All results
displayed here using a single feature type use linear kernels. Instead of the fictitious trading strategy used
for abnormal return predictions, directional results use abuy and sell (or sell and buy) strategy based on the
true equity returns. Similar performance using gaussian kernels was observed in independent experiments.

While predicting direction of returns is a difficult task, abnormal returns appear to be predictable using
either a time series of absolute returns or the text of press releases. Figure 4 shows that a time series of
absolute returns contains useful information for intradaypredictions (left), while even better predictions can
be made using text (right). The threshold for defining abnormal returns in each window is the75th percentile
of absolute returns observed in the training data.

As described above, experiments with returns features onlyuse news published after 10:10 am. Thus,
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performance using text kernels is given for both the full data set with all press released during the business
day as well as the reduced data set to compare against experiments with returns features. Performance from
the full data set is also broken down according to press released before and after 10:10 am. The difference
between the curves labeled≥10:10 AM and≥10:10 AM2 is that the former trains models using the complete
data set including articles released at the open of the business day while the latter does not use the first 40
minutes of news to train models. The difference in performance might be attributed to the importance of
these articles. The Sharpe ratio using the reduced data set is greater than that for news published before 10:10
am because fewer articles are published in the first 40 minutes than are published during the remainder of
the business day.

Note that these very high Sharpe ratio are most likely due to the simplestrategythat is traded here; this
does not imply that such a high Sharpe ratio can be generated in practice but rather indicates a potential
statistical arbitrage. The decreasing trend observed in all performance measures over the intraday time
horizon is intuitive: public information is absorbed into prices over time, hence articles slowly lose their
predictive power as the prediction horizon increases.

Figure 5 compares performance in predicting abnormal returns when the threshold is taken at either
the 50th or 85th percentile of absolute returns within the training set. Results using gaussian kernels and
annualized Sharpe ratios (using daily returns) are shown here. Decreasing the threshold to the50th per-
centile slightly decreases performance when using absolute returns. However, there is a huge decrease in
performance when using text. Increasing the threshold to the85th percentile improves performance relative
to the75th percentile in all measures. This demonstrates the sensitivity of performance with respect to this
threshold. The50th percentile of absolute returns from the data set is not largeenough to define atrue
abnormal return, whereas the75th and85th percentiles do define abnormal jumps. Absolute returns are
known to have predictability for small movements, but the question remains as to why text is a poor source
of information for predicting small jumps. Figure 6 illustrates the impact of this percentile threshold on
performance. Predictions are made 20 minutes into the future. For 25-35% of press releases, news has a
bigger impact on future returns than past market data.

2.5 Time of Day Effect

Other publicly available information aside from returns and text should be considered when predicting
movements of equity returns. The time of day has a strong impact on absolute returns, as demonstrated by
Andersen & Bollerslev (1997) for the S&P 500. Figure 7 shows the time of day effect following the release
of press from thePRNewswiredata set. It is clear that absolute returns following press released early (and
late) in the day are on average much higher than during midday.

We use the time stamp of the press release as a feature for making the same predictions as above. A
binary feature vectorx ∈ R3 is created to label each press release as published before 10:30 am, after 3 pm,
or in between. Linear kernels are created from these features and used in SVM for the same experiments
as above with absolute returns and text features and resultsare displayed in Figure 8. Note that gaussian
kernels have exactly the same performance when using these binary features. As was done for the analysis
with text data, performance is shown when using all press released during the business day as well as the
reduced data set with news only published after 10:10 am (labels are the same as were described for text).
Training SVM with data from the beginning of the day is clearly important since the curve labeled≥10:10
AM2 has the weakest performance.

The improved performance of the curve labeled≥10:10 AM over≥10:10 AM2 can be attributed to the
pattern seen in Figure 7. Training with the full data set allows the model to distinguish between absolute
returns early in the day versus midday. Similar experimentsusing day of the week features showed very
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Figure 4: Accuracy and annualized daily Sharpe ratio for predicting abnormal returns (Abn) or
direction of returns (Dir) using returns and text data with linear kernels. Performance using text is
given for both the full data set as well as the reduced data setthat is used for experiments with returns
features. The curves labeled with≥10:10 AM trains models using the complete data set including
articles released at the open of the business day while the curved labeled with≥10:10 AM2 does not
use the first 40 minutes of news to train models. Each pointzon the x-axis corresponds to predicting
an abnormal returnz minutes after each press release is issued. The75th percentile of absolute
returns observed in the training data is used as the threshold for defining an abnormal return.

