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ABSTRACT. We study a weaker formulation of the nullspace property which guarantees recovery of sparse
signals from linear measurements by `1 minimization. We require this condition to hold only with high proba-
bility, given a distribution on the nullspace of the coding matrix A. Under some assumptions on the distribution
of the reconstruction error, we show that testing these weak conditions means bounding the optimal value of
two classical graph partitioning problems: the k-Dense-Subgraph and MaxCut problems. Both problems ad-
mit efficient, relatively tight relaxations and we use a randomization argument to produce new approximation
bounds for k-Dense-Subgraph. We test the performance of our results on several families of coding matrices.

1. INTRODUCTION

Given a coding matrix A ∈ Rq×n and a signal e ∈ Rn, we focus on conditions under which the solution
x0 to the following minimum cardinality problem

x0 = min. Card(x)
subject to Ax = Ae,

(`0-recov.)

which is a combinatorial problem in x ∈ Rn, can be recovered by solving

xlp = min. ‖x‖1
subject to Ax = Ae,

(`1-recov.)

which is a convex program in x ∈ Rn. Problem (`0-recov.) arises in various fields ranging from signal
processing to statistics. Suppose for example that we make a few linear measurements of a high dimensional
signal, which admits a sparse representation in a well chosen basis (e.g. Fourier, wavelet). Under certain
conditions, solving (`1-recov.) will allow us to reconstruct the signal exactly (Donoho, 2004; Donoho and
Tanner, 2005; Donoho, 2006). In a coding application, suppose we transmit a message which is corrupted
by a few errors, solving (`1-recov.) will then allow us to reconstruct the message exactly (Candès and
Tao, 2005, 2006). Finally, problem (`1-recov.) is directly connected to variable selection and penalized
regression problems (e.g. LASSO Tibshirani (1996)) arising in statistics (Zhao and Yu, 2006; Meinshausen
and Yu, 2008; Meinshausen et al., 2007; Candes and Tao, 2007; Bickel et al., 2007; Candès and Plan, 2009).
Of course, in all these fields, problems (`0-recov.) and (`1-recov.) are overly simplified. In practice for
example, the observations could be noisy, approximate solutions might be sufficient and we might have
strict computational limits on the decoding side. While important, these extensions are outside the scope of
this work.

Based on results by Vershik and Sporyshev (1992) and Affentranger and Schneider (1992), Donoho and
Tanner (2005) showed that when the solution x0 of (`0-recov.) is sparse with Card(x0) = k and the
coefficients of A are i.i.d. Gaussian, then w.h.p. the solution of the (convex) problem in (`1-recov.) will
always match that of the combinatorial problem in (`0-recov.) provided k is below an explicitly computable
strong recovery threshold kS . They also show that if k is below another (larger) weak recovery threshold kW ,
then these solutions match with an exponentially small probability of failure.

Generic conditions for strong recovery based on sparse extremal eigenvalues, or restricted isometry prop-
erties (RIP), were also derived in Candès and Tao (2005) and Candès and Tao (2006), who proved that certain
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random matrix classes satisfied these conditions near optimal values of k with an exponentially small prob-
ability of failure. Simpler, weaker conditions which can be traced back to Donoho and Huo (2001), Zhang
(2005) or Cohen et al. (2009) for example, are based on properties of the nullspace of A. When the signal
cardinality Card(e) ≤ k and the Nullspace Property (NSP) holds, i.e. when there is a constant αk < 1/2
such that

‖x‖k,1 ≤ αk‖x‖1 (det-NSP)
for all vectors x ∈ Rn with Ax = 0, then solving the convex problem (`1-recov.) will recover the global
solution to the combinatorial problem (`0-recov.). Condition (det-NSP) can be understood as an incoherence
measure, i.e. it means that not all of the mass in x can be concentrated among only k coefficients, in other
words:

Good coding matrices have incoherent nullspace vectors.
In particular, this condition means that the nullspace of A cannot contain sparse vectors. Furthermore, the
constant αk can be used to explicitly bound the reconstruction error when solving the `1-recovery problem
in (`1-recov.). This is illustrated in Proposition 2.1 below, directly adapted from Cohen et al. (2009, Th.
4.3).

One fundamental issue with the sparse recovery conditions described above is that, except for explicit
thresholds available for certain types of random matrices (with high probability), testing these conditions
on generic (deterministic) matrices is potentially harder than solving the combinatorial `0-norm minimiza-
tion problem in (`0-recov.) for example as it implies either solving a combinatorial problem to compute αk
in (det-NSP), or computing sparse eigenvalues. Recent results in Candès and Plan (2009) show that the tra-
ditional (and tractable) incoherence conditions ensure recovery of sparse signals with high probability, given
a uniform distribution on the signal. These incoherence conditions lack universality however, in the sense
that contrary to the combinatorial conditions mentioned above, they cannot be used to guarantee recovery
of all signals of near-optimal size k. Convex relaxation relaxation bounds were used in d’Aspremont et al.
(2008) (on sparse eigenvalues), Juditsky and Nemirovski (2011) or d’Aspremont and El Ghaoui (2011) (on
NSP) to test sparse recovery conditions similar to (det-NSP) on arbitrary matrices. Unfortunately, the per-
formance (tightness) of these relaxations is still very insufficient: for matrices satisfying the sparse recovery
conditions in Candès and Tao (2005) up to signal cardinality k∗, these three relaxations can only certify that
the conditions hold up to cardinality

√
k∗ and are also likely to provide poor bounds on reconstruction error.

In what follows, we seek to enforce a weaker version of condition (det-NSP). We will bound the inco-
herence measure αk in (det-NSP) with high probability over a random sample of vectors in the nullspace of
A. Another way to look at this approach is to remember that, if xlp solves the `1-decoding problem in (`1-
recov.), the vector xlp − e is always in the nullspace of A and Proposition 2.1 below shows that enforcing
condition (det-NSP) on the reconstruction error xlp − e allows us to bound the magnitude of this error.

Here, because we cannot efficiently test condition (det-NSP) over all vectors in the nullspace of A, we
will instead require condition (det-NSP) to hold only with high probability on the nullspace of A, given a
distribution on this subspace. Let us assume for simplicity that Rank(A) = q, and let F ∈ Rn×m with
m = n − q be a basis for the nullspace of A (not necessarily orthogonal or normalized). We will require
that the NSP condition (det-NSP) discussed above, which reads

‖Fy‖k,1 ≤ αk‖Fy‖1 (proba-NSP)

be satisfied with high probability, given a distribution on y. We will start by assuming that y is Gaussian. In
this case, we will see that both sides of condition (proba-NSP) can be explicitly controlled by the solution of
classic graph partitioning problems. These combinatorial problems admit tight, efficiently computable ap-
proximations which will allow us to bound the probability that (proba-NSP) holds. We will then extend these
results to more general distributions on the nullspace and show that the same quantities which controlled
concentration in the Gaussian case, also control fluctuations in the more general model.

