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Abstract

Covariance selection seeks to estimate a covariance matrix by maximum likelihood while
restricting the number of nonzero inverse covariance matrix coefficients. A single penalty pa-
rameter usually controls the tradeoff between log likelihood and sparsity in the inverse matrix.
We describe an efficient algorithm for computing a full regularization path of solutions to this
problem.

1 Introduction

We consider the problem of estimating a covariance matrix from sample multivariate data by
maximizing its likelihood, while penalizing the inverse covariance so that its graph is sparse. This
problem is known as covariance selection and can be traced back at least to Dempster (1972).
The coefficients of the inverse covariance matrix define the representation of a particular Gaussian
distribution as a member of the exponential family, hence sparse maximum likelihood estimates
of the inverse covariance yield sparse representations of the model in this class. Furthermore, in
a Gaussian model, zeros in the inverse covariance matrix correspond to conditionally independent
variables, so this penalized maximum likelihood procedure simultaneously stabilizes estimation and
isolates structure in the underlying graphical model (see Lauritzen (1996)).

Given a sample covariance matrix Σ ∈ Sn, the covariance selection problem is written as follows

maximize log detX − Tr(ΣX) − ρCard(X)

in the matrix variable X ∈ Sn, where ρ > 0 is a penalty parameter controlling sparsity and
Card(X) is the number of nonzero elements in X. This is a combinatorially hard (non-convex)
problem and, as in Dahl et al. (2008); Banerjee et al. (2006); Dahl et al. (2005), we form the
following convex relaxation

maximize log detX − Tr(ΣX) − ρ‖X‖1 (1)

which is a convex problem in the matrix variable X ∈ Sn, where ‖X‖1 is the sum of absolute
values of the coefficients of X here. After scaling, the ‖X‖1 penalty can be understood as a convex
lower bound on Card(X). Another completely different approach derived in Meinshausen and
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Buhlmann (2006) reconciles the local dependence structure inferred from n distinct ℓ1-penalized
regressions of a single variable against all the others. Both this approach and the convex relaxation
(1) have been shown to be consistent in Meinshausen and Buhlmann (2006) and Banerjee et al.
(2008) respectively.

In practice however, both methods are computationally challenging when n gets large. Various
algorithms have been employed to solve (1) with Dahl et al. (2005) using a custom interior point
method and Banerjee et al. (2008) using a block coordinate descent method where each iteration re-
quired solving a LASSO-like problem, among others. This last method is efficiently implemented in
the GLASSO package by Friedman et al. (2008) using coordinate descent algorithms from Friedman
et al. (2007) to solve the inner regression problems.

One key issue in all these methods is that there is no a priori obvious choice for the penalty
parameter. In practice, at least a partial regularization path of solutions has to be computed,
and this procedure is then repeated many times to get confidence bounds on the graph structure
by cross-validation. Pathwise LASSO algorithms such as LARS by (Efron et al., 2004) can be
used to get a full regularization path of solution using the method in Meinshausen and Buhlmann
(2006) but this still requires solving and reconciling n regularization paths on regression problems
of dimension n.

Our contribution here is to formulate a pathwise algorithm for solving problem (1) using nu-
merical continuation methods (see Bach et al. (2005) for an application in kernel learning). Each
iteration requires solving a large structured linear system (predictor step) then improving precision
using a block coordinate descent method (corrector step). Overall, the cost of moving from one so-
lution to problem (1) to another is typically much lower than that of solving two separate instances
of (1). We also derive a coordinate descent algorithm for solving the corrector step, where each
iteration is closed-form and requires only solving a cubic equation. We illustrate the performance
of our methods on several artificial and realistic data sets.

The paper is organized as follows. Section 2 reviews some basic convex optimization results on
the covariance selection problem in (1). Our main pathwise algorithm is described in Section 3.
Finally, we present some numerical results in Section 4.