weak performance and are thus not displayed. While the time of day effect exhibits predictability, note
that the experiments with text and absolute returns data do not use any time stamp features and hence
performance with text and absolute returns should not be attributed to any time of day effects. Furthermore,
experiments below for combining the different pieces of publicly available information will show that these
time of day effects are less useful than the text and returns data. There are of course other related market
microstructure effects that could be useful for predictability, such as the amount of news released throughout
the day, etc.
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Figure 5: Accuracy and annualized daily Sharpe ratio for predicting abnormal returns using returns
and text data with linear kernels. Each pointz on the x-axis corresponds to predicting an abnormal
returnz minutes after each press release is issued. The50th and85th percentile of absolute returns
observed in the training data are used as thresholds for defining abnormal returns.
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Figure 6: Accuracy and annualized sharpe ratio for predicting abnormal returns 20 minutes into the
future as the percentile for thresholds is increased from 50% to 95%. Linear kernels with absolute
returns and text are used. For 25-35% of press releases, newshas a bigger impact on future returns
than past market data.

2.6 Predicting daily equity movements and trading covered call options

While the main focus is intraday movements, we next use text and absolute returns to make daily predictions
on abnormal returns and show how one can trade on these predictions. These experiments use the same text
data as above for a subset of 101 companies (daily options data was not obtained for all companies). Returns
data is also an intraday time series as above, but is here computed as the 5, 10, ..., 25 minute return prior
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Figure 7: Average absolute (10 minute) returns following press released during the business day.
Red lines are drawn between business days.
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Figure 8: Accuracy and annualized daily sharpe ratio for predicting abnormal returns using time of
day. Performance using time of day is given for both the full data set as well as the reduced data
set that is used for experiments with returns features. The curves labeled with≥10:10 AM trains
models using the complete news data set including articles released at the open of the business day
while the curved labeled with≥10:10 AM2 does not use the first 40 minutes of news to train models.
Each pointz on the x-axis corresponds to predicting an abnormal returnz minutes after each press
release is issued. The75th percentile of absolute returns observed in the training data are used as
thresholds for defining abnormal returns.

to press releases. Daily equity data is obtained from theYAHOO!Financewebsite and the options data is
obtained usingOptionMetricsthroughWharton Research Data Services.

Rather than the fictitious trading strategy above, delta-hedged covered call options are used to bet on
abnormal returns (intraday options data was not available hence the use of a fictitious strategy above). In
order to bet on the occurrence of an abnormal return, the strategy takes a long position in a call option, and,
since the bet is not on the direction of the price movement, the position is kept delta neutral by taking a
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short position in delta shares of stock (delta is defined as the change in call option price resulting from a
$1 increase in stock price, here taken from theOptionMetricsdata). The position is exited the following
day by going short the call option and long delta shares of stock. A bet against an abnormal return takes
the opposite positions. Equity positions use the closing prices following the release of press and the closing
price the following day. Option prices (buy and sell) use an average of the best bid and ask price observed
on the day of the press release. To normalize the size of positions, we always take a position in delta times
$100 worth of the respective stock and the proper amount of the call option.

The profit and loss (P&L) of these strategies is displayed in Figure 9 using the equity and options data.
The left side show the the P&L of predicting that an abnormal return will occur and the right side shows the
P&L of predicting no price movement. There is a potentially large upside to predicting abnormal returns,
however only a limited upside to predicting no movement, while an incorrect prediction of no movement has
a potentially large downside. Text features were used in therelated experiments, but figures using returns
features do exhibit similar patterns.
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Figure 9: Profit and Loss (P&L) of trading delta-hedged covered call options. The left figure
displays the P&L of trading on predictions that an abnormal return follows the release of press
while the right displays the P&L resulting from predictionsthat no abnormal return occurs. There is
a potentially large upside to predicting abnormal returns,however only a limited upside to predicting
no movement, while an incorrect prediction of no movement has a potentially large downside. Text
features were used in the related experiments, but figures using returns features do exhibit similar
patterns.