Of course, assuming the true distribution on the signal e is either sparse or follows a power law, our simple
model on the nullspace of A error could have zero measure with respect to the true (structured) distribution
of xlp − e, especially since xlp is dependent on A. In fact, at first sight, we are implicitly positing a
model on the reconstruction error, then ultimately use the model to bound this same reconstruction error,
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an apparent circular reference. Our main objective however is not to directly bound the error but rather to
isolate efficiently computable quantities which will be good proxies for this error, sacrificing some statistical
accuracy in favor of computational efficiency. Moreover, our main result is to efficiently approximate the
Lipschitz constants of the two norms in (proba-NSP), constants which are likely to play a critical role
whatever the model on the reconstruction error. Overall, the phase transition for signal recovery is usually
very sharp (or “bang-bang”) meaning that either all signals are recovered perfectly or none of them are. This
means that choosing a realistic statistical model is probably not that crucial.

Current results in compressed sensing provide universal recovery guarantees using intractable conditions
(which can only be tested with high probability on random matrices). Our objective here is to do the
opposite and isolate tractable measures of performance that can be computed on arbitrary matrices, even
if this means losing some confidence in our signal recovery guarantees. Numerical experiments detailed at
the end of this work, using simple models for e, seem to suggest that our assumptions on xlp − e are not
completely unreasonable (cf. Figure 1). Furthermore, the fact that the true signal e is inherently structured
means that, in principle, these statistical fidelity questions would arise with any model on e.

Our contribution here is twofold. First, assuming a Gaussian model or bounded independent model on
the nullspace of the matrix A in (`0-recov.), we show that testing if the NSP condition (proba-NSP) holds
with high probability amounts to bounding the value of two classic graph partitioning problems: MaxCut
and k-Dense-Subgraph. Second, we show new approximation results for semidefinite relaxations of the
k-Dense-Subgraph problem when the graph weight matrix is positive semidefinite but has coefficients of
arbitrary sign. This result has applications outside of the compressed sensing context discussed in this
paper, and is directly related to correlation clustering for example. Solving a k-Dense-Subgraph problem
on a (positive semidefinite) correlation matrix (modeling similarities between variables) isolates a highly
correlated k-cluster of variables. Here, we use these approximation results to show that our weak recovery
conditions can be certified in polynomial time for arbitrary matrices even when the target cardinality k is near
the true recovery threshold k∗ (i.e. a log term away). This allows us to break the

√
k∗ barrier that plagued

all tractable conditions for recovery developed so far (d’Aspremont et al., 2008; Juditsky and Nemirovski,
2011; d’Aspremont and El Ghaoui, 2011). The current state of the art in checking recovery conditions is
that we have conditions that we can trust but cannot fully test. We focus here on conditions we can test, but
cannot fully trust.

The paper is organized as follows. Conditions for sparse recovery with high probability, given a model
on the nullspace of the sampling matrix are derived in Section 2. The performance of these conditions on
random matrices and links with the restricted isometry property are discussed in Section 3. Section 4 derives
semidefinite relaxations and approximation results for the graph partitioning problems used in testing these
weak recovery conditions. Section 5 brielfy discusses the complexity of solving these relaxations. Section 6
shows that the relaxations detailed in Section 4 allow us to certify weak recovery for near optimal values of
the signal cardinality k, thus breaking the

√
n barrier that plagues tractable (uniform, deterministic) recovery

conditions. Finally, we present some numerical experiments in Section 7.

Notation. For x ∈ Rn, we write ‖x‖k,1 the sum of the magnitudes of the k largest coefficients of x.
When X ∈ Rm×n, Xi is the ith row of X , ‖X‖2 the spectral norm and ‖X‖F the Frobenius (Euclidean)
norm of X . For matrices A,B ∈ Rm×n, we write A ⊗ B their Kronecker product and A ◦ B their
Schur (componentwise) product. We write NumRank(X) the numerical rank of the matrix X , with
NumRank(X) = ‖X‖2F /‖X‖22, and NumCard(x) is the numerical cardinality of a vector x, with
NumCard(x) = ‖x‖21/‖x‖22. Finally, we write x �c y when E[f(x)] ≤ E[f(y)] for any convex function
f : Rn → R (this is usually called convex majorization).

2. WEAK RECOVERY CONDITIONS

To highlight the central role of the NSP condition in `1 decoding, we begin by adapting a result from
Cohen et al. (2009, Th. 4.3) which uses the constant αk to bound the reconstruction error when decoding
the observations Ae by solving problem (`1-recov.). Recall that xlp is the solution to the linear program
in (`1-recov.) and e the true signal.
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Proposition 2.1. Suppose that ‖xlp−e‖k,1 ≤ αk‖xlp−e‖1 for some αk < 1/2, where e ∈ Rn and xlp ∈ Rn

solves problem (`1-recov.), then A(xlp − e) = 0 and

‖xlp − e‖1 ≤
2

(1− 2αk)
min{y∈Rn:Card(y)≤k} ‖y − e‖1, (1)

where the right-hand side is proportional to the best `1 reconstruction error on e using a signal with cardi-
nality k.

Proof. We adapt the proof of Cohen et al. (2009, Th. 4.3). Because xlp solves (`1-recov.), we have ‖xlp‖1 ≤
‖e‖1 since e is feasible. Denoting by T the indices of the k largest coefficients in absolute value of e and by
η = xlp − e the reconstruction error, we write

‖xlp
T ‖1 + ‖xlp

T c‖1 ≤ ‖eT ‖1 + ‖eT c‖1
and triangular inequalities yield

‖eT ‖1 − ‖ηT ‖1 + ‖ηT c‖1 − ‖eT c‖1 ≤ ‖eT ‖1 + ‖eT c‖1
hence

‖ηT c‖1 ≤ ‖ηT ‖1 + 2‖eT c‖1.
Note that by definition of T , we have ‖eT c‖1 = min{y∈Rn:Card(y)≤k} ‖y − e‖1. From our assumption on η
and by definition of ‖ · ‖k,1, |T | = k means

‖ηT ‖1 ≤ ‖η‖k,1 ≤ αk‖η‖1 = αk(‖ηT ‖1 + ‖ηT c‖1)

hence
‖ηT ‖1 ≤

αk
1− αk

‖ηT c‖1

which then yields

‖ηT c‖1 ≤
(2− 2αk)

(1− 2αk)
min{y∈Rn:Card(y)≤k} ‖y − e‖1.

Using the fact that

‖η‖1 = ‖ηT ‖1 + ‖ηT c‖1 ≤
(

1 +
αk

1− αk

)
‖ηT c‖1

we get ‖η‖1 ≤ ‖ηT c‖1/(1− αk), which produces the desired result.

This last result shows that whenever the reconstruction error satisfies (det-NSP) with constant αk < 1,
then the magnitude of this error is at most 2/(1−2αk) times the best possible reconstruction error achievable
using a signal of size k.

2.1. Invariance properties. Remark that condition (det-NSP), which guarantees recovery of all signals of
cardinality less than k can be written

‖Fy‖k,1 ≤ αk‖Fy‖1, for all y ∈ Rm, (2)

for some αk < 1/2, where F ∈ Rn×m is a basis of the nullspace ofA. This condition is clearly independent
of the choice of basis, hence if F satisfies (2) then so does FQ where Q is any orthogonal matrix.