Notation. In what follows, we write Sn for the set of symmetric matrices of dimension n. For a
matrix X ∈ Rm×n, we write ‖X‖F its Frobenius norm, ‖X‖1 =

∑

ij |Xij | the ℓ1 norm of its vector
of coefficients, and Card(X) the number of nonzero coefficients in X.

2 Covariance Selection

Starting from the convex relaxation defined above

maximize log detX − Tr(ΣX) − ρ‖X‖1 (2)

in the variable X ∈ Sn, where ‖X‖1 can be understood as a convex lower bound on the Card(X)
function whenever |Xij | ≤ 1 (we can always scale ρ otherwise). Let us write X∗(ρ) for the optimal
solution of problem (2). In what follows, we will seek to compute (or approximate) the entire
regularization path of solutions X∗(ρ), for ρ ∈ R+. To remove the nonsmooth penalty, we can set
X = L − M and rewrite the problem above as

maximize log det(L − M) − Tr(Σ(L − M)) − ρ1T (L + M)1
subject to Lij,Mij ≥ 0, i, j = 1, . . . , n,

(3)
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in the matrix variables L,M ∈ Sn. We can form the following dual to problem (2) as

minimize − log det(U) − n
subject to Uij ≤ Σij + ρ, i, j = 1, . . . , n,

Uij ≥ Σij − ρ, , i, j = 1, . . . , n,
(4)

in the variable U ∈ Sn. As in Bach et al. (2005) for example, in the spirit of barrier methods for
interior point algorithms, we then form the following (unconstrained) regularized problem

min
U∈Sn

− log det(U) − t





n
∑

i,j=1

log(ρ + Σij − Uij) +

n
∑

i,j=1

log(ρ − Σij + Uij)



 (5)

in the variable U ∈ Sn and t > 0 specifies a desired tradeoff level between centrality (smoothness)
and optimality. From every solution U∗(t) corresponding to each t > 0, the barrier formulation also
produces an explicit dual solution (L∗(t),M∗(t)) to Problem (4). Indeed we can define matrices
L,M ∈ Sn as follows

Lij(U, ρ) =
t

ρ + Σij − Uij

and Mij(U, ρ) =
t

ρ − Σij + Uij

First order optimality conditions for problem (5) then imply

(L − M) = U−1.

As t tends to 0, problem (5) traces a central path towards the optimal solution to problem (4). If
we write f(U) for the objective function of problem (4) and call p∗ its optimal value, we get as in
(Boyd and Vandenberghe, 2004, §11.2.2)

f(U∗(t)) − p∗ ≤ 2n2t

hence t can be understood as a surrogate duality gap when solving the dual problem (4).

3 Algorithm

In this section we derive a Predictor-Corrector algorithm to approximate the entire path of solutions
X∗(ρ) when ρ varies between 0 and maxi Σii (beyond which the solution matrix is diagonal).
Defining

H(U, ρ) = L(U, ρ) − M(U, ρ) − U−1

we trace the curve H(U, ρ) = 0, the first order optimality condition for problem (5). Our pathwise
covariance selection algorithm is defined in Algorithm 1.

Typically in Algorithm 1, h is a small constant, ρ0 = maxi Σii, and U0 is computed by solving
a single (very sparse) instance of problem (5) for example.

3.1 Predictor: conjugate Gradient method

In Algorithm 1, the tangent direction in the predictor step is computed by solving a linear system
Ax = b where A = (U−1 ⊗ U−1 + D) and D is a diagonal matrix. This system of equations has
dimension n2 and we solve it using the conjugate gradient (CG) method.
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Algorithm 1 Pathwise Covariance Selection

Input: Σ ∈ Sm

1: Start with (U0, ρ0) s.t H(U0, ρ0) = 0.
2: for i = 1 to k do

3: Predictor Step. Let ρi+1 = ρi + h. Compute a tangent direction by solving the linear system

∂H

∂ρ
(Ui, ρi) + J(Ui, ρi)

∂U

∂ρ
= 0

in ∂U/∂ρ ∈ Sn, where J(Ui, ρi) = ∂H(U, ρ)/∂U ∈ Sn2 is the Jacobian matrix of the function
H(U, ρ).

