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Abstract

We consider the problem of estimating the parameters of a Gaussian or binary distribution
in such a way that the resulting undirected graphical model is sparse. Our approach
is to solve a maximum likelihood problem with an added ℓ1-norm penalty term. The
problem as formulated is convex but the memory requirements and complexity of existing
interior point methods are prohibitive for problems with more than tens of nodes. We
present two new algorithms for solving problems with at least a thousand nodes in the
Gaussian case. Our first algorithm uses block coordinate descent, and can be interpreted
as recursive ℓ1-norm penalized regression. Our second algorithm, based on Nesterov’s first
order method, yields a complexity estimate with a better dependence on problem size than
existing interior point methods. Using a log determinant relaxation of the log partition
function (Wainwright and Jordan [2006]), we show that these same algorithms can be used
to solve an approximate sparse maximum likelihood problem for the binary case. We test
our algorithms on synthetic data, as well as on gene expression and senate voting records
data.

Keywords: Model Selection, Maximum Likelihood Estimation, Convex Optimization,
Gaussian Graphical Model, Binary Data
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1. Introduction

Undirected graphical models offer a way to describe and explain the relationships among a
set of variables, a central element of multivariate data analysis. The principle of parsimony
dictates that we should select the simplest graphical model that adequately explains the
data. In this paper weconsider practical ways of implementing the following approach to
finding such a model: given a set of data, we solve a maximum likelihood problem with an
added ℓ1-norm penalty to make the resulting graph as sparse as possible.

Many authors have studied a variety of related ideas. In the Gaussian case, model selection
involves finding the pattern of zeros in the inverse covariance matrix, since these zeros
correspond to conditional independencies among the variables. Traditionally, a greedy
forward-backward search algorithm is used to determine the zero pattern [e.g., Lauritzen,
1996]. However, this is computationally infeasible for data with even a moderate number of
variables. Li and Gui [2005] introduce a gradient descent algorithm in which they account for
the sparsity of the inverse covariance matrix by defining a loss function that is the negative
of the log likelihood function. Recently, Huang et al. [2005] considered penalized maximum
likelihood estimation, and Dahl et al. [2006] proposed a set of large scale methods for
problems where a sparsity pattern for the inverse covariance is given and one must estimate
the nonzero elements of the matrix.

Another way to estimate the graphical model is to find the set of neighbors of each node in
the graph by regressing that variable against the remaining variables. In this vein, Dobra
and West [2004] employ a stochastic algorithm to manage tens of thousands of variables.
There has also been a great deal of interest in using ℓ1-norm penalties in statistical appli-
cations. d’Aspremont et al. [2004] apply an ℓ1 norm penalty to sparse principle component
analysis. Directly related to our problem is the use of the Lasso of Tibshirani [1996] to ob-
tain a very short list of neighbors for each node in the graph. Meinshausen and Bühlmann
[2006] study this approach in detail, and show that the resulting estimator is consistent,
even for high-dimensional graphs.

The problem formulation for Gaussian data, therefore, is simple. The difficulty lies in its
computation. Although the problem is convex, it is non-smooth and has an unbounded
constraint set. As we shall see, the resulting complexity for existing interior point methods
is O(p6), where p is the number of variables in the distribution. In addition, interior point
methods require that at each step we compute and store a Hessian of size O(p2). The
memory requirements and complexity are thus prohibitive for O(p) higher than the tens.
Specialized algorithms are needed to handle larger problems.

The remainder of the paper is organized as follows. We begin by considering Gaussian
data. In Section 2 we set up the problem, derive its dual, discuss properties of the solution
and how heavily to weight the ℓ1-norm penalty in our problem. In Section 3 we present a
provably convergent block coordinate descent algorithm that can be interpreted as recursive
ℓ1-norm penalized regression. In Section ?? we present a second, alternative algorithm based
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on Nesterov’s recent work on non-smooth optimization, and give a rigorous complexity
analysis with better dependence on problem size than interior point methods. In Section ??

we show that the algorithms we developed for the Gaussian case can also be used to solve
an approximate sparse maximum likelihood problem for multivariate binary data, using a
log determinant relaxation for the log partition function given by Wainwright and Jordan
[2006]. In Section 6, we test our methods on synthetic as well as gene expression and senate
voting records data.

2. Problem Formulation

In this section we set up the sparse maximum likelihood problem for Gaussian data, derive
its dual, and discuss some of its properties.

2.1 Problem setup.

Suppose we are given n samples independently drawn from a p-variate Gaussian distribution:
y(1), . . . , y(n) ∼ N (Σp, µ), where the covariance matrix Σ is to be estimated. Let S denote
the second moment matrix about the mean:

S :=
1

n

n
∑

k=1

(y(k) − µ)(y(k) − µ)T .

Let Σ̂−1 denote our estimate of the inverse covariance matrix. Our estimator takes the
form:

Σ̂−1 = arg max
X≻0

log det X − trace(SX) − λ‖X‖1. (1)

Here, ‖X‖1 denotes the sum of the absolute values of the elements of the positive definite
matrix X.

The scalar parameter λ controls the size of the penalty. The penalty term is a proxy for
the number of nonzero elements in X, and is often used – albiet with vector, not matrix,
variables – in regression techniques, such as the Lasso.

In the case where S ≻ 0, the classical maximum likelihood estimate is recovered for λ = 0.
However, when the number of samples n is small compared to the number of variables p,
the second moment matrix may not be invertible. In such cases, for λ > 0, our estimator
performs some regularization so that our estimate Σ̂ is always invertible, no matter how
small the ratio of samples to variables is.
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Even in cases where we have enough samples so that S ≻ 0, the inverse S−1 may not
be sparse, even if there are many conditional independencies among the variables in the
distribution. By trading off maximality of the log likelihood for sparsity, we hope to find a
very sparse solution that still adequately explains the data. A larger value of λ corresponds
to a sparser solution that fits the data less well. A smaller λ corresponds to a solution that
fits the data well but is less sparse. The choice of λ is therefore an important issue that will
be examined in detail in Section 2.3.

2.2 The dual problem and bounds on the solution.

We can write (1) as
max
X≻0

min
‖U‖∞≤λ

log detX + trace(X,S + U)

where ‖U‖∞ denotes the maximum absolute value element of the symmetric matrix U . This
corresponds to seeking an estimate with the maximum worst-case log likelihood, over all
additive perturbations of the second moment matrix S. A similar robustness interpretation
can be made for a number of estimation problems, such as support vector machines for
classification.

We can obtain the dual problem by exchanging the max and the min. The resulting inner
problem in X can be solved analytically by setting the gradient of the objective to zero and
solving for X. The result is

min
‖U‖∞≤λ

− log det(S + U) − p

where the primal and dual variables are related as: X = (S + U)−1. Note that the log
determinant function acts a log barrier, creating an implicit constraint that S + U ≻ 0.