2.2. Gaussian model. In what follows, we will use concentration inequalities to bound both sides of the
probabilistic Nullspace Property inequality (proba-NSP), namely check that

‖Fy‖k,1 ≤ αk‖Fy‖1
holds with high probability when y is Gaussian with y ∼ N (0, Im), where F is a basis of the nullspace of
A. Of course, this means that we implicitly assume that the reconstruction error xlp − e follows a Gauss-
ian model. Outside of tractability benefits, there is no fundamental reason to pick a Gaussian distribution
on the nullspace of A here, except that its rotational invariance means the basis matrix F only has to be
defined up to a rotation. This is consistent with the fact that recovery performance, as characterized by the
nullspace property (det-NSP), is only a function of the nullspace of A and not of its matrix representation.
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Concentration inequalities on Lipschitz functions of Gaussian variables then translate (proba-NSP) into ex-
plicit conditions on the matrix F . We begin by the following lemma controlling the left-hand side of this
inequality.

Lemma 2.2. Suppose F ∈ Rn×m and y ∼ N (0, Im), then

Prob [‖Fy‖k,1 ≥ E[‖Fy‖k,1] + x] ≤ e
− x2

2σ2
k

(F )

where
σ2
k(F ) , max

{u∈{0,1}2n,1Tu≤k}
uT
(

1 −1
−1 1

)
⊗ FF Tu. (3)

and

E[‖Fy‖k,1] ≤ σk(F )
√

2 log(2k
(
n
k

)
) ≤ σk(F )

√
2k
(
1 + log

(
2n
k

))
.

Proof. We can write the left-hand side of inequality (proba-NSP) as

‖Fy‖k,1 = max
{u=(u+,u−)∈{0,1}2n,1Tu≤k}

(u+ − u−)TFy

which means that ‖Fy‖k,1 is the maximum of Gaussian variables. Concentration results detailed in (Massart,
2007, Th. 3.12) for example show that

Prob [‖Fy‖k,1 ≥ E[‖Fy‖k,1] + x] ≤ e
− x2

2σ2
k

(F )

where σk(F ) is defined as

σ2
k(F ) = max

{u=(u+,u−)∈{0,1}2n,1Tu≤k}
E
[(

(u+ − u−)TFy
)2]

.

We have

E
[(

(u+ − u−)TFy
)2]

=
∥∥(u+ − u−)TF

∥∥2

2

= (u+ − u−)TFF T (u+ − u−)

=

(
u+

u−

)T (
FF T −FF T
−FF T FF T

)(
u+

u−

)
,

and we recover (3) after setting u = (u+, u−). Note that we also have

‖Fy‖k,1 = max
{v∈Vk}

vTFy,

where Vk is the set of vectors of size n with exactly k entries equal to +1 or −1, and n − k zeroes. Each
vTFy is Gaussian with zero mean and variance vTFF T v, so ‖Fy‖k,1 is the maximum of 2k

(
n
k

)
Gaussian

random variables. Using (Massart, 2007, Lem. 2.3) we can therefore bound the expectation as follows

E[‖Fy‖k,1] ≤ σk(F )
√

2 log(2k
(
n
k

)
)

and (
n

k

)
≤ nk

k!
≤
(ne
k

)k
yields the desired result.

Note that the bound in exp(−x2/2σ2
k(F )) can be replaced by 2(1−N(x/σk(F ))) (see e.g (Massart, 2007,

Thm 3.8), where N(x) is the Gaussian CDF, which is smaller for larger values of x. Expression (3) means
σ2
k(F ) is the optimum value of a k-Dense-Subgraph problem. Several efficient approximation algorithms

have been derived for this graph partitioning problem and will be discussed in Section 4. We now apply
similar concentration results to control the fluctuations of the right hand side of inequality (proba-NSP).
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Lemma 2.3. Suppose F ∈ Rn×m and y ∼ N (0, Im), then

Prob [‖Fy‖1 ≤ E[‖Fy‖1]− x] ≤ e−
x2

2L2(F )

where
E[‖Fy‖1] =

√
2
π

∑n
i=1 ‖Fi‖2

and L2(F ) = maxv∈{−1,1}n v
TFF T v (= σ2

n(F )) is bounded by the following MaxCut relaxation
2
πL

2
mxct(F ) ≤ L2(F ) ≤ L2

mxct(F ) , max. Tr(XFF T )
s.t. diag(X) = 1, X � 0,

(4)

with, in particular, Lmxct(F ) ≤
√
n‖F‖2.

Proof. We can write
‖Fy‖1 = max

v∈{−1,1}n
vTFy

and (Massart, 2007, Th. 3.12) shows that

Prob [‖Fy‖1 ≤ E[‖Fy‖1]− x] ≤ e−
x2

2L2(F ) .

The fact that E[|g|] =
√

2/πV whenever g ∼ N (0, V 2) produces the expectation, and the Lipschitz
constant L2(F ) in this inequality is given by the largest variance

L2(F ) = max
v∈{−1,1}n

vTFF T v,

hence is the solution of a graph partitioning problem similar to MaxCut. Relaxation results in (Goemans
and Williamson, 1995) (in the case where the matrix is nonnegative) and (Nesterov, 1998a) show that this
combinatorial problem can be bounded by solving

maximize Tr(XFF T )
subject to diag(X) = 1, X � 0,

which is a semidefinite relaxation in X ∈ Sn of the maximum variance problem (tight up to a factor π/2).
Its dual is written

minimize 1Tw
subject to FF T � diag(w),

which is another semidefinite program in the variable w ∈ Rn. By weak duality, any feasible point of this
last problem gives an upper bound on Lmxct(F ). In particular, the point w = λmax(FF T )1 is dual feasible
and yields Lmxct(F ) ≤

√
n‖F‖2.

The bound detailed in Lemma 2.3 is directly related to the MatrixNorm problem discussed in Ne-
mirovski (2001) and Nemirovski (2005) or the spin glass models of statistical mechanics. In particular, our
approximation bound on L(F ) can be directly deduced from the bound on the induced matrix norm ‖ · ‖2,1
derived in Nemirovski (2005, Prop. 1.4). Note also that the mean E[‖Fy‖1] =

√
2/π

∑n
i=1 ‖Fi‖2 is

typically much larger than the factor L(F ) controlling concentration. In fact, we can write
∑n

i=1 ‖Fi‖2 =

‖F‖FNumCard({‖Fi‖2})1/2 = ‖F‖2NumRank(F )1/2 NumCard({‖Fi‖2})1/2. Combining the last
two lemmas, we show the following proposition, which is our main recovery condition.

Proposition 2.4. If F ∈ Rn×m satisfies(√
2k

(
1 + log

2n

k

)
+ β

)
σk(F ) ≤

(√
2

π

n∑
i=1

‖Fi‖2 − βL(F )

)
αk (5)

for some β > 0, where σk(F ) was defined in (3) and L(F ) in (4), then the sparse recovery condition
(proba-NSP) will be satisfied with probability 1− 2e−β

2/2 when y ∼ N (0, Im).