4: Update Ui+1 = Ui + h∂U/∂ρ.
5: Corrector Step. Solve problem (5) starting at U = Ui+1.
6: end for

Output: Sequence of matrices Ui, i = 1, . . . , k.

CG iterations. The most expensive operation in the CG iterations is the computation of a
matrix vector product Apk, with pk ∈ Rn2

. Here however, we can exploit problem structure to
compute this step efficiently. Observe that (U−1 ⊗U−1)pk = vec(U−1PkU

−1) when pk = vec(Pk),
so the computation of the matrix vector product Apk needs only O(n3) flops instead of O(n4). The
CG method then needs at most O(n2) iterations to converge, leading to a total complexity of O(n5)
for the predictor step. In practice, we will observe that CG needs considerably fewer iterations.

Stopping criterion. To speed up the computation of the predictor step, we can stop the con-
jugate gradient solver when the norm of the residual falls below the numerical tolerance t. In our
experiments here, we stopped the solver after the residual decreases by two order of magnitudes.

Scaling & warm start. Another option, much simpler than the predictor step detailed above, is
warm starting. This means simply scaling the current solution to make it feasible for the problem
after ρ is updated. In practice, this method turns out to be as efficient as the predictor step as
it allows us to follow the path starting from the sparse end (where more interesting solutions are
located). Here, we start the algorithm from the sparsest possible solution, a diagonal matrix U
such that

Uii = Σii + (1 − ǫ)ρmaxI, i = 1, . . . , n,

where ρmax = maxi Σii. Suppose now that iteration k of the algorithm produced a matrix solution
Uk corresponding to a penalty ρk, the algorithm with (lower) penalty ρk+1 is started at the matrix

U = (1 − ρk+1/ρk)Σ + (ρk+1/ρk)Uk

which is a feasible starting point for the corrector problem that follows. This is the method that
was implemented in the final version of our code and that is used in the numerical experiments
detailed in the numerical section.
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3.2 Corrector: block coordinate descent

For small size problems, we can use Newton’s method to solve problem (5). However from a
computational perspective, this approach is not practical for large values of n. We can simplify
iterations using a block coordinate descent algorithm that updates one row/column of the matrix
in each iteration (Banerjee et al. (2008)). Let us partition the matrices U and Σ as

U =

(

V u
uT w

)

and S =

(

A b
bT c

)

We keep V fixed in each iteration and solve for u and w. Without loss of generality, we can always
assume that we are updating the last row/column.

Algorithm. Problem (5) can be written in block format as:

minimize − log(w − uT V −1u) − t(log(ρ + c − w) + log(ρ − c + w))

−2t (
∑

i log(ρ + bi − ui) +
∑

i log(ρ − bi + ui))
(6)

in the variables u ∈ R(n−1) and w ∈ R. Here V ∈ S(n−1) is kept fixed in each iteration. We use

Algorithm 2 Block coordinate descent corrector steps

Input: U0, Σ ∈ Sn

1: for i = 1 to k do

2: Pick the row and column to update.
3: Solve the inner problem (6) using coordinate descent (each coordinate descent step requires

solving a cubic equation).
4: Update U−1.
5: end for

Output: A matrix Uk solving (5).

the Sherman-Woodbury-Morrison (SWM) formula (see Boyd and Vandenberghe (2004, §C.4.3))
to efficiently update U−1 at each iteration, so it suffices to compute the full inverse only once
at the beginning of the path. The choice and order of row/column updates significantly affects
performance. Although predicting the effect of a whole ith row/column update is numerically
expensive, we use the fact that the impact of updating diagonal coefficients usually dominates
all others and can be computed explicitly at a very low computational cost. It corresponds to the
maximum improvement in the dual objective function that can be achieved by updating the current
solution U to U +weie