Table 3 displays results for three strategies. TRADE ALL makes the appropriate trade based on all
predictions, LONG ONLY takes positions only when an abnormal return is predicted, and SHORT ONLY
takes positions only when no price movement is predicted. The75th percentile of absolute returns observed
in the training data are used as thresholds for defining abnormal returns. The results imply that the downside
of predicting no movement greatly decreases the performance. The LONG ONLY strategy performs best
due to the large upside and only limited downside. In addition, the number of no movement predictions
made using absolute returns features is much larger than when using text. This is likely the cause of the
negative Sharpe ratio for TRADE ALL with absolute returns. Results using higher thresholds show similar
performance trends and the associated P&L figures have even clearer U-shaped patterns (not displayed).

These results do not account for transaction costs. Separate experiments set the buy and sell option
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Features Strategy Accuracy Sharpe Ratio # Trades

Text TRADE ALL .63 .75 3752

Abs Returns TRADE ALL .54 -1.01 3752

Text LONG ONLY .63 2.02 1953

Abs Returns LONG ONLY .54 1.15 597

Text SHORT ONLY .62 -1.28 1670

Abs Returns SHORT ONLY .54 -1.95 3155

Table 3: Performance of delta-hedged covered call option strategies. TRADE ALL makes the
appropriate trade based on all predictions, LONG ONLY takespositions only when an abnormal
return is predicted, and SHORT ONLY takes positions only when no price movement is predicted.
The 75th percentile of absolute returns observed in the training data are used as thresholds for
defining abnormal returns.

prices to the worst bid and ask prices available, however these significant changes performed poorly which
could be seen by large negative shifts in the relevant P&L figures. In practice, transaction fees such as a
fixed cost per transaction would be desired.

3 Combining text and returns

We now discuss multiple kernel learning (MKL), which provides a method for optimally combining text
with return data in order to make predictions. A cutting plane algorithm amenable to large-scale kernels is
described and compared with another recent method for MKL.

3.1 Multiple kernel learning framework

Multiple kernel learning (MKL) seeks to minimize the upper bound on misclassification probability in (1)
by learning an optimal linear combination of kernels (see Bousquet & Herrmann (2003), Lanckriet et al.
(2004a), Bach et al. (2004), Ong et al. (2005), Sonnenberg etal. (2006), Rakotomamonjy et al. (2008), Zien
& Ong (2007), Micchelli & Pontil (2007)). The kernel learning problem as formulated in Lanckriet et al.
(2004a) is written

min
K∈K

ωC(K) (5)

whereωC(K) is the minimum of problem (1) and can be viewed as an upper bound on the probability of
misclassification. For general setsK, enforcing Mercer’s condition (i.e.K � 0) on the kernelK ∈ K
makes kernel learning a computationally challenging task.The MKL problem in Lanckriet et al. (2004a) is
a particular instance of kernel learning and solves problem(5) with

K = {K ∈ Sn : K =
∑

i diKi,
∑

i di = 1, d ≥ 0} (6)

whereKi � 0 are predefined kernels. Note that cross-validation over kernel parameters is no longer required
because a new kernel is included for each set of desired parameters; however, calibration of theC parameter
to SVM is still necessary. The kernel learning problem in (5)can be written as a semidefinite program
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when there are no nonnegativity constraints on the kernel weights d in (6) as shown in Lanckriet et al.
(2004a). There are currently no semidefinite programming solvers that can handle large kernel learning
problem instances efficiently. The restrictiond ≥ 0 enforces Mercer’s condition and reduces problem (5) to
a quadratically constrained optimization problem

maximize αT e − λ
subject to αT y = 0

0 ≤ α ≤ C
λ ≥ 1

2αT diag(y)Kidiag(y)α ∀i

(7)

This problem is still numerically challenging for large-scale kernels and several algorithmic approaches have
been tested since the initial formulation in Lanckriet et al. (2004a).

The first method, described in Bach et al. (2004) solves a smooth reformulation of the nondifferentiable
dual problem obtained by switching the max and min in problem(5)

minimize αT e − maxi{1
2αT diag(y)Kidiag(y)α}

subject to αT y = 0
0 ≤ α ≤ C

(8)

in the variablesα ∈ Rn. A regularization term is added in the primal to problem (8),which makes the
dual a differentiable problem with the same constraints as SVM. A sequential minimal optimization (SMO)
algorithm that iteratively optimizes over pairs of variables is used to solve problem (8).