Proof. We combine the bounds of Lemmas 2.2 and 2.3, requiring them to hold with probability 1−e−β2/2.
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We finish this section by showing that the function σk(F ) defined in (3) is strictly increasing with k
whenever the diagonal of FF T is positive, which will prove useful in the results that follow.

Lemma 2.5. Let F ∈ Rn×m, the function σk(F ) is strictly increasing in k ∈ [1, n] whenever the diagonal
of FF T is positive, with

σ1(F ) = max
i=1,...,n

(FF T )ii and σn(F ) = L(F )

where L(F ) is defined in Lemma 2.3.

Proof. We can write

σ2
k(F ) = max

{(u+,u−)∈{0,1}2n,1Tu≤k}

∥∥(u+ − u−)TF
∥∥2

2

= max
{v∈{0,1}n,1T v≤k,u∈{−1,1}n}

uT (vvT ◦ FF T )u.

Let us call v(k), u(k) the optimal solutions of the maximization problem with optimal value σ2
k(F ), and let

J = {i ∈ [1, n] : v(k)i 6= 0} be the support of v(k). If we pick i ∈ [1, n], outside of J , we have

σ2
k+1(F ) ≥ u(k)T (v(k)v(k)T ◦ FF T )u(k) + (FF T )ii + max

ui∈{−1,1}
2ui

∑
j∈J

u(k)j(FF
T )ij


= σ2

k(F ) + (FF T )ii + 2

∣∣∣∣∣∣
∑
j∈J

u(k)j(FF
T )ij

∣∣∣∣∣∣
Hence the difference between σ2

k+1(F ) and σ2
k(F ) is at least maxj∈J(FF T )jj . This means that σk(F ) is

increasing and bounded by
max

u∈{−1,1}n
uTFF Tu,

which is the maximization problem defining L2(F ) in Lemma 2.3.

2.3. Independent, bounded model. The previous section showed that enforcing condition (proba-NSP)
with high probability for Gaussian vectors y meant controlling the ratio between the Lipschitz constant
σk(F ) of the norm ‖Fy‖1,k and the norm

∑n
i=1 ‖Fi‖2. In what follows, we will show that the same

quantities control the concentration of ‖Fy‖1,k and ‖Fy‖1 when the coefficients of y are independent and
bounded. Once again, because F is defined up to a rotation here, these results are easily extended to the
case where y = Qu with QTQ = I and the variables u are independent and bounded. We can write a weak
recovery condition for this bounded model, similar to condition (5).

Proposition 2.6. Let F ∈ Rn×m and suppose

E[‖Fy‖1,k] + βσk(F ) ≤ (E[‖Fy‖1]− βL(F ))αk (6)

for some β > 0, where σk(F ) was defined in (3) and L(F ) in (4), then the sparse recovery condition
(proba-NSP)

‖Fy‖k,1 ≤ αk‖Fy‖1
will be satisfied with probability 1− 2ce−β

2/c∆2
, where c > 0 is an absolute constant, when the coefficients

of y ∈ Rm are independent and bounded, with ‖y‖∞ ≤ ∆.

Proof. As pointwise suprema of affine functions in y, the functions ‖Fy‖1,k and ‖Fy‖1 are convex and
Lipschitz with constants bounded by σk(F ) and L(F ) respectively (see the proofs of Lemmas 2.2 and
2.3). If the coefficients of y ∈ Rm are independent and bounded, with ‖y‖∞ ≤ ∆, Talagrand’s inequality
(Ledoux, 2005, Corr. 4.10) then shows that

Prob [|E[‖Fy‖1,k]− ‖Fy‖1,k| ≥ t] ≤ Ce
− t2

cσ2
k

(F )∆2
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and

Prob [|E[‖Fy‖1]− ‖Fy‖1| ≥ t] ≤ Ce
− t2

cL2(F )∆2

where c is an absolute constant, hence the desired result.

The parallel with the Gaussian case can be made even more explicit using the following simple majoriza-
tion result.

Lemma 2.7. Let V ⊂ Rn be a finite set. Suppose the variables {yi}i=1,...,n are independent with support
in [−1, 1], then

E[supv∈V v
T y] ≤ σ

√
π log |V |

where σ = maxv∈V ‖v‖2.

Proof. If the variables yi are independent, supported in [−1, 1], then y �c g where g ∼ N (0, π2 In) is a
Gaussian vector (Ben-Tal et al., 2009, Prop. 10.3.2). The supremum supv∈V v

T y is a pointwise maximum
of affine functions of y, hence is convex in y, so y �c g implies E[supv∈V v

T y] ≤ E[supv∈V v
T g]. Finally,

(Massart, 2007, Th. 3.12) shows that E[supv∈V v
T g] ≤ σ

√
π log |V |.

If we take V in Lemma 2.7 to be the set of vectors of size n with exactly k entries equal to +1 or−1, and
n − k zeroes, this result shows that, when the coefficients of y are supported on [−1, 1] and independent,
then E[‖Fy‖1,k] is bounded by π

2 E[‖Fg‖1,k] with g Gaussian. Alternatively, both expectations in (6) can
be evaluated efficiently. In fact Hoeffding’s inequality shows that if we need to estimate these quantities
with precision ε and confidence 1− β, we need at least N samples of either ‖Fy‖1,k or ‖Fy‖1, with

N =
D2 log(2/β)

2ε2

where D = max‖y‖∞≤∆ ‖Fy‖1 is an upper bound on both norms whenever ‖y‖∞ ≤ ∆.

3. WEAK RECOVERY AND RESTRICTED ISOMETRY

In this section, we show that some random matrices satisfy our weak recovery condition (5) for near
optimal values of the cardinality k (i.e. in scenarios where the number m of linear samples required to
recover a signal is a small multiple of the number k of nonzero components in that signal). We show in
particular that in some cases, matrices satisfying the restricted isometry property defined in Candès and Tao
(2005) also satisfy condition (5). Here however, the restricted isometry is tested on the nullspace basis F
instead of the coding matrix A, so the compressed sensing interpretation is lost, but this connection allows
us to recycle all known results on restricted isometry thresholds for random matrices and easily derive weak
recovery thresholds from condition (5). In the next section, we will see that the most important difference
between RIP and the weak condition detailed here is that (5) can be tested efficiently while RIP is intractable.
Here, we simply check that our weak condition (5) is indeed satisfied by good coding matrices.

We first show that the k-Dense-Subgraph problem computing σk(F ) in (3) is inherently simpler than the
sparse eigenvalue problem used in testing the restricted isometry property. We then show that matrices F
such that F T satisfies the restricted isometry property defined in Candès and Tao (2005) at a near-optimal
cardinality k, also satisfy our weak recovery condition (5) for similar values of k. This allows us to recycle
all known results on the RIP for random matrices and show in particular that Gaussian matrices satisfy
condition (5) at near optimal values of k.