T
i , where ei is the ith unit vector. The objective function value is a decreasing

function of w and w must be lower than ρ + Σii − Uii to preserve dual feasibility, so updating the
ith diagonal coefficient will decrease the objective by δi = (ρ + Σii −Uii)U

−1
ii after minimizing over

w. In practice, updating the top 10% row/columns with largest δ is often enough to reach our
precision target and very significantly speeds-up computations. We also solve the inner problem
(6) by a coordinate descent method (as in Friedman et al. (2007)), taking advantage of the fact
that a point minimizing (6) over a single coordinate can be computed in closed-form by solving a
cubic equation. Suppose (u,w) is the current point and that we wish to optimize coordinate uj of
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the vector u, we define
α = −V −1

jj

β = −2uj(
∑

k 6=j V −1
kj

uk)

γ = w − uT V −1u − αuj − βu2
j

(7)

The optimality conditions imply that the the optimal u∗
j must satisfy the following cubic equation

p1x
3 + p2x

2 + p3x + p4 = 0 (8)

where
p1 = 2(1 + 2t)α, p2 = (1 + 4t)β − 4(1 + 2t)αbj

p3 = 4tγ − 2(1 + 2t)βbj + 2α(b2
j − 2ρ2), p4 = β(b2

j − ρ2) − 4tγbj .

Similarly the diagonal update w satisfies the following quadratic equation.

(1 + 2t)w2 − 2(t(uT V −1u) + c(1 + t))w + c2 − ρ2 + 2tc(uT V −1u) = 0

Here too, the order in which we optimize the coordinates has a significant impact.

Dual block problem. We can derive a dual to problem (6) by rewriting it as a constrained
optimization problem to get

minimize − log x1 − t(log x2 + log x3) − 2t (
∑

i(log yi + log zi))
subject to x1 ≤ w − uT V −1u

x2 = ρ + c − w, x3 = ρ − c + w
yi = ρ + bi − ui, zi = ρ − bi + ui

(9)

in the variables u ∈ R(n−1), w ∈ R, x ∈ R3, y ∈ R(n−1), z ∈ R(n−1). The dual to problem (9) is
written

maximize 1 + 2t(2n − 1) + log α1 − α2(ρ + c) − α3(ρ − c)
−

∑

i (βi(ρ + bi) + ηi(ρ − bi))
+t log(α2/t) + t log(α3/t) + 2t (

∑

i (log(βi/2t) + log(ηi/2t)))
subject to α1 = α2 − α3

α1 ≥ 0

(10)

in the variables α ∈ R3, β ∈ R(n−1) and η ∈ R(n−1). Surrogate dual points then produce an explicit
stopping criterion.

3.3 Complexity

Solving for the predictor step using conjugate gradient as in §3.1 requires O(n2) matrix products
(at a cost of O(n3) each) in the worst-case, but the number of iterations necessary to get a good
estimate of the predictor is typically much lower (cf. experiments in the next section). Scaling and
warm start on the other hand has complexity O(n2). The inner and outer loops of the corrector
step are solved using coordinate descent, with each coordinate iteration requiring the (explicit)
solution of a cubic equation.

Results on the convergence of the coordinate descent in the smooth case can be traced back
at least to (Luo and Tseng, 1992) or (Tseng, 2001), who focus on local linear convergence in the
strictly convex case. More precise convergence bounds have been derived in Nesterov (2010) who
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shows linear convergence (i.e. with complexity growing as log(1/ǫ)) of a randomized variant of
coordinate descent for strongly convex functions, and a complexity bound growing proportionally
to 1/ǫ when the gradient is Lipschitz continuous coordinatewise. Unfortunately, because it uses a
randomized step selection strategy, the algorithm in its standard form is inefficient in our case here,
as it requires too many SWM matrix updates to switch between columns. Optimizing the algorithm
in Nesterov (2010) to adapt it to our problem (e.g. by adjusting the variable selection probabilities
to account for the relative cost of switching columns) is a potentially promising research direction.