To write things neatly, let W = S + U . Then the dual of our sparse maximum likelihood
problem is

Σ̂ := max{log det W : ‖W − S‖∞ ≤ λ}. (2)

Observe that the dual problem (1) estimates the covariance matrix while the primal problem
estimates its inverse. We also observe that the diagonal elements of the solution are Σkk =
Skk + λ for all k.

The following theorem shows that adding the ℓ1-norm penalty regularlizes the solution.

Theorem 1 For every λ > 0, the optimal solution to (1) is unique, with bounded eigenval-
ues:

p

λ
≥ ‖Σ̂−1‖2 ≥ (‖S‖2 + λp)−1.

Here, ‖A‖2 denotes the maximum eigenvalue of a symmetric matrix A.
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The dual problem (2) is smooth and convex. When p(p + 1)/2 is in the low hundreds,
the problem can be solved by existing software that uses an interior point method [e.g.,
Vandenberghe et al., 1998]. The complexity to compute an ǫ-suboptimal solution using
such second-order methods, however, is O(p6 log(1/ǫ)), making them infeasible when p is
larger than the tens.

A related problem, solved by Dahl et al. [2006], is to compute a maximum likelihood estimate
of the covariance matrix when the sparsity structure of the inverse is known in advance.
This is accomplished by adding constraints to (1) of the form: Xij = 0 for all pairs (i, j)
in some specified set. Our constraint set is unbounded as we hope to uncover the sparsity
structure automatically, starting with a dense second moment matrix S.

2.3 Choice of penalty parameter.

Consider the true, unknown graphical model for a given distribution. This graph has p
nodes, and an edge between nodes k and j is missing if variables k and j are independent
conditional on the rest of the variables. For a given node k, let Ck denote its connectivity
component: the set of all nodes that are connected to node k through some chain of edges.
In particular, if node j 6∈ Ck, then variables j and k are independent.

We would like to choose the penalty parameter λ so that, for finite samples, the probability
of error in estimating the graphical model is controlled. To this end, we can adapt the
work of Meinshausen and Bühlmann [2006] as follows. Let Ĉλ

k denote our estimate of
the connectivity component of node k. In the context of our optimization problem, this
corresponds to the entries of row k in Σ̂ that are nonzero.

Let α be a given level in [0, 1]. Consider the following choice for the penalty parameter in
(1):

λ(α) := (max
i>j

σ̂iσ̂j)
tn−2(α/2p2)

√

n − 2 + t2n−2(α/2p2)
(3)

where tn−2(α) denotes the (100−α)% point of the Student’s t-distribution for n−2 degrees
of freedom, and σ̂i is the empirical variance of variable i. Then we can prove the following
theorem:

Theorem 2 Using λ(α) the penalty parameter in (1), for any fixed level α,

P (∃k ∈ {1, . . . , p} : Ĉλ
k 6⊆ Ck) ≤ α.

Observe that, for a fixed problem size p, as the number of samples n increases to infinity,
the penalty parameter λ(α) decreases to zero. Thus, asymptotically we recover the clas-
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sical maximum likelihood estimate, S, which in turn converges in probability to the true
covariance Σ.

3. Block Coordinate Descent Algorithm

In this section we present an algorithm for solving (2) that uses block coordinate descent.

3.1 Algorithm description.

We begin by detailing the algorithm. For any symmetric matrix A, let A\j\k denote the
matrix produced by removing row k and column j. Let Aj denote column j with the
diagonal element Ajj removed. The plan is to optimize over one row and column of the
variable matrix W at a time, and to repeatedly sweep through all columns until we achieve
convergence.

Initialize: W (0) := S + λI
For k ≥ 0

1. For j = 1, . . . , p

(a) Let W (j−1) denote the current iterate. Solve the quadratic program

ŷ := arg min
y

{yT (W
(j−1)
\j\j )−1y : ‖y − Sj‖∞ ≤ λ} (4)

(b) Update rule: W (j) is W (j−1) with column/row Wj replaced by ŷ.

2. Let Ŵ (0) := W (p).

3. After each sweep through all columns, check the convergence condition. Convergence
occurs when

trace((Ŵ (0))−1S) − p + λ‖(Ŵ (0))−1‖1 ≤ ǫ. (5)

3.2 Convergence and property of solution.

Using Schur complements, we can prove convergence:

Theorem 3 The block coordinate descent algorithm described above converges, acheiving
an ǫ-suboptimal solution to (2). In particular, the iterates produced by the algorithm are
strictly positive definite: each time we sweep through the columns, W (j) ≻ 0 for all j.
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The proof of Theorem 3 sheds some interesting light on the solution to problem (1). In
particular, we can use this method to show that the solution has the following property:

Theorem 4 Fix any k ∈ {1, . . . , p}. If λ ≥ |Skj| for all j 6= k, then column and row k of

the solution Σ̂ to (2) are zero, excluding the diagonal element.

This means that, for a given second moment matrix S, if λ is chosen such that the condition
in Theorem 4 is met for some column k, then the sparse maximum likelihood method esti-
mates variable k to be independent of all other variables in the distribution. In particular,
Theorem 4 implies that if λ ≥ |Skj| for all k > j, then (1) estimates all variables in the
distribution to be pairwise independent.

Using the work of Luo and Tseng [1992], it may be possible to show that the local conver-
gence rate of this method is at least linear. In practice we have found that a small number
of sweeps through all columns, independent of problem size p, is sufficient to achieve con-
vergence. For a fixed number of K sweeps, the cost of the method is O(Kp4), since each
iteration costs O(p3).

3.3 Interpretation as recursive penalized regression.

The dual of (4) is

min
x

xT W
(j−1)
\j\j x − ST

j x + λ‖x‖1. (6)

Strong duality obtains so that problems (6) and (4) are equivalent. If we let Q denote the

square root of W
(j−1)
\j\j , and b := 1

2Q−1Sj, then we can write (6) as

min
x

‖Qx − b‖2
2 + λ‖x‖1. (7)

The problem (7) is a penalized least-squares problems, known as the Lasso. If W
(j−1)
\j\j were

the j-th principal minor of the sample covariance S, then (7) would be equivalent to a
penalized regression of variable j against all others. Thus, the approach is reminiscent of
the approach explored by Meinshausen and Bühlmann [2006], but there are two differences.
First, we begin with some regularization and, as a consequence, each penalized regression
problem has a unique solution. Second, and more importantly, we update the problem data

after each regression: except at the very first update, W
(j−1)
\j\j is never a minor of S. In this

sense, the coordinate descent method can be interpreted as a recursive Lasso.