Roughly speaking, our main objective here is to show that for good coding matrices σk(F ) grows as
√
k

while L(F ) is of order
√
n and

∑n
i=1 ‖Fi‖2 is of order n (up to a normalizing factor in condition (5)). For

completeness, we have also included a direct proof of these facts in the appendix, using standard concentra-
tion arguments instead of RIP.
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3.1. Sparse eigenvalues and k-Dense-Subgraph. We will see in the next section that approximating the
k-Dense-Subgraph problem is significantly easier than testing RIP or the nullspace property. There is in fact
a direct connection between the sparse eigenvalue and k-Dense-Subgraph problems. The k-Dense-Subgraph
problem used in bounding σk(F ) is written

σ2
k(F ) = max

u∈{0,1}2n
1Tu≤k

uTMu where M =
(

1 −1
−1 1

)
⊗ FF T

in the variable u ∈ {0, 1}2n. On the other hand, the problem of computing a sparse maximum eigenvalue to
check the restricted isometry property can be written

λkmax(FF T ) = max
u∈{0,1}n
1Tu≤k

max
‖x‖=1

uT (FF T ◦ xxT )u

in the variables x ∈ Rn, u ∈ {0, 1}n. We observe that computing sparse eigenvalues (hence test RIP) means
solving a k-Dense-Subgraph problem over the result of an inner eigenvalue problem in x, while bound-
ing σk(F ) only requires solving a k-Dense-Subgraph problem over a fixed matrix M , hence is significantly
easier.

3.2. Weak NSP and random matrices. Following Candès and Tao (2005), we will say that a matrix A ∈
Rm×n satisfies the restricted isometry property (RIP) at cardinality k > 0 if there is a constant δk > 0 such
that

‖x‖22(1− δk) ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22
for all sparse vectors x ∈ Rn such that Card(x) ≤ k. We now show that the RIP allows us to closely
control the values of σk(F ) and L(F ). This will allow us to directly recycle all known results on RIP for
random matrices and apply them to the weak recovery condition considered here. We start by a technical
lemma bounding the values of σk(F ) and ‖Fi‖2 for RIP matrices.

Lemma 3.1. Suppose the matrix F T ∈ Rm×n satisfies the restricted isometry property with constant δk > 0
at cardinality k, then

σk(F ) ≤
√
k(1 + δk) and ‖Fi‖2 ≥

√
1− δ1. (7)

and (k/n)2L2(F ) ≤ σ2
k(F ).

Proof. We get

σ2
k(F ) = max

{(u+,u−)∈{0,1}2n,1Tu≤k}

∥∥(u+ − u−)TF
∥∥2

2

= max
{(u+,u−)∈{0,1}2n,1Tu≤k}

(u+ − u−)TFF T (u+ − u−)

≤ (1 + δk) max
{(u+,u−)∈{0,1}2n,1Tu≤k}

‖u+ − u−‖22

≤ (1 + δk)k

because F T satisfies the RIP and Card(u+ − u−) ≤ k. Plugging Euclidean basis vectors in the RIP also
means (1− δ1) ≤ ‖Fi‖22 for i = 1, . . . , n. Lemma 2.5 showed that L(F ) = σn(F ) and combining this with
the lower bound in (Srivastav and Wolf, 1998, Lem.1) on the performance of the greedy algorithm in §4.2.1
shows that (k/n)2L2(F ) ≤ σ2

k(F ).

We now use this last lemma to show the main result of this section, which proves that if a matrixF satisfies
RIP then F T will satisfy the weak recovery condition (5) in the optimal regime where k is proportional to n.
In other words, this result shows that our weak recovery condition is satisfied by optimal matrices, hence is
indeed weaker than existing recovery conditions.
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Proposition 3.2. Suppose F T ∈ Rm×n satisfies the restricted isometry property with constant δk with
0 < δk < c < 1 at cardinality k, where c is an absolute constant. Suppose that k ≤ n, k → ∞ as n → ∞
and lim supn→∞ k/n = κ. Then F satisfies condition (5) for n large enough with αk < 1/2, provided that
fc(κ) < 1/2, where fc is defined as

fc(x) = x

√
π(1 + c)√

1− c

√(
1 + log

2

x

)
,

and fc(0) = 0 .

Proof. When F T satisfies the RIP, Lemma 3.1 above shows

σk(F ) ≤
√
k(1 + δk)

and, using L(F ) ≤ (n/k)σk(F ) (see Lemma 3.1), we then get L(F ) ≤ nk−1/2
√

(1 + δk). Therefore,√
2

π

n∑
i=1

‖Fi‖2 − βL(F ) ≥ n
√

2(1− δ1)

π
− βn

√
(1 + δk)/k

for any β > 0. We also note that δ1 ≤ δk < c so that√
2

π

n∑
i=1

‖Fi‖2 − βL(F ) ≥ n
√

2(1− δk)
π

− βn
√

(1 + δk)/k

> n

(√
2(1− c)

π
− β

√
(1 + c)/k

)
.

Using the fact that σk(F ) ≤
√
k(1 + c), it is clear that if

αk

[√
2

π

n∑
i=1

‖Fi‖2 − βL(F )

]
≥
√
k(1 + c)

[√
2k

(
1 + log

2n

k

)
+ β

]
,

then Equation (5) holds. Therefore, if

αk n

(√
2(1− c)

π
− β

√
(1 + c)/k

)
≥
√
k(1 + c)

[√
2k

(
1 + log

2n

k

)
+ β

]
,

or equivalently, assuming k > πβ2(1 + c)/2(1− c), if

αk ≥
k

n

√
1 + c√

2(1−c)
π − β

√
1+c
k

[√
2

(
1 + log

2n

k

)
+

β√
k

]
, Γ(k, n, c, β),

then Equation (5) holds. It is therefore clear that if Γ(k, n, c, β) < 1/2, we can find αk < 1/2 such that
Equation (5) holds. Notice that as k →∞, we have

Γ(k, n, c, β) ∼ k

n

√
π(1 + c)√

1− c

√
1 + log

2n

k
= fc(k/n).

Elementary analysis shows that fc is a continuous increasing function on [0, 1].
Recall now, that by assumption, k → ∞ as n → ∞ and lim supn→∞

k
n = κ ≥ 0 with κ such that

fc(κ) < 1/2. We therefore conclude - by considering lim supn→∞ Γ(k, n, c, β) - that when n is large
enough, Equation (5) holds with αk < 1/2 under our assumptions.

This last result shows that F satisfies the weak recovery condition in (5) at cardinalities near k when F T

satisfies the RIP at cardinality k, in the optimal regime where k is proportional to n.
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4. BOUNDS ON L(F ) AND σk(F ) USING GRAPH PARTITIONING RELAXATIONS

In Section 2.2, we showed that if the matrix F ∈ Rn×m satisfied the weak recovery condition (5), which
read (√

2k log

(
1 +

2n

k

)
+ β

)
σk(F ) ≤

(√
2

π

n∑
i=1

‖Fi‖2 − βL(F )

)
αk,

for some β > 0, then the recovery condition in (proba-NSP) would be satisfied with probability 1−2e−β
2/2

when y is Gaussian. Testing this weak recovery condition essentially hinged on bounding the Lipschitz
constants σk(F ) and L(F ). In Section 2.3 we showed that the same quantities allowed us to check the
weak recovery condition in a more general model where y is bounded. As we will see below, efficient
approximation results on these graph partitioning problems produce relatively tight bounds on both σk(F )
and L(F ). In particular, these bounds are tight enough to allow condition (proba-NSP) to be tested in
polynomial time at near-optimal values of the cardinality k.