The complexity of our algorithm can be summarized as follows.

• Because our main objective function is strictly convex, our algorithm converges locally linearly,
but we have no explicit bound on the total number of iterations required.

• Starting the algorithm requires forming the inverse matrix V −1 at a cost of O(n3).

• Each iteration requires solving a cubic equation for each coordinatewise minimization problem
to form the coefficients in (7), at a cost of O(n2). Updating the problem to switch from one
iteration to the next using SWM updates then costs O(n2). This means that scanning the
full matrix with coordinate descent requires O(n4) flops.

While the lack of precise complexity bound is a clear shortcoming of our choice of algorithm for
solving the corrector step, as discussed by Nesterov (2008), algorithm choices are usually guided by
the type of operations (projections, barrier computations, inner optimization problems) that can
be solved very efficiently or in closed-form. In our case here, it turns out that coordinate descent
iterations can be performed very fast, in closed-form (by solving cubic equations), which seems to
provide a clear (empirical) complexity advantage to this technique.

4 Numerical Results

We compare the numerical performance of several methods for computing a full regularization path
of solutions to problem (2) on several realistic data sets: the senator votes covariance matrix from
Banerjee et al. (2006), the Science topic model in Blei and Lafferty (2007) with 50 topics, the
covariance matrix of 20 foreign exchange rates, the UCI SPECTF heart dataset (diagnosing of
cardiac images), the UCI LIBRAS hand movement dataset and the UCI HillValley dataset. We
compute a path of solutions using the methods detailed here (Covpath) and repeat this experiment
using the Glasso path code Friedman et al. (2008) which restarts the covariance selection problem
at ρ + ǫ at the current solution of (2) obtained at ρ. We also tested the smooth first order
code with warm-start ASPG described in (Lu, 2010) as well as the greedy algorithm SINCO by
Scheinberg and Rish (2009). Note that the later only identifies good sparsity patterns but does
not (directly) produce feasible solutions to problem (4). Our prototype code here is written in
MATLAB (except for a few steps in C), ASPG and SINCO are also written in MATLAB, while
Glasso is compiled from Fortran and interfaced with R. We use the scaling/warm-start approach
detailed in §3 and scan the full set of variables at each iteration of the block-coordinate descent
algorithm (optimizing over the 10% most promising variables sometimes significantly speeds up
computations but is more unstable), so the results reported here describe the behavior of the
most robust implementation of our algorithm. We report CPU time (in seconds) versus problem
dimension in Table 1. Unfortunately, Glasso does not use the duality gap as a stopping criterion
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but rather lack of progress (average absolute parameter change less than 10−4). Glasso fails to
converge on the HillValley example.

Dataset Dimension Covpath Glasso ASPG SINCO

Interest Rates 20 0.036 0.200 0.30 0.007

FXData 20 0.016 1.467 4.88 0.109
Heart 44 0.244 2.400 11.25 5.895

ScienceTopics 50 0.026 2.626 11.58 5.233
Libras 91 0.060 3.329 35.80 40.690

HillValley 100 0.068 - 47.22 68.815
Senator 102 4.003 5.208 10.44 5.092

Table 1: CPU time (in seconds) versus problem type for computing a regularization path
for 50 values of the penalty ρ, using the path following method detailed here (Covpath),
the Glasso code with warm-start (Glasso), the pathwise code (ASPG) in (Lu, 2010) and the
SINCO greedy code by Scheinberg and Rish (2009).

As in Banerjee et al. (2008), to test the behavior of the algorithm on examples with known
graphs, we also sample sparse random matrices with Gaussian coefficients, add multiples of the
identity to make them positive semidefinite, then use the inverse matrix as our sample matrix Σ. We
use these examples to study the performance of the various algorithms listed above on increasingly
large problems. Computing times are listed in Table 2, for a path of length 10, and Table 3 for a
path of length 50. The penalty coefficients ρ are chosen to produce a target sparsity around 10%.