7



Banerjee, El Ghaoui, and d’Aspremont

4. Nesterov’s First Order Method

In this section we apply the recent results due to Nesterov [2005] to obtain a first order algo-
rithm for solving (1) with lower memory requirements and a rigorous complexity estimate
with a better dependence on problem size than those offered by interior point methods.
Our purpose is not to obtain another algorithm, as we have found that the block coordinate
descent is fairly efficient; rather, we seek to use Nesterov’s formalism to derive a rigorous
complexity estimate for the problem, improved over that offered by interior-point methods.

As we will see, Nesterov’s framework allows us to obtain an algorithm that has a complexity
of O(p4.5/ǫ), where ǫ > 0 is the desired accuracy on the objective of problem (1). This is
in contrast to the complexity of interior-point methods, O(p6 log(1/ǫ)). Thus, Nesterov’s
method provides a much better dependence on problem size and lower memory requirements
at the expense of a degraded dependence on accuracy.

4.1 Idea of Nesterov’s method.

Nesterov’s method applies to a class of non-smooth, convex optimization problems of the
form

min
x

{f(x) : x ∈ Q1} (8)

where the objective function can be written as

f(x) = f̂(x) + max
u

{〈Ax, u〉2 : u ∈ Q2}.

Here, Q1 and Q2 are bounded, closed, convex sets, f̂(x) is differentiable (with a Lipschitz-
continuous gradient) and convex on Q1, and A is a linear operator. The challenge is to
write our problem in the appropriate form and choose associated functions and parameters
in such a way as to obtain the best possible complexity estimate, by applying general results
obtained by Nesterov [2005].

Observe that we can write (1) in the form (8) if we impose bounds on the eigenvalues of
the solution, X. To this end, we let

Q1 := {x : aI � X � bI}

Q2 := {u : ‖u‖∞ ≤ λ}
(9)

where the constants a, b are given such that b > a > 0. By Theorem 1, we know that such
bounds always exist. We also define f̂(x) := − log detx + 〈S, x〉, and A := λI.

To Q1 and Q2, we associate norms and continuous, strongly convex functions, called prox-
functions, d1(x) and d2(u). For Q1 we choose the Frobenius norm, and a prox-function
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d1(x) = − log detx + log b. For Q2, we choose the Frobenius norm again, and a prox-
function d2(x) = ‖u‖2

F /2.

The method applies a smoothing technique to the non-smooth problem (8), which replaces
the objective of the original problem, f(x), by a penalized function involving the prox-
function d2(u):

f̃(x) = f̂(x) + max
u∈Q2

{〈Ax, u〉 − µd2(u)}. (10)

The above function turns out to be a smooth uniform approximation to f everywhere. It
is differentiable, convex on Q1, and a has a Lipschitz-continuous gradient, with a constant
L that can be computed as detailed below. A specific gradient scheme is then applied to
this smooth approximation, with convergence rate O(L/ǫ).

4.2 Algorithm and complexity estimate.

To detail the algorithm and compute the complexity, we must first calculate some pa-
rameters corresponding to our definitions and choices above. First, the strong convexity
parameter for d1(x) on Q1 is σ1 = 1/b2, in the sense that

∇2d1(X)[H,H] = trace(X−1HX−1H) ≥ b−2‖H‖2
F

for every symmetric H. Furthermore, the center of the set Q1 is x0 := arg minx∈Q1
d1(x) =

bI, and satisfies d1(x0) = 0. With our choice, we have D1 := maxx∈Q1
d1(x) = p log(b/a).

Similarly, the strong convexity parameter for d2(u) on Q2 is σ2 := 1, and we have

D2 := max
u∈Q2

d2(U) = p2/2.

With this choice, the center of the set Q2 is u0 := arg minu∈Q2
d2(u) = 0.

For a desired accuracy ǫ, we set the smoothness parameter µ := ǫ/2D2, and set x0 = bI.
The algorithm proceeds as follows:

For k ≥ 0 do

1. Compute ∇f̃(xk) = −x−1 + S + u∗(xk), where u∗(x) solves (10).

2. Find yk = arg miny {〈∇f̃(xk), y − xk〉 + 1
2L(ǫ)‖y − xk‖2

F : y ∈ Q1}.

3. Find zk = arg minx {L(ǫ)
σ1

d1(X) +
∑k

i=0
i+1
2 〈∇f̃(xi), x − xi〉 : x ∈ Q1}.
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4. Update xk = 2
k+3zk + k+1

k+3yk.

In our case, the Lipschitz constant for the gradient of our smooth approximation to the
objective function is

L(ǫ) := M + D2‖A‖2/(2σ2ǫ)

where M := 1/a2 is the Lipschitz constant for the gradient of f̃ , and the norm ‖A‖ is
induced by the Frobenius norm, and is equal to λ.

The algorithm is guaranteed to produce an ǫ-suboptimal solution after a number of steps
not exceeding

N(ǫ) :=

4‖A‖
√

D1D2

σ1σ2
· 1

ǫ
+

√

MD1

σ1ǫ

= (κ
√

(log κ))(4p1.5aλ/
√

2 +
√

ǫp)/ǫ.

(11)

where κ = b/a is a bound on the condition number of the solution.

Now we are ready to estimate the complexity of the algorithm. For Step 1, the gradient of
the smooth approximation is computed in closed form by taking the inverse of x. Step 2
essentially amounts to projecting on Q1, and requires that we solve an eigenvalue problem.
The same is true for Step 3. In fact, each iteration costs O(p3). The number of iterations
necessary to achieve an objective with absolute accuracy less than ǫ is given in (11) by
N(ǫ) = O(p1.5/ǫ). Thus, if the condition number κ is fixed in advance, the complexity of
the algorithm is O(p4.5/ǫ).

5. Binary Variables: Approximate Sparse Maximum Likelihood

Estimation

In this section, we consider the problem of estimating an undirected graphical model for
multivariate binary data. Recently, Wainwright et al. [2006] applied an ℓ1-norm penalty to
the logistic regression problem to obtain a binary version of the high-dimensional consistency
results of Meinshausen and Bühlmann [2006]. We apply the log determinant relaxation of
Wainwright and Jordan [2006] to formulate an approximate sparse maximum likelihood
(ASML) problem for estimating the parameters in a multivariate binary distribution. We
show that the resulting problem is the same as the Gaussian sparse maximum likelihood
(SML) problem, and that we can therefore apply our previously-developed algorithms to
sparse model selection in a binary setting.
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Consider a distribution made up of p binary random variables. Using n data samples, we
wish to estimate the structure of the distribution. The logistic model of this distribution is

p(x; θ) = exp{
p

∑

i=1

θixi +

p−1
∑

i=1

p
∑

j=i+1

θijxixj − A(θ)} (12)

where

A(θ) = log
∑

x∈X p

exp{
p

∑

i=1

θixi +

p−1
∑

i=1

p
∑

j=i+1

θijxixj} (13)

is the log partition function.