4.1. Bounding L(F ): MaxCut. We have observed in Lemma 2.3 that the constant L(F ) on the right hand
side of condition (5) is defined as

L2(F ) = max
v∈{−1,1}n

vTFF T v. (8)

This is an instance of a graph partitioning problem similar to MaxCut. Goemans and Williamson (1995)
(when the matrix is nonnegative) and Nesterov (1998a) show that the following relaxation

L2(F ) ≤ L2
mxct(F ) = max. Tr(XFF T )

s.t. diag(X) = 1, X � 0,
(9)

which is a (convex) semidefinite program in the variable X ∈ Sn, is tight up to a factor π/2. This means
that

√
2/πLmxct(F ) ≤ L(F ) ≤ Lmxct(F ). The dual of this last program is written

minimize 1Tw
subject to FF T � diag(w),

which is another semidefinite program in the variable w ∈ Rn. By weak duality, any feasible point of this
last problem gives an upper bound on L(F ).

4.2. Bounding σk(F ): k-Dense-Subgraph. On the left hand side of (5), the constant σ2
k(F ) is computed

as
σ2
k(F ) = max. uTMu

s.t. 1Tu ≤ k
u ∈ {0, 1}2n,

(10)

in the binary variable u, where M ∈ S2n is positive semidefinite, with

M =
(

1 −1
−1 1

)
⊗ FF T , (11)

here. This is a graph partitioning problem known as k-Dense-Subgraph, which seeks to find a subgraph S
of the graph of M , with at most k nodes and maximum edge weight

∑
(i,j)∈SMij , see Kortsarz and Peleg

(1993); Arora et al. (1995); Feige et al. (2001); Feige and Langberg (2001); Han et al. (2002a); Billionnet
and Roupin (2006) among others for details. Note that in our application here, M is typically dense and
its coefficients can take negative values while most of the references cited above consider graphs with non-
negative (often sparse) weight matrices. The k-DenseSubgraph problem can also be seen as an instance
of the Quadratic Knapsack problem (see Lin (1998); Pisinger (2007) for a general overview). We will see
that elementary greedy or random sampling algorithms already produce satisfactory approximations. How-
ever, their crudeness means that they are outperformed in practice by linear programming or semidefinite
relaxation bounds, and we begin by outlining a few of these relaxations below.
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4.2.1. A Greedy Algorithm. We now recall the greedy elimination procedure described by e.g. Srivastav and
Wolf (1998), which extracts a k-subgraph out of a larger graph containing the optimal solution. Suppose
we are given a weight matrix M ∈ Sn, and assume we know an index set I ∈ [1, n] such that the weight
w(I) =

∑
i,j∈IMij of the subgraph with vertices in I is an upper bound on σ2

k(F ) of the k-Dense-Subgraph
problem in (10). If |I| ≤ k, then I is optimal, otherwise we can greedily prune |I| − k vertices from the
graph and Srivastav and Wolf (1998, Lem.1) show that the pruned subgraph must have weight at least

k(k − 1)

|I|(|I| − 1)
w(I).

When the weight matrixM is nonnegative, the full graph weightw([1, n]) produces an obvious upper bound
on w(I∗). The situation is slightly more complex when M has negative coefficients, as in the particular
instance considered here in (3). In Proposition 6.1, we show how to produce an upper bound w(I) by
solving the MaxCut relaxation (9).

4.2.2. Semidefinite Relaxation. Many different relaxations have been developed for the k-Dense-Subgraph
and Quadratic Knapsack problem and we highlight some of them in what follows. Semidefinite relaxations
were derived in Helmberg et al. (2000) to bound σ2

k(F ). In particular, the SQK2 relaxation in Helmberg
et al. (2000) yields

σ2
k(F ) ≤ max. Tr(MX)

s.t. 1TX1 ≤ k2

X − diag2(X) � 0,
(12)

which is a semidefinite program in the variable X ∈ Sn. Note that the constraint X − diag2(X) is a Schur
complement, hence is convex in X . Adaptively adding further constraints as in Helmberg et al. (2000) can
further tighten this relaxation. In particular, adding constraints of the type

n∑
j=1

Xij ≤ kXii or
n∑
j=1

(Xjj −Xij) ≤ (1−Xii) (13)

for some i = 1, . . . , n, sometimes significantly improves tightness. Another simple relaxation formulated
in Helmberg et al. (2000) bounds (8) when k ≥ 2 by solving

σ2
k(F ) ≤ max. Tr(MX)

s.t. Tr((11T − I)X) ≤ k(k − 1)
X − diag2(X) � 0,

(14)

in the variable X ∈ Sn. This last relaxation is tighter than (12) but not as tight as its refinements using the
additional constraints in (13). Another relaxation detailed in Feige and Langberg (2001) first writes (10) as
a binary optimization problem over {−1, 1}n, then bounds it by solving

maximize Tr(M(11T + y1T + 1yT + Y ))
subject to Y 1 = y(2k − n)

diag(Y ) = 1, Y � 0,
(15)

which is a semidefinite program in the variable Y ∈ Sn. We refer the reader to Helmberg et al. (2000) for
details on the tightness and complexity of these various semidefinite relaxations.

Fortunately, even though the k-Dense-Subgraph problem is NP-Hard, simple randomized or greedy algo-
rithms reach good approximation ratios (Arora et al. (1995) even produced a PTAS in the dense nonnegative
case). While many tightness results have been derived on the semidefinite relaxations detailed above (see
e.g. Han et al. (2002b)), most of them producing approximation ratios of k/n or better, existing results do
not apply when the coefficients of M have arbitrary signs. Here, we show a similar approximation ratio
when the graph weight matrix M is allowed to have some negative coefficients but is positive semidefinite.

Proposition 4.1. Suppose M ∈ Sn is positive semidefinite. Define

Dk(M) = max
u∈{0,1}n
1Tu≤k

uTMu,

12



the relaxation
SDPk(M) = max. TrMX

s.t. 0 ≤ Xij ≤ 1
TrX = k, X � 0,

(16)

satisfies, for n large enough and k ≥ n1/3,

k

n
µ(n, k)

(
1

4
TrMG+

1

2π
SDPk(M)

)
≤ Dk(M) ≤ SDPk(M),

where

µ(n, k) =

(
1− 2

k1/3

) 1

1− 2πn2

k2 e−
n1/9

3

 −−−→
n→∞

1

and Gij =
√
XiiXjj , i, j = 1, . . . , n, so in particular TrMG ≥ 0.

Proof. We use a hybrid randomization procedure, mixing the sparse sampling strategy in Feige and Seltser
(1997) with the correlation argument in Nesterov (1998a). Let X be an optimal solution to problem (16),
w.l.o.g. we can assume |Xii| > 0, and we define the corresponding (positive semidefinite) correlation matrix
Cij = Xij/

√
XiiXjj , i, j = 1, . . . n and sample vectors z ∼ N (0, C). For each sample z, we define

yi =

{
1 if zi ≥ 0,
0 otherwise.