Other approaches for solving larger scale problems are written as a wrapper around an SVM computa-
tion. For example, an approach detailed in Sonnenberg et al.(2006) solves the semi-infinite linear program
(SILP) formulation

maximize λ
subject to

∑
i di = 1

d ≥ 0
1
2αT diag(y)(

∑
i diKi)diag(y)α − αT e ≥ λ

for all α with αT y = 0, 0 ≤ α ≤ C

(9)

in the variablesλ ∈ R, d ∈ RK . This problem can be derived from (5) by moving the objectiveωC(K) to
the constraints. The algorithm iteratively adds cutting planes to approximate the infinite linear constraints
until the solution is found. Each cut is found by solving an SVM using the current kernel

∑
i diKi. This

formulation is adapted to multiclass MKL in Zien & Ong (2007)where a similar SILP is solved. The latest
formulation in Rakotomamonjy et al. (2008) is

min J(d) s.t.
∑

i

di = 1, di ≥ 0 (10)

where

J(d) = max
{0≤α≤C,αT y=0}

αT e − 1

2
αT diag(y)(

∑

i

diKi)diag(y)α (11)

is simply the initial formulation of problem (5) with the constraints in (6) plugged in. The authors consider
the objectiveJ(d) as a differentiable function ofd with gradient calculated as:

∂J

∂di
= −1

2
α∗T diag(y)Kidiag(y)α∗ (12)
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whereα∗ is the optimal solution to SVM using the kernel
∑

i diKi. This becomes a smooth minimization
problem subject to box constraints and one linear equality constraint which is solved using a reduced gra-
dient method with a line search. Each computation of the objective and gradient requires solving an SVM.
Experiments in Rakotomamonjy et al. (2008) show this methodto be more efficient compared to the semi-
infinite linear program solved above. More SVMs are requiredbut warm-starting SVM makes this method
somewhat faster. Still, the reduced gradient method suffers numerically on large kernels as it requires com-
puting many gradients, hence solving many numerically expensive SVM classification problems.

3.2 Multiple kernel learning via an analytic center cutting plane method

We next detail a more efficient algorithm for solving problem(10) that requires far less SVM computations
than gradient descent methods. The analytic center cuttingplane method (ACCPM) iteratively reduces the
volume of a localizing setL containing the optimum usingcutsderived from a first order convexity property
until the volume of the reduced localizing set converges to the target precision. At each iterationi, a new
center is computed in a smaller localizing setLi and a cut through this point is added to splitLi and create
Li+1. The method can be modified according to how the center is selected; in our case the center selected
is the analytic center ofLi defined below. Note that this method does not require differentiability but still
exhibits linear convergence.

We setL0 = {d ∈ Rn|∑i di = 1, di ≥ 0} which we can write as{d ∈ Rn|A0d ≤ b0} (the single
equality constraint can be removed by a different parameterization of the problem) to be our first localization
set for the optimal solution. Our method is then described asAlgorithm 1 below (see Bertsekas (1999) for
a more complete reference on cutting plane methods). The complexity of each iteration breaks down as
follows.

• Step 1.This step computes the analytic center of a polyhedron and can be solved inO(n3) operations
using interior point methods for example.

• Step 2.This step updates the polyhedral description. Computationof ∇J(d) requires a single SVM
computation which can be speeded up by warm-starting with the SVM solution of the previous itera-
tion.

• Step 3.This step requires ordering the constraints according to their relevance in the localization set.
One relevance measure for thejth constraint at iterationi is

aT
j ∇2f(di)

−1aj

(at
jdi − bj)2

(13)

wheref is the objective function of the analytic center problem. Computing the hessian is easy: it
requires matrix multiplication of the formAT DA whereA is m × n (matrix multiplication is kept
inexpensive in this step by pruning redundant constraints)andD is diagonal.