The sparse maximum likelihood problem in this case is to maximize (12) with an added
ℓ1-norm penalty on terms θkj. Specifically, in the undirected graphical model, an edge
between nodes k and j is missing if θkj = 0.

A well-known difficulty is that the log partition function has too many terms in its outer
sum to compute. However, if we use the log determinant relaxation for the log partition
function developed by Wainwright and Jordan [2006], we can obtain an approximate sparse
maximum likelihood (ASML) estimate. We shall set up the problem in the next section.

5.1 Problem formulation.

Let’s begin with some notation. Letting d := p(p + 1)/2, define the map R : Rd → Sp+1 as
follows:

R(θ) =











0 θ1 θ2 . . . θp

θ1 0 θ12 . . . θ1p

...
θp θ1p θ2p . . . 0











Suppose that our n samples are z(1), . . . , z(n) ∈ {−1,+1}p. Let z̄i and z̄ij denote sample
mean and second moments. The sparse maximum likelihood problem is

θ̂exact := arg max
θ

1

2
〈R(θ), R(z̄)〉 − A(θ) − λ‖θ‖1. (14)

Finally define the constant vector m = (1, 4
3 , . . . , 4

3) ∈ Rp+1. Wainwright and Jordan [2006]
give an upper bound on the log partition function as the solution to the following variational
problem:

A(θ) ≤ maxµ
1
2 log det(R(µ) + diag(m)) + 〈θ, µ〉

= 1
2 · maxµ log det(R(µ) + diag(m)) + 〈R(θ), R(µ)〉.

(15)
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If we use the bound (15) in our sparse maximum likelihood problem (14), we won’t be able
to extract an optimizing argument θ̂. Our first step, therefore, will be to rewrite the bound
in a form that will allow this.

Lemma 5 We can rewrite the bound (15) as

A(θ) ≤ p

2
log(

eπ

2
) − 1

2
(p + 1) − 1

2
· {max

ν
νT m + log det(−(R(θ) + diag(ν))). (16)

Using this version of the bound (15), we have the following theorem.

Theorem 6 Using the upper bound on the log partition function given in (16), the approx-
imate sparse maximum likelihood problem has the following solution:

θ̂k = µ̄k

θ̂kj = −(Γ̂)−1
kj

(17)

where the matrix Γ̂ is the solution to the following problem, related to (2):

Γ̂ := arg max{log det W : Wkk = Skk +
1

3
, |Wkj − Skj| ≤ λ}. (18)

Here, S is defined as before:

S =
1

n

n
∑

k=1

(z(k) − µ̄)(z(k) − µ̄)T

where µ̄ is the vector of sample means z̄i.

In particular, this means that we can reuse the algorithms developed in Sections 3 and
?? for problems with binary variables. The relaxation (15) is the simplest one offered by
Wainwright and Jordan [2006]. The relaxation can be tightened by adding linear constraints
on the variable µ.

5.2 Penalty parameter choice for binary variables.

For the choice of the penalty parameter λ, we can derive a formula analogous to (3).
Consider the choice

λ(α)bin :=
(χ2(α/2p2, 1))

1

2

(mini>j σ̂iσ̂j)
√

n
(19)
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where χ2(α, 1) is the (100 − α)% point of the chi-square distribution for one degree of
freedom. Since our variables take on values in {−1, 1}, the empirical variances are of the
form:

σ̂2
i = 1 − µ̄2

i .

Using (19), we have the following binary version of Theorem 2:

Theorem 7 With (19) chosen as the penalty parameter in the approximate sparse maxi-
mum likelihood problem, for a fixed level α,

P (∃k ∈ {1, . . . , p} : Ĉλ
k 6⊆ Ck) ≤ α.

6. Numerical Results

In this section we present the results of some numerical experiments, both on synthetic and
real data.

6.1 Synthetic experiments.

Synthetic experiments require that we generate underlying sparse inverse covariance matri-
ces. To this end, we first randomly choose a diagonal matrix with positive diagonal entries.
A given number of nonzeros are inserted in the matrix at random locations symmetrically.
Positive definiteness is ensured by adding a multiple of the identity to the matrix if needed.
The multiple is chosen to be only as large as necessary for inversion with no errors.

6.1.1 Sparsity and thresholding.

A very simple approach to obtaining a sparse estimate of the inverse covariance matrix
would be to apply a threshold to the inverse empirical covariance matrix, S−1. However,
even when S is easily invertible, it can be difficult to select a threshold level. We solved a
synthetic problem of size p = 100 where the true concentration matrix density was set to
δ = 0.1. Drawing n = 200 samples, we plot in Figure (1) the sorted absolute value elements
of S−1 on the left and Σ̂−1 on the right.

It is clearly easier to choose a threshold level for the SML estimate. Applying a threshold to
either S−1 or Σ̂−1 would decrease the log likelihood of the estimate by an unknown amount.
We only observe that to preserve positive definiteness, the threshold level t must satisfy the
bound

t ≤ min
‖v‖1≤1

vT S−1v.
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Figure 1: Sorted absolute value of elements of (A) S−1 and (B) Σ̂−1. The solution Σ̂−1 to
(1) is un-thresholded.

6.1.2 Recovering structure.

We begin with a small experiment to test the ability of the method to recover the sparse
structure of an underlying covariance matrix. Figure 2 (A) shows a sparse inverse covariance
matrix of size p = 30. Figure 2 (B) displays a corresponding S−1, using n = 60 samples.
Figure 2 (C) displays the solution to (1) for λ = 0.1. The value of the penalty parameter
here is chosen arbitrarily, and the solution is not thresholded. Nevertheless, we can still
pick out features that were present in the true underlying inverse covariance matrix.
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Figure 2: Recovering the sparsity pattern. We plot (A) the original inverse covariance
matrix Σ−1, (B) the noisy sample inverse S−1, and (C) the solution to problem
(1) for λ = 0.1.

Using the same underlying inverse covariance matrix, we repeat the experiment using
smaller sample sizes. We solve (1) for n = 30 and n = 20 using the same arbitrarily
chosen penalty parameter value λ = 0.1, and display the solutions in Figure (3). As ex-
pected, our ability to pick out features of the true inverse covariance matrix diminishes with
the number of samples. This is an added reason to choose a larger value of λ when we have
fewer samples, as in (3).
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Figure 3: Recovering the sparsity pattern for small sample size. We plot (A) the original
inverse covariance matrix Σ−1, (B) the solution to problem (1) for n = 30 and
(C) the solution for n = 20. A penalty parameter of λ = 0.1 is used for (B) and
(C).
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Figure 4: Path following: elements of solution to (1) as λ increases. Red lines correspond to
elements that are zero in the true inverse covariance matrix; blue lines correspond
to true nonzeros. Vertical lines mark a range of λ values using which we recover
the sparsity pattern exactly.