As in Feige and Seltser (1997), we also sample independent variables u ∈ Rn such that

ui =

{
1 with probability qi = k

√
Xii/S,

0 otherwise.

where S =
∑n

i=1

√
Xii. Note that 0 ≤ qi ≤ 1 because 0 ≤ Xii ≤ 1 and

∑
iXii = k. For each sample, we

then define w ∈ {0, 1}n, with wi = uiyi, i = 1, . . . , n, so when i 6= j

E[wiwj ] = Prob[zi ≥ 0, zj ≥ 0, ui = uj = 1]

= Prob[zi ≥ 0, zj ≥ 0]Prob[ui = 1]Prob[uj = 1]

=

(
1

4
+

1

2π
arcsin(Cij)

)
k2
√
XiiXjj

S2

and E[w2
i ] ≥ Prob[zi ≥ 0]Prob[ui = 1]2. If we define G ∈ Sn with Gij =

√
XiiXjj , we conclude that

E[wwT ] � k2

S2

[
1
4G+ 1

2π arcsin(C) ◦G
]
.

Because X,M � 0 with TrX = k, we have S ≤
√
kn, and we thus obtain

E[wTMw] ≥ k2

S2

(
1

4
TrMG+

1

2π
Tr(M(arcsin(C) ◦G))

)
≥ k

n

(
1

4
TrMG+

1

2π
SDPk(M)

)
because arcsin(C) � C (Nesterov, 1998b, Corr. 3.2), Tr(M(arcsin(C) ◦ G)) = Tr(arcsin(C)(M ◦ G)),
C ◦ G = X and M,C,G � 0 so M ◦ G � 0. Now, let us call b = Prob[wTMw ≤ E[wTMw]/β] for
some β ≥ 1. By construction, because wTMw ≤ SDPn(M) whenever w ∈ {0, 1}n and

wTMw ≤ E[wTMw]

β
1
{wTMw≤ E[wTMw]/β} + SDPn(M) 1

{wTMw> E[wTMw]/β}
we have

E[wTMw] ≤ bE[wTMw]/β + (1− b)SDPn(M)

so
b ≤ 1− β − 1

βSDPn(M)/E[wTMw]− 1
.
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Now, let us call Y ∈ Sn a solution to SDPn(M); then kY/n is a feasible point of (16), so SDPn(M) =
TrMY ≤ n

k TrMX and the previous paragraph shows

SDPn(M)

E[wTMw]
=

TrMY

E[wTMw]
≤ 2πnTrMY

kTrMX
≤ 2πn2

k2
.

Therefore, for n large enough, setting

β ≥ 1

1− 2πn2

k2 e−k
1/3/3

,

ensures

β >
1− e−k1/3/3

1− SDPn(M)

E[wTMw]
e−k

1/3/3
.

When the denominator is positive, the previous inequality implies that

β − 1

βSDPn(M)/E[wTMw]− 1
> e−k

1/3/3 .

Hence, choosing again n large enough to make the denominator positive, we finally have

1− b ≥ β − 1

βSDPn(M)/E[wTMw]− 1
> e−k

1/3/3,

Now, using Chernoff’s inequality as in (Feige and Seltser, 1997, Lem. 4.1) produces

Prob
[
Card(u)− 1T q ≥ t1T q

]
≤ e−

t21T q
3 ,

where qi = Prob[ui = 1]. We note that here 1T q = k and as in (Feige and Seltser, 1997, Th. 4.1), when
k ≥ n1/3

Prob
[
Card(u) ≥ k

(
1 + k−1/3

)]
≤ e−k1/3/3.

This last result, together with the bound on b derived above, shows that

Prob[wTMw ≥ E[wTMw]/β] = 1− b > e−k
1/3/3 ≥ Prob

[
Card(w) ≥ k

(
1 + k−1/3

)]
.

Therefore, by sampling enough points w, we can generate a vector w0 ∈ {0, 1}n such that

wT0 Mw0 ≥
k

βn

(
1

4
TrMG+

1

2π
SDPk(M)

)
and Card(w0) ≤ k

(
1 + k−1/3

)
If we remove no more than k2/3 variables from w0 using the backward greedy algorithm described in
Srivastav and Wolf (1998, Lem.1) we loose at most a factor

k(k − 1)

(k + k2/3)(k + k2/3 − 1)
= 1− 2

k1/3
+ o

(
1

k1/3

)
and, from w0, we obtain a point wk such that

wTk Awk ≥
k

βn

(
1− 2

k1/3

)(
1

4
TrMG+

1

2π
SDPk(M)

)
and Card(wk) ≤ k,

when n is large enough, which yields the desired result.

Note that, in the previous result, the condition k ≥ n1/3 can be replaced by any constraint of the type
k ≥ nα where 0 < α < 1 with n1/9 replaced by nα/3.
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5. COMPLEXITY

Bounding L(F ) and σk(F ) using semidefinite relaxations means solving two maximum eigenvalue min-
imization problems. Problem (9), used for bounding L(F ), can be rewritten

min
w∈Rn

nλmax(FF T − diag(w))− 1Tw (17)

while problem (12) bounding σk(F ) can be written

min
{w,z∈Rn, y∈Rn}

(k + 1)λmax

(
F̄ + wH̄ + zḠ+

n∑
i=1

yiĒi

)
− wk(k − 1)− z (18)

where

F̄ =

(
FF T 0

0 0

)
, H̄ =

(
11T − I 0

0 0

)
, Ḡ =

(
0 0
0 1

)
and Ēi =

(
eie

T
i −ei/2

−eTi /2 0

)
where ei ∈ Rn is the ith Euclidean basis vector. Given a priori bounds on the norm of the solutions, Nesterov
(2007) showed that solving problems (18) and (17) up to a target precision ε using first-order methods has
total complexity growing as

O

(
n3
√

log n

ε

)
and O

(
n3.5
√

log n

ε

)
for problems (17) and (18) respectively.

6. TIGHTNESS

We use the convex relaxation result of Proposition 4.1 to show that if a matrix F satisfies the weak
recovery condition (5) up to cardinality k∗, the semidefinite relaxation in (16) will allow us to certify that F
satisfies (5) at cardinalities very near k∗.

Proposition 6.1. Suppose the matrix F ∈ Rn×m satisfies the weak recovery condition (5) up to cardinality
k∗ = γ(n)n for some γ(n) ∈ (0, 1), β > 0 and αk∗ ∈ [0, 1], i.e.(√

2k∗ log
2n

k∗
+ β

)
σk∗(F ) ≤

(√
2

π

n∑
i=1

‖Fi‖2 − βL(F )

)
αk∗ ,

and let SDPk(·) be defined as in (16), we have(√
2k log

2n

k
+ β

)
(SDPk(M))1/2 ≤

(√
2

π

n∑
i=1

‖Fi‖2 − βL(F )

)
αk∗ , (19)

for n sufficiently large, when k ≤ γ(n)(log n)−1k∗, with M defined as in (11).

Proof. Applying the result of Proposition 4.1 at cardinality k∗ shows

(SDPk∗(M))1/2 ≤ σk∗(F )

√
2πn

k∗

(
1 +

o(1)

k∗1/3

)1/2

.