• Step 4. An explicit duality gap can be calculated at no extra cost at each iteration because we can
obtain the dual MKL solution without further computations.The duality gap (as shown in Rakotoma-
monjy et al. (2008)) is:

max
i

(α∗T diag(y)Kidiag(y)α∗) − α∗T diag(y)(
∑

i

diKi)diag(y)α∗ (14)

whereα∗ is the optimal solution to SVM using the kernel
∑

i diKi.
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Algorithm 1 Analytic center cutting plane method
1: Computedi as the analytic center ofLi={d ∈ Rn|Aid ≤ bi} by solving:

di+1 = argmin
y∈Rn

−
m∑

i=1

log(bi − aT
i y)

whereaT
i represents theith row of coefficients fromAi in Li, m is the number of rows inAi, andn is

the dimension ofd (the number of kernels).
2: Compute∇J(d) from (12) at the centerdi+1 and update the (polyhedral) localization set:

Li+1 = Li ∩ {d ∈ Rn|∇J(di+1)(d − di+1) ≥ 0}

3: If m ≥ 3n, reduce the number of constraints to3n.
4: If gap≤ ǫ stop, otherwise go back to step 1.

Complexity. ACCPM is provably convergent inO(n(log 1/ǫ)2) iterations when using a cut elimination
scheme as in Atkinson & Vaidya (1995) which keeps the complexity of the localization set bounded. Other
schemes are available with slightly different complexities: O(n2/ǫ2) is achieved in Goffin & Vial (2002)
using (cheaper) approximate centers for example. In practice, ACCPM usually converges linearly as seen
in Figure 10 (left) which uses kernels of dimension 500 on text data. To illustrate the affect of increasing
the number of kernels on the analytic center problem, Figure10 (right) shows CPU time increasing as the
number of kernels increases.
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Figure 10: The convergence semilog plot for ACCPM (left) shows averagegap versus iteration
number. We plot CPU time for the first 10 iterations versus number of kernels (right). Both plots
give averages over 20 experiments with dashed lines at plus and minus one standard deviation. In
all these experiments, ACCPM converges linearly to a high precision.

Gradient methods such as the reduced gradient method used insimpleMKL converge linearly (see Lu-
enberger (2003)), but require expensive line searches. Therefore, while gradient methods may sometimes
converge linearly at a faster rate than ACCPM on certain problems, they are often much slower due to the

16



need to solve many SVM problems per iteration. Empirically,gradient methods tend to require many more
gradient evaluations than the localization techniques discussed here. ACCPM computes the objective and
gradient exactly once per iteration and the analytic centerproblem remains relatively cheap with respect
to the SVM computation because the dimension of the analyticcentering problem (i.e. the number of ker-
nels) is small in our application. Thresholding small kernel weights in MKL to zero can further reduce the
dimension of the analytic center problem.

3.3 Computational Savings

As described above, ACCPM computes one SVM computation per iteration and converges linearly. We
compare this method, which we denote accpmMKL, with the simpleMKL algorithm which uses a reduced
gradient method and also converges fast but computes many more SVMs to perform line searches. The
SVMs in the line search are speeded up using warm-starting asdescribed in Rakotomamonjy et al. (2008)
but in practice, we observe that savings in MKL from warm-starting often do not suffice to make this gradient
method more efficient than ACCPM.

Few kernels are usually required in MKL because most kernelscan be eliminated more efficiently be-
forehand using cross-validation, hence we use several families of kernels (linear, gaussian, and polynomial)
but very few kernels from each family. Each experiment uses one linear kernel and the same number of
gaussian and polynomial kernels giving a total of 3, 7, and 11kernels (each normalized to unit trace) in
each experiment. We set the duality gap to .01 (a very loose gap) andC to 1000 (after cross-validation
for C ranging between 500 and 5000) for each experiment in order tocompare the algorithms on identical
problems. For fairness, we compare simpleMKL with our implementation of accpmMKL using the same
SVM package in simpleMKL which allows warm-starting (The SVM package in simpleMKL is based on
the SVM-KM toolbox (Canu et al. 2005) and implemented in Matlab.). In the final column, we also give
the running time for accpmMKL using the LIBSVM solver without warm-starting. The following tables
demonstrate computational efficiency and do not show predictive performance; both algorithms solve the
same optimization problem with the same stopping criterion. High precision for MKL does not significantly
increase prediction performance. Results are averages over 20 experiments done on Linux 64-bit servers
with 2.6 GHz CPUs.