6.1.3 Path following experiments.

Figure (4) shows two path following examples. We solve two randomly generated problems
of size p = 5 and n = 100 samples. The red lines correspond to elements of the solution
that are zero in the true underlying inverse covariance matrix. The blue lines correspond
to true nonzeros. The vertical lines mark ranges of λ for which we recover the correct
sparsity pattern exactly. Note that, by Theorem 4, for λ values greater than those shown,
the solution will be diagonal.
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Figure 5: Recovering sparsity pattern in a matrix with added uniform noise of size σ = 0.1.
We plot the average percentage or misclassified entries as a function of log(λ/σ).

On a related note, we observe that (1) also works well in recovering the sparsity pattern of a
matrix masked by noise. The following experiment illustrates this observation. We generate
a sparse inverse covariance matrix of size p = 50 as described above. Then, instead of using
an empirical covariance S as input to (1), we use S = (Σ−1 + V )−1, where V is a randomly
generated uniform noise of size σ = 0.1. We then solve (1) for various values of the penalty
parameter λ.

In figure 5, for a each of value of λ shown, we randomly selected 10 sample covariance ma-
trices S of size p = 50 and computed the number of misclassified zeros and nonzero elements
in the solution to (1). We plot the average percentage of errors (number of misclassified
zeros plus misclassified nonzeros divided by p2), as well as error bars corresponding to one
standard deviation. As shown, the error rate is nearly zero on average when the penalty is
set to equal the noise level σ.

6.1.4 CPU times versus problem size.

For a sense of the practical performance of the Nesterov method and the block coordinate
descent method, we randomly selected 10 sample covariance matrices S for problem sizes p
ranging from 400 to 1000.In each case, the number of samples n was chosen to be about a
third of p. In figure 6 we plot the average CPU time to achieve a duality gap of ǫ = 1. CPU
times were computed using an AMD Athlon 64 2.20Ghz processor with 1.96GB of RAM.

16



Model Selection Through Sparse Max Likelihood Estimation

400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Problem size p

A
ve

ra
ge

 C
P

U
 ti

m
es

 in
 s

ec
on

ds

Figure 6: Average CPU times vs. problem size using block coordinate descent. We plot the
average CPU time (in seconds) to reach a gap of ǫ = 0.1 versus problem size p.

As shown, we are typically able to solve a problem of size p = 1000 in about two and half
hours.

6.1.5 Performance as a binary classifier.

In this section we numerically examine the ability of the sparse maximum likelihood (SML)
method to correctly classify elements of the inverse covariance matrix as zero or nonzero.
For comparision, we will use the Lasso estimate of Meinshausen and Bühlmann [2006], which
has been shown to perform extremely well. The Lasso regresses each variable against all
others one at a time. Upon obtaining a solution θ(k) for each variable k, one can estimate

sparsity in one of two ways: either by declaring an element Σ̂ij nonzero if both θ
(k)
i 6= 0

and θ
(k)
j 6= 0 (Lasso-AND) or, less conservatively, if either of those quantities is nonzero

(Lasso-OR).

As noted previously, Meinshausen and Bühlmann [2006] have also derived a formula for
choosing their penalty parameter. Both the SML and Lasso penalty parameter formulas
depend on a chosen level α, which is a bound on the same error probability for each method.
For these experiments, we set α = 0.05.

In the following experiments, we fixed the problem size p at 30 and generated sparse un-
derlying inverse covariance matrices as described above. We varied the number of samples
n from 10 to 310. For each value of n shown, we ran 30 trials in which we estimated the
sparsity pattern of the inverse covariance matrix using the SML, Lasso-OR, and Lasso-AND
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Figure 7: Classifying zeros and nonzeros for a true density of δ = 0.05. We plot the positive
predictive value, the power, and the estimated density using SML, Lasso-OR and
Lasso-AND.

methods. We then recorded the average number of nonzeros estimated by each method,
and the average number of entries correctly identified as nonzero (true positives).

We show two sets of plots. Figure (7) corresponds to experiments where the true density
was set to be low, δ = 0.05. We plot the power (proportion of correctly identified nonzeros),
positive predictive value (proportion of estimated nonzeros that are correct), and the density
estimated by each method. Figure (8) corresponds to experiments where the true density
was set to be high, δ = 0.40, and we plot the same three quantities.
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Figure 8: Classifying zeros and nonzeros for a true density of δ = 0.40. We plot the positive
predictive value, the power, and the estimated density using SML, Lasso-OR and
Lasso-AND.

Meinshausen and Bühlmann [2006] report that, asymptotically, Lasso-AND and Lasso-OR
yield the same estimate of the sparsity pattern of the inverse covariance matrix. At a finite
number of samples, the SML method seems to fall in in between the two methods in terms
of power, positive predictive value, and the density of the estimate. It typically offers, on
average, the lowest total number of errors, tied with either Lasso-AND or Lasso-OR. Among
the two Lasso methods, it would seem that if the true density is very low, it is slightly better
to use the more conservative Lasso-AND. If the density is higher, it may be better to use
Lasso-OR. When the true density is unknown, we can achieve an accuracy comparable to
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the better choice among the Lasso methods by computing the SML estimate. Figure (9)
shows one example of sparsity pattern recovery when the true density is low.

A B

C D

Figure 9: Comparing sparsity pattern recovery to the Lasso. (A) true covariance (B) Lasso-
OR (C) Lasso-AND (D) SML.

The Lasso and SML methods have a comparable computational complexity. However, unlike
the Lasso, the SML method is not parallelizable. Parallelization would render the Lasso a
more computationally attractive choice, since each variable can regressed against all other
separately, at an individual cost of O(p3). In exchange, SML can offer a more accurate
estimate of the sparsity pattern, as well as a well-conditioned estimate of the covariance
matrix itself.

6.2 Gene expression and U.S. Senate voting records data.

We tested our algorithms on three sets of data: two gene expression data sets, as well as
US Senate voting records. In this section we briefly explore the resulting graphical models.
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6.2.1 Rosetta Inpharmatics compendium.

We applied our algorithms to the Rosetta Inpharmatics Compendium of gene expression
profiles described by Hughes et al. [2000]. The 300 experiment compendium contains n =
253 samples with p = 6136 variables. With a view towards obtaining a very sparse graph,
we replaced α/2p2 in (3) by α, and set α = 0.05. The resulting penalty parameter is
λ = 0.0313.

This is a large penalty for this data set, and by applying Theorem 4 we find that all but 270
of the variables are estimated to be independent from all the rest, clearly a very conservative
estimate. Figure (10) displays the resulting graph.