Dimension Covpath Glasso ASPG SINCO

20 0.0042 2.32 0.53 0.22
50 0.0037 0.59 4.11 3.80

100 0.0154 1.11 13.36 13.58
200 0.0882 4.73 73.24 61.02
300 0.2035 13.52 271.05 133.99

Table 2: CPU time (in seconds) versus problem dimension for computing a regularization
path for 10 values of the penalty ρ, using the path following method detailed here (Covpath),
the Glasso code with warm-start (Glasso), the pathwise code (ASPG) in (Lu, 2010) and the
SINCO greedy code by Scheinberg and Rish (2009) on randomly generated problems.
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Dimension Covpath Glasso ASPG SINCO

20 0.0101 0.64 2.66 1.1827
50 0.0491 1.91 23.2 22.0436

100 0.0888 10.60 140.75 122.4048
200 0.3195 61.46 681.72 451.6725
300 0.8322 519.05 5203.46 1121.0408

Table 3: CPU time (in seconds) versus problem dimension for computing a regularization
path for 50 values of the penalty ρ, using the path following method detailed here (Covpath),
the Glasso code with warm-start (Glasso), the pathwise code (ASPG) in (Lu, 2010) and the
SINCO greedy code by Scheinberg and Rish (2009) on randomly generated problems.

In Figure 1, we plot the number of nonzero coefficients (cardinality) in the inverse covariance
versus penalty parameter ρ, along a path of solutions to problem (2). We observe that the solution
cardinality appears to be linear in the log of the regularization parameter. We then plot the number
of conjugate gradient iterations required to compute the predictor in §3.1 versus number of nonzero
coefficients in the inverse covariance matrix. We notice that the number of CG iterations decreases
significantly for sparse matrices, which makes computing predictor directions faster at the sparse
(i.e. interesting) end of the regularization path. Nevertheless, the complexity of corrector steps
dominates the total complexity of the algorithm and there was little difference in computing time
between using the scaling method detailed in §3 and using the predictor step, hence the final version
of our code and the CPU time results listed here make use of scaling/warm-start exclusively, which
is more robust.
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Figure 1: Left: We plot the fraction of nonzero coefficients in the inverse covariance
versus penalty parameter ρ, along a path of solutions to problem (2). Right: Number
of conjugate gradient iterations required to compute the predictor step versus number of
nonzero coefficients in the inverse covariance matrix.

Finally, to illustrate the method on intuitive data sets, we solve for a full regularization path of
solutions to problem (2) on financial data consisting of the covariance matrix of U.S. forward rates
for maturities ranging from six months to ten years from 1998 until 2005. Forward rates move as
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a curve, so we expect their inverse covariance matrix to be close to band diagonal. Figure 2 shows
the dependence network obtained from the solution of problem (2) on this matrix along a path, for
ρ = .02, ρ = .008 and ρ = .006. The graph layout was formed using the yFiles–Organic option in
Cytoscape. The string-like dynamics of the rates clearly appear in the last plot. We also applied
our algorithm to the covariance matrix extracted from the Correlated Topic Model calibrated in
Blei and Lafferty (2007) on 10 years of articles from the journal Science, targeting a graph density
low enough to reveal some structure. The corresponding network is detailed in Figure 3. Graph
edge color is related to the sign of the conditional correlation (green for positive, red for negative)
while edge thickness is proportional to the correlation magnitude. The five most important words
are listed for each topic.

Figure 2: Three sample dependence graphs corresponding to the solution of problem (2)
on a U.S. forward rates covariance matrix for ρ = .02 (left), ρ = .008 (center) and ρ = .006
(right).