Table 4 shows that ACCPM is more efficient for the multiple kernel learning problem in a text classi-
fication example. Savings from warm-starting SVM in simpleMKL do not overcome the benefit of fewer
SVM computations at each iteration in accpmMKL. Furthermore, using a faster SVM solver such as LIB-
SVM produces better performance even without warm-starting. The number of kernels used in accpmMKL
is higher than with simpleMKL because of the very loose duality gap here. The reduced gradient method
of simpleMKL often stops at a much higher precision because the gap is checked after a line search that
can achieve high precision in a single iteration and it is this higher precision that reduces the number of
kernels. However, for a slightly higher precision, simpleMKL will often stall or converge very slowly; the
method is very sensitive to the target precision. The accpmMKL method stops at the desired duality (mean-
ing more kernels) because the gap is checked at each iteration during the linear convergence; however, the
convergence is much more stable and consistent for all data sets. For accpmMKL, the number of SVMs is
equivalent to the number of iterations.

Table 5 shows an example where accpmMKL is outperformed by simpleMKL. This occurs when the
classification task is extremely easy and the optimal mix of kernels is a singleton. In this case, simpleMKL
converges with fewer SVMs. Note though that accpmMKL with LIBSVM is still faster here. Both examples
illustrate that simpleMKL trains many more SVMs whenever the optimal mix of kernels includes more than
one input kernel. Overall, accpmMKL has the advantages of consistent convergence rates for all data sets,

17



Max simpleMKL accpmMKL
Dim # Kern # Kern # Iters # SVMs Time # Kern # SVMs Time Time (LIBSVM)

500
3 2.0 3.4 27.2 48.6 3.0 7.1 13.7 0.6
7 2.6 3.4 39.5 47.9 7.0 12.0 15.5 1.8
11 3.6 3.2 41.0 37.3 10.9 15.3 17.4 3.3

1000
3 2.0 2.0 29.3 164.5 3.0 6.3 36.7 2.4
7 2.4 3.6 53.3 240.3 6.8 11.7 40.0 6.8
11 3.9 3.6 57.8 214.6 10.6 14.9 48.1 12.7

2000
3 2.0 1.0 24.0 265.8 3.0 5.0 79.4 7.2
7 3.3 1.5 30.4 209.6 7.0 10.5 110.5 25.2
11 6.0 2.3 40.5 253.2 11.0 14.4 141.4 46.5

3000
3 2.0 1.0 24.0 435.5 3.0 6.0 248.9 17.9
7 4.0 2.0 38.0 591.4 7.0 6.8 221.7 39.0
11 6.0 2.0 39.8 648.9 11.0 8.0 244.8 66.8

Table 4: Numerical performance of simpleMKL versus accpmMKL for classification on text clas-
sification data. accpmMKL outperforms simpleMKL in terms ofSVM iterations and time. Using
LIBSVM to solve SVM problems further enhances performance.Results are averages over 20 runs.
Experiments are done using the SVM solver in the simpleMKL toolbox except for the final column
which uses LIBSVM. Time is in seconds. Dim is the number of training samples in each kernel.

fewer SVM computations for relevant data sets, and the ability to achieve high precision targets.

Max simpleMKL accpmMKL
Dim # Kern # Kern # Iters # SVMs Time # Kern # SVMs Time Time (LIBSVM)

500
3 2.0 1.9 32.8 22.3 2.0 11.1 5.8 0.8
7 1.6 2.8 22.6 19.2 7.0 14.7 3.7 1.9
11 1.0 2.0 11.6 7.1 8.2 20.4 9.1 4.1

1000
3 2.0 2.0 32.6 70.6 3.0 5.0 8.7 1.5
7 1.0 2.0 9.9 10.6 7.0 15.7 17.2 8.2
11 1.0 2.0 11.6 38.4 8.0 21.0 48.6 16.8

2000
3 1.0 1.0 4.0 36.5 3.0 6.0 41.8 7.0
7 1.0 2.0 10.3 54.0 7.0 16.0 85.5 34.0
11 1.0 2.0 12.1 261.7 8.0 21.0 294.8 67.5

3000
3 1.0 1.0 4.0 89.4 3.0 6.0 100.9 15.1
7 1.0 2.0 10.5 158.3 7.0 16.0 235.4 79.9
11 1.0 2.0 12.2 925.9 8.0 21.0 959.5 163.4