Figure 10: Application to Hughes compendium. The above graph results from solving (1)
for this data set with a penalty parameter of λ = 0.0313.

Figure (11) closes in on a region of Figure (10), a cluster of genes that is unconnected to
the remaining genes in this estimate. According to Gene Ontology [see Consortium, 2000],
these genes are associated with iron homeostasis. The probability that a gene has been false
included in this cluster is at most 0.05.

As a second example, in Figure (12), we show a subgraph of genes associated with cellular
membrane fusion. All three graphs were rendered using Cytoscape.

21



Banerjee, El Ghaoui, and d’Aspremont

Figure 11: Application to Hughes dataset (closeup of Figure (10). These genes are associ-
ated with iron homeostasis.

Figure 12: Application to Hughes dataset (subgraph of Figure (10). These genes are asso-
ciated with cellular membrane fusion.

6.2.2 Iconix microarray data.

Next we analyzed a subset of a 10, 000 gene microarray dataset from 160 drug treated rat
livers Natsoulis et al. [2005]. In this study, rats were treated with a variety of fibrate, statin,
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Table 1: Predictor genes for LDL receptor.

Accession Gene
BF553500 Cbp/p300-interacting transactivator
BF387347 EST
BF405996 calcium channel, voltage dependent
NM 017158 cytochrome P450, 2c39
K03249 enoyl-CoA, hydratase/3-hydroxyacyl Co A dehydrog.
BE100965 EST
AI411979 Carnitine O-acetyltransferase
AI410548 3-hydroxyisobutyryl-Co A hydrolase
NM 017288 sodium channel, voltage-gated
Y00102 estrogen receptor 1
NM 013200 carnitine palmitoyltransferase 1b

or estrogen receptor agonist compounds. Taking the 500 genes with the highest variance, we
once again replaced α/2p2 in (3) by α, and set α = 0.05. The resulting penalty parameter
is λ = 0.0853.

By applying Theorem 4 we find that all but 339 of the variables are estimated to be inde-
pendent from the rest. This estimate is less conservative than that obtained in the Hughes
case since the ratio of samples to variables is 160 to 500 instead of 253 to 6136.

The first order neighbors of any node in a Gaussian graphical model form the set of pre-
dictors for that variable. In the estimated obtained by solving (1), we found that LDL
receptor had one of the largest number of first-order neighbors in the Gaussian graphical
model. The LDL receptor is believed to be one of the key mediators of the effect of both
statins and estrogenic compounds on LDL cholesterol. Table 1 lists some of the first order
neighbors of LDL receptor.

It is perhaps not surprising that several of these genes are directly involved in either lipid
or steroid metabolism (K03249, AI411979, AI410548, NM 013200, Y00102). Other genes
such as Cbp/p300 are known to be global transcriptional regulators. Finally, some are un-
annotated ESTs. Their connection to the LDL receptor in this analysis may provide clues
to their function.

6.2.3 Senate voting records data.

We conclude our numerical experiments by testing our approximate sparse maximum likeli-
hood estimation method on binary data. The data set consists of US senate voting records
data from the 109th congress (2004 - 2006). There are one hundred variables, correspond-
ing to 100 senators. Each of the 542 samples is bill that was put to a vote. The votes are
recorded as -1 for no and 1 for yes.
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Figure 13: US Senate, 109th Congress (2004-2006). The graph displays the solution to
(14) obtained using the log determinant relaxation to the log partition function
of Wainwright and Jordan [2006]. Democratic senators are colored blue and
Republican senators are colored red.

There are many missing values in this dataset, corresponding to missed votes. Since our
analysis depends on data values taken solely from {−1, 1}, it was necessary to impute values
to these. For this experiment, we replaced all missing votes with noes (-1). We chose the
penalty parameter λ(α) according to (19), using a significance level of α = 0.05. Figure
(13) shows the resulting graphical model, rendered using Cytoscape. Red nodes correspond
to Republican senators, and blue nodes correspond to Democratic senators.

We can make some tentative observations by browsing the network of senators. As neighbors
most Democrats have only other Democrats and Republicans have only other Republicans.
Senator Chafee (R, RI) has only democrats as his neighbors, an observation that supports
media statements made by and about Chafee during those years. Senator Allen (R, VA)
unites two otherwise separate groups of Republicans and also provides a connection to
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Figure 14: US Senate, 109th Congress. Neighbors of Senator Allen (degree three or lower).

the large cluster of Democrats through Ben Nelson (D, NE). Senator Lieberman (D, CT)
is connected to other Democrats only through Kerry (D, MA), his running mate in the
2004 presidential election. These observations also match media statements made by both
pundits and politicians. Thus, although we obtained this graphical model via a relaxation
of the log partition function, the resulting picture is largely supported by conventional
wisdom. Figure (14) shows a subgraph consisting of neighbors of degree three or lower of
Senator Allen.
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Appendix A. Proof of solution properties and block coordinate descent

convergence

In this section, we give short proofs of the two theorems on properties of the solution to
(1), as well as the convergence of the block coordinate descent method.

Proof of Theorem 1:

Since Σ̂ satisfies Σ̂ = S + Û , where ‖U‖∞ ≤ λ, we have:

‖Σ̂‖2 = ‖S + Û‖2

≤ ‖S‖2 + ‖U‖2 ≤ ‖S‖2 + ‖U‖∞ ≤ ‖S‖2 + λp

which yields the lower bound on ‖Σ̂−1‖2. Likewise, we can show that ‖Σ̂−1‖2 is bounded
above. At the optimum, the primal dual gap is zero:

− log det Σ̂−1 + trace(SΣ̂−1) + λ‖Σ̂−1‖1 − log det Σ̂ − p

= trace(SΣ̂−1) + λ‖Σ̂−1‖1 − p = 0

We therefore have
‖Σ̂−1‖2 ≤ ‖Σ̂−1‖F ≤ ‖Σ̂−1‖1

= p/λ − trace(SΣ̂−1)/λ ≤ p/λ

where the last inequality follows from trace(SΣ̂−1) ≥ 0, since S � 0 and Σ̂−1 ≻ 0.

Next we prove the convergence of block coordinate descent:

Proof of Theorem 3:

To see that optimizing over one row and column of W in (2) yields the quadratic program
(4), let all but the last row and column of W be fixed. Since we know the diagonal entries
of the solution, we can fix the remaining diagonal entry as well:

W =

(

W\p\p wp

wT
p Wpp

)

Then, using Schur complements, we have that

detW = detW\p\p · (Wpp − wT
p (W\p\p)

−1wp)

which gives rise to (4).
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By general results on block coordinate descent algorithms [e.g., Bertsekas, 1998], the algo-
rithms converges if and only if (4) has a unique solution at each iteration. Thus it suffices
to show that, at every sweep, W (j) ≻ 0 for all columns j. Prior to the first sweep, the initial
value of the variable is positive definite: W (0) ≻ 0 since W (0) := S +λI, and we have S � 0
and λ > 0 by assumption.