5 Online Covariance Selection

In this section, we will briefly discuss the online version of the Covariance Selection problem. This
version arises if we obtain a better estimate of the covariance matrix after the problem is already
solved for a set of parameter values. We will assume that the new (positive definite) covariance
matrix Σ̂ is the sum of the old covariance matrix Σ and an arbitrary symmetric matrix C. With
such a change, the ‘new’ dual problem can be written as

minimize − log det(U) − n
subject to Uij ≤ ρ + Σij + µCij, i, j = 1, . . . , n,

Uij ≥ Σij + µCij − ρ, , i, j = 1, . . . , n,
(11)

in the variable U ∈ Sn, where ρ is a parameter value for which the corresponding optimal solution
is already calculated with the old covariance matrix Σ. The problem is parametrized with µ, so
that µ = 0 gives the original problem whereas µ = 1 corresponds to the new problem.

For many applications, one would expect C to be small and the optimal solution U∗ of the
original problem to be close to the optimal solution of the new problem, say Û∗. Hence, regardless
of the algorithm, U∗ should be used as an initial solution instead of solving the problem from
scratch.
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Figure 3: Topic network for the Science Correlated Topic Model in Blei and Lafferty (2007).
Network layout using cytoscape. Graph edge color is related to the sign of the conditional
correlation (green for positive, red for negative) while edge thickness is proportional to the
correlation magnitude.

In the spirit of the barrier methods and the predictor-corrector method that we have devised
in this chapter, we can develop a predictor-corrector algorithm to solve the online version of the
problem fast as follows. We form a parametrized version of the regularized problem

min
U∈Sn

− log det(U) − t
∑n

i,j=1 log(ρ + Σij + µCij − Uij)

−t
∑n

i,j=1 log(ρ − Σij − µCij + Uij)
(12)

in the variable U ∈ Sn and t > 0 the tradeoff level as before. Let us define matrices L̂, M̂ ∈ Sn as
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follows

L̂ij(U,µ) =
t

ρ + Σij + µCij − Uij

and M̂ij(U,µ) =
t

ρ − Σij − µCij + Uij

As before, optimal L̂ and M̂ should satisfy (L̂− M̂) = U−1, and problem (12) traces a central path
towards the optimal solution to problem (11) as t goes to 0.

Defining
Ĥ(U,µ) = L̂(U,µ) − M̂(U,µ) − U−1,

we trace the curve Ĥ(U,µ) = 0, the first order optimality condition for problem (12), from the
solution for the original problem to one for the new problem as µ goes from 0 to 1. The resulting
predictor-corrector algorithm is Algorithm 3, which solves the online version efficiently.

Algorithm 3 Online Pathwise Covariance Selection

Input: Σ, U∗ ∈ Sm, ρ ∈ R, and c ∈ Rn×r.
1: Start with (U0, µ0) s.t Ĥ(U0, µ0) = 0, specifically, set µ0 = 0 and U0 = U∗.
2: for i = 1 to k do

3: Predictor Step. Let µi+1 = µi + 1/k. Compute a tangent direction by solving the linear
system

∂Ĥ

∂µ
(Ui, µi) + J(Ui, µi)

∂U

∂µ
= 0

in ∂U/∂µ ∈ Sn, where J(Ui, µi) = ∂Ĥ(U,µ)/∂U ∈ Sn2 is the Jacobian matrix of the function
Ĥ(U,µ).

4: Update Ui+1 = Ui + (∂U/∂µ)/k.
5: Corrector Step. Solve problem (12) for µi+1 starting at U = Ui+1.
6: end for

Output: Matrix Uk that solves Problem (11).

As for the offline version, the most demanding computation in this algorithm is the calculation
of the tangent direction which can be carried out by the CG method discussed above. When
carefully implemented and tuned, it produces a solution for the new problem very fast. Although
one can try different values of k, setting k = 1, and applying one step of the algorithm is usually
enough in practice. This algorithm, and the online approach discussed in this section in general,
would be especially useful and sometimes necessary for very large data sets as solving the problem
from scratch is an expensive task for such problems and should be avoided whenever possible.
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