Table 5: Numerical performance of simpleMKL versus accpmMKL for classification onUCI
Mushroom Data. simpleMKL outperforms accpmMKL when the classification task is very easy,
demonstrated by optimality of a single kernel, but otherwise performs slower. Experiments are done
using the SVM solver in the simpleMKL toolbox except for the final column which uses LIBSVM.
Time is in seconds. Dim is the number of training instances ineach kernel.
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3.4 Predicting abnormal returns with text and returns

Multiple kernel learning is used here to combine text with returns data in order to predict abnormal equity
returns. KernelsK1, ...,Ki are created using only text features as done in Section 2.4 and additional kernels
Ki+1, ...,Kd are created from a time series of absolute returns. Experiments here use one linear and four
Gaussian kernels, each normalized to have unit trace, for each feature type. The MKL problem is solved
usingK1, ...Kd, two linear kernels based on time of day and day of week, and anadditional identity matrix
in K described by (6); hence we obtain a single optimal kernelK∗ =

∑
i d

∗
i Ki that is a convex combination

of the input kernels. The same technique (referred to as datafusion) was applied in Lanckriet et al. (2004b)
to combine protein sequences with gene expression data in order to recognize different protein classes.

Performance using the75th percentile of absolute returns as a threshold for abnormality are displayed in
Figure 11. Results from Section 2.4 that use SVM with a text and absolute returns linear kernels are super-
imposed with the performance when combining text, absolutereturns, and time stamps. While predictions
using only text or returns exhibit good performance, combining them significantly improves performance in
both accuracy and annualized daily Sharpe ratio.

0 50 100 150 200 250
0.45

0.5

0.55

0.6

0.65

0.7

0.75

 

 
Multiple
Text
AbsReturns

Accuracy using Multiple Kernels

A
cc

u
ra

cy

Minutes
0 50 100 150 200 250

0

2

4

6

8

10

12

14

16

 

 
Multiple
Text
AbsReturns

Sharpe Ratio using Multiple Kernels

S
h

ar
p

e
R

at
io

Minutes

Figure 11: Accuracy and sharpe ratio using multiple kernels. MKL mixes13 possible kernels (1
linear text, 1 linear absolute returns, 4 gaussian text, 4 gaussian absolute returns, 1 linear time of
day, 1 linear day of week, 1 identity matrix). Each pointzon the x-axis corresponds to predicting an
abnormal returnzminutes after each press release is issued. The75th percentile of absolute returns
observed in the training data is used as the threshold for defining an abnormal return.

We next analyze the impact of the various kernels. Figure 12 displays the optimal kernel weightsdi

found from solving (10) at each time horizon (weights are averaged from results over each window). Kernel
weights are represented as colored fractions of a single barof length one. The five kernels with the largest
coefficients are two gaussian text kernels, a linear text kernel, the identity kernel, and one gaussian absolute
returns kernels. Note that the magnitudes of the coefficients are not perfectly indicative of importance of the
respective features. Hence, the optimal mix of kernels heresupports the above evidence that mixing news
with absolute returns improves performance. Another important observation is that kernel weights remain
relatively constant over time. Each bar of kernel weights corresponds to an independent classification task
(i.e. each predicts abnormal returns at different times in the future) and the persistent kernel weights imply
that combining important kernels detects a meaningful signal beyond that found by using only text or return
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features.
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Figure 12: Optimal kernel coefficients when using when using 13 possible kernels (1 linear text,
1 linear absolute returns, 4 gaussian text, 4 gaussian absolute returns, 1 linear time of day, 1 linear
day of week, 1 identity matrix) with75th percentile threshold to define abnormal returns. Only the
top 5 kernels are labeled. Each pointz on the x-axis corresponds to predicting an abnormal returnz
minutes after each press release is issued.

Figure 13 shows the performance of using multiple kernels for predicting abnormal returns when we
change the threshold to the50th and85th percentiles of absolute returns in the training data. In both cases,
there is a slight improvement in performance from using single kernels. Figure 14 displays the optimal
kernel weights for these experiments, and, indeed, both experiments use a mix of text and absolute returns.
Previously, text was shown to have more predictability witha higher threshold while absolute returns per-
formed better with a lower threshold. Kernel weights here versus those with the75th percentile threshold
reflect this observation.