Now suppose that W (j) ≻ 0. This implies that the following Schur complement is positive:

wjj − W T
j (W

(j)
\j\j)

−1Wj > 0

By the update rule we have that the corresponding Schur complement for W (j+1) is even
greater:

wjj − W T
j (W

(j+1)
\j\j )−1Wj > wjj − W T

j (W
(j)
\j\j)

−1Wj > 0

so that W (j+1) ≻ 0.

Finally, we apply Theorem 3 to prove the second property of the solution.

Proof of Theorem 4:

Suppose that column j of the second moment matrix satisfies |Sij | ≤ λ for all i 6= j. This
means that the zero vector is in the constraint set of (4) for that column. Each time we
return to column j, the objective function will be different, but always of the form yT Ay
for A ≻ 0. Since the constraint set will not change, the solution for column j will always be
zero. By Theorem 3, the block coordinate descent algorithm converges to a solution, and
so therefore the solution must have Σ̂j = 0.

Appendix B. Proof of error bounds.

Next we shall show that the penalty parameter choice given in (3) yields the error probability
bound of Theorem 2. The proof is nearly identical to that of [Meinshausen and Bühlmann,
2006,Theorem 3]. The differences stem from a different objective function, and the fact
that our variable is a matrix of size p rather than a vector of size p. Our proof is only an
adaptation of their proof to our problem.

B.1 Preliminaries

Before we begin, consider problem (1), for a matrix S of any size:

X̂ = arg min− log det X + trace(SX) + λ‖X‖1

where we have dropped the constraint X ≻ 0 since it is implicit, due to the log determinant
function. Since the problem is unconstrained, the solution X̂ must correspond to setting
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the subgradient of the objective to zero:

Sij − X−1
ij = −λ for Xij > 0

Sij − X−1
ij = λ for Xij < 0

|Sij − X−1
ij | ≤ λ for Xij = 0

(20)

Recall that by Theorem 1, the solution is unique for λ positive.

B.2 Proof of error bound for Gaussian data.

Now we are ready to prove Theorem 2.

Proof of Theorem 2:

Sort columns of the covariance matrix so that variables in the same connectivity component
are grouped together. The correct zero pattern for the covariance matrix is then block
diagonal. Define

Σcorrect := blk diag(C1, . . . , Cℓ) (21)

The inverse (Σcorrect)−1 must also be block diagonal, with possible additional zeros inside
the blocks. If we constrain the solution to (1) to have this structure, then by the form of
the objective, we can optimize over each block separately. For each block, the solution is
characterized by (20).

Now, suppose that

λ > max
i∈N,j∈N\Ci

|Sij − Σcorrect
ij | (22)

Then, by the subgradient characterization of the solution noted above, and the fact that
the solution is unique for λ > 0, it must be the case that Σ̂ = Σcorrect. By the definition
of Σcorrect, this implies that, for Σ̂, we have Ĉk = Ck for all k ∈ N .

Taking the contrapositive of this statement, we can write:

P (∃k ∈ N : Ĉk 6⊆ Ck)

≤ P (maxi∈N,j∈N\Ci
|Sij − Σcorrect

ij | ≥ λ)

≤ p2(n) · maxi∈N,j∈N\Ci
P (|Sij − Σcorrect

ij | ≥ λ)

= p2(n) · maxi∈N,j∈N\Ci
P (|Sij | ≥ λ)

(23)
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The equality at the end follows since, by definition, Σcorrect
ij = 0 for j ∈ N\Ci. It remains

to bound P (|Sij | ≥ λ).

The statement |Skj| ≥ λ can be written as:

|Rkj|(1 − R2
kj)

− 1

2 ≥ λ(skksjj − λ2)−
1

2

where Rkj is the correlation between variables k and j, since

|Rkj |(1 − R2
kj)

− 1

2 = |Skj|(SkkSjj − S2
kj)

− 1

2

Furthermore, the condition j ∈ N\Ck is equivalent to saying that variables k and j are
independent: Σkj = 0. Conditional on this, the statistic

Rkj(1 − R2
kj)

− 1

2 (n − 2)
1

2

has a Student’s t-distribution for n − 2 degrees of freedom. Therefore, for all j ∈ N\Ck,

P (|Skj| ≥ λ|Skk = skk, Sjj = sjj)

= 2P (Tn−2 ≥ λ(skksjj − λ2)−
1

2 (n − 2)
1

2 |Skk = skk, Sjj = sjj)

≤ 2F̃n−2(λ(σ̂2
kσ̂

2
j − λ2)−

1

2 (n − 2)
1

2 )

(24)

where σ̂2
k is the sample variance of variable k, and F̃n−2 = 1 − Fn−2 is the CDF of the

Student’s t-distribution with n − 2 degree of freedom. This implies that, for all j ∈ N\Ck,

P (|Skj| ≥ λ) ≤ 2F̃n−2(λ(σ̂2
kσ̂2

j − λ2)−
1

2 (n − 2)
1

2 )

since P (A) =
∫

P (A|B)P (B)dB ≤ K
∫

P (B)dB = K. Putting the inequalities together,
we have that:

P (∃k : Ĉλ
k 6⊆ Ck)

≤ p2 · maxk,j∈N\Ck
2F̃n−2(λ(σ̂2

kσ̂
2
j − λ2)−

1

2 (n − 2)
1

2 )

= 2p2F̃n−2(λ((n − 2)/((maxi>j σ̂kσ̂j)
2 − λ2))

1

2 )

For any fixed α, our required condition on λ is therefore

F̃n−2(λ((n − 2)/((max
i>j

σ̂kσ̂j)
2 − λ2))

1

2 ) = α/2p2

which is satisfied by choosing λ according to (3).
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B.3 Proof of bound for binary data.

We can reuse much of the previous proof to derive a corresponding formula for the binary
case.

Proof of Theorem 7:

The proof of Theorem 7 is identical to the proof of Theorem 2, except that we have a
different null distribution for |Skj|. The null distribution of

nR2
kj

is chi-squared with one degree of freedom. Analogous to (24), we have:

P (|Skj| ≥ λ|Skk = skk, Sjj = sjj)

= 2P (nR2
kj ≥ nλ2skksjj|Skk = skk, Sjj = sjj)

≤ 2G̃(nλ2σ̂2
kσ̂

2
j )

where σ̂2
k is the sample variance of variable k, and G̃ = 1−G is the CDF of the chi-squared

distribution with one degree of freedom. This implies that, for all j ∈ N\Ck,

P (|Skj| ≥ λ) ≤ 2G̃((λσ̂kσ̂j

√
n)2)

Putting the inequalities together, we have that:

P (∃k : Ĉλ
k 6⊆ Ck)

≤ p2 · maxk,j∈N\Ck
2G̃((λσ̂kσ̂j

√
n)2)

= 2p2G̃((mini>j σ̂kσ̂j)
2nλ2)

so that, for any fixed α, we can achieve our desired bound by choosing λ(α) according to
(19).