3.5 Sensitivity of MKL

Successful performance using multiple kernel learning is highly dependent on a proper choice of input
kernels. Here, we show that high accuracy of the optimal mix of kernels is not crucial for good performance,
while including the optimal kernels in the mix is necessary.In addition, we show that MKL is insensitive to
the inclusion of kernels with no information (such as randomkernels). The following four experiments with
different kernels sets exemplify these observations. First, only linear kernels using text, absolute returns,
time of day, and day of week are included. Next, an equal weighting (di = 1/13) for thirteen kernels
(one linear and four gaussian each from text and absolute returns, one linear for each time of day and day
of week, and an identity kernel) is used. Another test performs MKL using the same thirteen kernels in
addition to three random kernels and a final experiment uses four bad gaussian kernels (two text and two
absolute returns).

Figure 15 displays the accuracy and Sharpe ratios of these experiments. Performance using only linear
kernels is high since linear kernels achieved equivalent performance to gaussian kernels using SVM. Adding
three random kernels to the mix of thirteen kernels that achieve high performance does not significantly

20



0 50 100 150 200 250
0.45

0.5

0.55

0.6

0.65

0.7

0.75

 

 
Multiple 50
Multiple 85

Accuracy using Multiple Kernels
A

cc
u

ra
cy

Minutes
0 50 100 150 200 250

0

2

4

6

8

10

12

14

16

 

 
Multiple 50
Multiple 85

Sharpe Ratio using Multiple Kernels

S
h

ar
p

e
R

at
io

Minutes

Figure 13: Accuracy and annualized daily sharpe ratio for predicting abnormal returns using multi-
ple kernels. Each pointzon the x-axis corresponds to predicting an abnormal returnzminutes after
each press release is issued. The50th and85th percentiles of absolute returns are used to define
abnormal returns.
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Figure 14: Optimal kernel coefficients when using 13 possible kernels (1 linear text, 1 linear abso-
lute returns, 4 gaussian text, 4 gaussian absolute returns,1 linear time of day, 1 linear day of week,
1 identity matrix) with50th and85th percentiles as thresholds. Only the top 5 kernels are labeled.
Each pointz on the x-axis corresponds to predicting an abnormal returnz minutes after each press
release is issued.

impact the results either. The three random kernels have negligible coefficients across the horizon (not
displayed). A noticeable decrease in performance is seen when using equally weighted kernels, while an
even more significant decrease is observed when using highlysuboptimal kernels. A small data set (using
only data after 11 pm) showed an even smaller decrease in performance with equally weighted kernels. This
demonstrates that MKL need not be solved to a high tolerance in order to achieve good performance in this
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Figure 15: Accuracy and Sharpe Ratio for MKL with different kernel sets. Linear Kernsuses 4
linear kernels.Equal Coeffsuses 13 equally weighted kernels.With Rand Kernsadds 3 random
kernels to 13 kernels.Bad Kernsuses 4 gaussian kernels with misspecified constants (2 text and 2
absolute returns). The75th percentile is used as threshold to define abnormal returns.

application, while it is still, as expected, necessary to include good kernels in the mix.

4 Conclusion

We found significant performance when predicting abnormal returns using text and absolute returns as fea-
tures. In addition, multiple kernel learning was introduced to this application and greatly improved per-
formance. Finally, a cutting plane algorithm for solving large-scale MKL problems was described and its
efficiency relative to current MKL solvers was demonstrated.

These experiments could of course be further refined by implementing a tradeable strategy based on
abnormal return predictions such as done for daily predictions in Section 2.6. Unfortunately, while equity
options are liquid assets and would produce realistic performance metrics, intraday options prices are not
publicly available.

An important direction for further research is feature selection, i.e. choosing the words in the dictio-
nary. The above experiments use a simple handpicked set of words. Techniques such as recursive feature
elimination (RFE-SVM) were used to select words but performance was similar to results when using the
handpicked dictionary. More advanced methods such as latent semantic analysis, probabilistic latent seman-
tic analysis, and latent dirichlet allocation should be considered. Additionally, industry-specific dictionaries
can be developed and used with the associated subset of companies.

Another natural extension of our work is regression analysis. Support vector regressions (SVR) are the
regression counterpart to SVM and extend to MKL. Text can be combined with returns in order to forecast
both intraday volatility and abnormal returns using SVR andMKL.
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