Appendix C. Proof of connection between Gaussian SML and binary

ASML

We end with a proof of Theorem 6, which connects the exact Gaussian sparse maximum
likelihood problem with the approximate sparse maximum likelihood problem obtained by
using the log determinant relaxation of Wainwright and Jordan [2006]. First we must prove
Lemma 5.
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Proof of Lemma 5:

The conjugate function for the convex normalization A(θ) is defined as

A∗(µ) := sup
θ

{〈µ, θ〉 − A(θ)} (25)

Wainwright and Jordan derive a lower bound on this conjugate function using an entropy
bound:

A∗(µ) ≥ B∗(µ) (26)

Since our original variables are spin variables x {−1,+1}, the bound given in the paper is

B∗(µ) := −1

2
log det(R(µ) + diag(m)) − p

2
log(

eπ

2
) (27)

where m := (1, 4
3 , . . . , 4

3).

The dual of this lower bound is B(θ):

B∗(µ) := maxθ〈θ, µ〉 − B(θ)

≤ maxθ〈θ, µ〉 − A(θ) =: A∗(µ)
(28)

This means that, for all µ, θ,

〈θ, µ〉 − B(θ) ≤ A∗(µ) (29)

or

B(θ) ≥ 〈θ, µ〉 − A∗(µ) (30)

so that in particular

B(θ) ≥ max
µ

〈θ, µ〉 − A∗(µ) =: A(θ) (31)
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Using the definition of B(θ) and its dual B∗(µ), we can write

B(θ) := maxµ〈θ, µ〉 − B∗(µ)

= p
2 log(eπ

2 ) + maxµ
1
2〈R(θ), R(µ)〉 + 1

2 log det(R(µ) + diag(m))

= p
2 log(eπ

2 ) + 1
2 · max{〈R(θ),X − diag(m)〉 + log det(X) : X ≻ 0,diag(X) = m}

= p
2 log(eπ

2 ) + 1
2 · {maxX≻0 minν〈R(θ),X − diag(m)〉 + log det(X) + νT (diag(X) − m)}

= p
2 log(eπ

2 ) + 1
2 · {maxX≻0 minν〈R(θ) + diag(ν),X〉 + log det(X) − νTm}

= p
2 log(eπ

2 ) + 1
2 · {minν −νT m + maxX≻0〈R(θ) + diag(ν),X〉 + log det(X)}

= p
2 log(eπ

2 ) + 1
2 · {minν −νT m − log det(−(R(θ) + diag(ν))) − (p + 1)}

= p
2 log(eπ

2 ) − 1
2(p + 1) + 1

2 · {minν −νTm − log det(−(R(θ) + diag(ν)))}

= p
2 log(eπ

2 ) − 1
2(p + 1) − 1

2 · {maxν νT m + log det(−(R(θ) + diag(νλ)}
(32)

Now we use lemma 5 to prove the main result of section 5.1. Having expressed the upper
bound on the log partition function as a constant minus a maximization problem will help
when we formulate the sparse approximate maximum likelihood problem.

Proof of Theorem 6:

The approximate sparse maximum likelihood problem is obtained by replacing the log par-
tition function A(θ) with its upper bound B(θ), as derived in lemma 5:

n · {maxθ
1
2〈R(θ), R(z̄)〉 − B(θ) − λ‖θ‖1}

= n · {maxθ
1
2〈R(θ), R(z̄)〉 − λ‖θ‖1 + 1

2 (p + 1) − p
2 log(eπ

2 )

+1
2 · {maxν νTm + log det(−(R(θ) + diag(ν)))}}

= n
2 (p + 1) − np

2 log(eπ
2 ) + n

2 · maxθ,ν{νT m + 〈R(θ), R(z̄)〉

+ log det(−(R(θ) + diag(ν))) − 2λ‖θ‖1}

(33)

We can collect the variables θ and ν into an unconstrained symmetric matrix variable
Y := −(R(θ) + diag(ν)).
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Observe that
〈R(θ), R(z̄)〉 = 〈−Y − diag(ν), R(z̄)〉

= −〈Y,R(z̄)〉 − 〈diag(ν), R(z̄)〉 = −〈Y,R(z̄)〉
(34)

and that
νT m = 〈diag(ν),diag(ν)〉 = 〈−Y − R(θ),diag(m)〉

= −〈Y,diag(m)〉 − 〈R(θ),diag(m)〉 = −〈Y,diag(m)〉
(35)

The approximate sparse maximum likelihood problem can then be written in terms of Y :

n
2 (p + 1) − np

2 log(eπ
2 ) + n

2 · maxθ,ν{νT m + 〈R(θ), R(z̄)〉

+ log det(−(R(θ) + diag(ν))) − 2λ‖θ‖1}

= n
2 (p + 1) − np

2 log(eπ
2 ) + n

2 · max{log detY − 〈Y,R(z̄) + diag(m)〉

−2λ
∑p

i=2

∑p+1
j=i+1 |Yij |}

(36)

If we let M := R(z̄) + diag(m), then:

M =

(

1 µ̄T

µ̄ Z + 1
3I

)

where µ̄ is the sample mean and

Z =
1

n

n
∑

k=1

z(k)(z(k))T

Due to the added 1
3I term, we have that M ≻ 0 for any data set.

The problem can now be written as:

Ŷ := arg max{log det Y − 〈Y,M〉 − 2λ

p
∑

i=2

p+1
∑

j=i+1

|Yij| : Y ≻ 0} (37)

Since we are only penalizing certain elements of the variable Y , the solution X̂ of the dual
problem to (37) will be of the form:

X̂ =

(

1 µ̄T

µ̄ X̃

)

where

X̃ := arg max{log detV : Vkk = Zkk +
1

3
, |Vkj − Zkj| ≤ λ}.
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We can write an equivalent problem for estimating the covariance matrix. Define a new
variable:

Γ = V − µ̄µ̄T

Using this variable, and the fact that the second moment matrix about the mean, defined
as before, can be written

S =
1

n

n
∑

k=1

z(k)(z(k))T − µ̄µ̄T = Z − µ̄µ̄T

we obtain the formulation (18). Using Schur complements, we see that our primal variable
is of the form:

Y =

(∗ ∗
∗ Γ̂−1

)

From our definition of the variable Y , we see that the parameters we are estimating, θ̂kj,

are the negatives of the off-diagonal elements of Γ̂−1, which gives us (17).
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