Using SDPk(M) ≤ SDPk∗(M), with k ≤ γ(n)(log n)−1k∗ showing(√
2k log 2n

k + β
)

(√
2k∗ log 2n

k∗ + β
)√2πn

k∗

(
1 +

o(1)

k∗1/3

)1/2

= o(1)

when n→∞, yields the desired result.
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7. NUMERICAL RESULTS

We start by studying the distribution of the residual error xlp − e when e is a random sparse signal. We
sample a thousand vectors e ∈ R100 with 15 nonzero i.i.d. uniform coefficients. Our (fixed) design matrix
A ∈ Rm×n is Gaussian or Bernoulli with m = 30. We produce a vector of observations Ae and solve the
`1 reconstruction problem in (`1-recov.) and record the value of xlp − e projected along a fixed (randomly
chosen) direction v. The histogram of these values is plotted in Figure 1.
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FIGURE 1. Projected reconstruction error vT (xlp − e), along a fixed (randomly chosen)
direction v, using a single Gaussian (left) or Bernoulli (right) design matrix with p = 100,
m = 30 and a thousand samples of a random sparse signal e ∈ R100 with 15 i.i.d. uniform
coefficients.

On a random Gaussian matrix with n = 40 and m/n = 1/2, we recall in Table 1 the recovery threshold
k/m certified by the semidefinite relaxation (SDP) detailed in (d’Aspremont and El Ghaoui, 2011) and
the linear programming (LP) relaxation in (Juditsky and Nemirovski, 2011), strong and weak recovery
thresholds from the asymptotic results in Donoho and Tanner (2008).

SDP LP Strong D&T Weak D&T
0.1 0.1 0.1 0.5

TABLE 1. Perfect recovery threshold k/m computed using the semidefinite relaxation
(SDP) detailed in (d’Aspremont and El Ghaoui, 2011), the linear programming (LP) re-
laxation in (Juditsky and Nemirovski, 2011) on a sample Gaussian matrix. We also recall
the asymptotic strong and weak recovery thresholds from Donoho and Tanner (2008).

We then sample Gaussian and Bernoulli matrices of increasing dimensions n × n/2 and plot the mean
values of the relaxation bounds on L(F ) (blue circles), σk(F ) (brown diamonds) together with

∑p
i=1 ‖Fi‖2

(black squares). These quantities are plotted in loglog scale in Figure 2. As expected, the norm grows
as n while both σk(F ) and L(F ) grow as

√
n. In Figure 3 we plot the empirical (brown squares) versus

predicted (blue circles) probability of recovering signals e, where F ∈ Rn×m is a Gaussian with n = 300
and m = n/2, for various values of the relative cardinality k/m. The empirical probability was obtained by
solving (`1-recov.) over one hundred random sparse signal e ∈ R100 with 15 i.i.d. uniform coefficients. The
predicted probability is obtained by computing β from condition (5) after bounding L(F ) and σk(F ) using
the convex relaxations detailed in Section 4.
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8. APPENDIX

Gaussian matrices are known to satisfy the recovery condition (det-NSP) with high probability for near-
optimal values of k hence obviously satisfy (proba-NSP). Here we directly verify that these matrices satisfy
condition (5) w.h.p. without using RIP. Concentration inequalities have been used in Baraniuk et al. (2008)
to derive a simple proof that some classes of random matrices satisfy RIP, we use similar techniques on the
weak recovery property (5) here.

We start by bounding the fluctuations of the right hand side of inequality (5) when F ∈ Rn×m is a
Gaussian random matrix with Fij ∼ N (0, 1/m).
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Lemma 8.1. Let F ∈ Rn×m with i.i.d Fij ∼ N (0, 1/m),
n∑
i=1

E [‖Fi‖2] = n(1 +O(m−1))

as m→∞.

Proof. In this setting, each
√
m‖Fi‖2 is χ distributed with m degrees of freedom, so

E[‖Fi‖2] =
√

2
m

Γ((m+1)/2)
Γ(m/2) , i = 1, . . . , n.

Using Stirling’s formula (Abramowitz and Stegun, 1970, §6.1.37), we get

Γ((m+ 1)/2)

Γ(m/2)
=

exp
(
m+1

2 log
(
m+1

2

)
− m

2 log
(
m
2

))√
e(1 + 1/m)

+O(m−1/2)

=

√
m+ 1

2
+O(m−1/2)

as m→∞, which is the desired result.

We now use concentration inequalities to bound
∑n

i=1 ‖Fi‖2 in condition (5) with high probability when
Fij ∼ N (0, 1/m).

Lemma 8.2. Let F ∈ Rn×m with i.i.d Fij ∼ N (0, 1/m),

Prob

[
n∑
i=1

‖Fi‖2 ≤
n∑
i=1

E [‖Fi‖2]− x

]
≤ e−

mx2

2n

Proof. For any U, V ∈ Rm×n, we have
n∑
i=1

‖Ui‖2 − ‖Vi‖2 ≤
n∑
i=1

‖Ui − Vi‖2

≤
√
n‖U − V ‖F

so
∑n

i=1 ‖Fi‖2 is a
√
n/m-Lipschitz function (w.r.t. the Euclidean norm) of nm i.i.d. Gaussian variables

Fij/
√
m ∼ N (0, 1) and (Massart, 2007, Th. 3.4) yields the desired result.

We now turn to the left-hand side of inequality (5) and produce inequalities on σk(F ), using again the
fact that it is a Lipschitz function of F .

Lemma 8.3. Let F ∈ Rn×m with i.i.d. Fij ∼ N (0, 1/m),

Prob [σk(F ) ≥ E[σk(F )] + x] ≤ e−
mx2

2k

Proof. We first note that the max is 1-Lispchitz with respect to the `∞ norm on Rn. Indeed, if a, b ∈ Rn

|max
i
ai −max

j
bj | ≤ max

i
|ai − bi|,

because
ai −max

j
bj ≤ ai − bi ≤ |ai − bi| ≤ max

i
|ai − bi|, i = 1, . . . , n.

Hence, maxi ai − maxj bj ≤ maxi |ai − bi|. The two sequences play symmetric roles so we also have
|maxj bj −maxi ai| ≤ maxk |ak − bk|. Now our aim is to show that F → σk(F ) is a Lipschitz function of
F with respect to the Euclidian norm. The argument we just gave shows that if F and G are two matrices,

|σk(F )− σk(G)| ≤ max
{(u+,u−)∈{0,1}2n,1Tu≤k}

∣∣∥∥(u+ − u−)TF
∥∥

2
−
∥∥(u+ − u−)TG

∥∥
2

∣∣ ,
18



because σk(F ) and σk(G) are maxima of finite sequences. We now have∣∣∥∥(u+ − u−)TF
∥∥

2
−
∥∥(u+ − u−)TG

∥∥
2

∣∣ ≤ ∥∥(u+ − u−)T (F −G)
∥∥

2

≤ ‖(F −G)‖2
∥∥(u+ − u−)T

∥∥
2

≤ ‖F −G‖F
∥∥(u+ − u−)T

∥∥
2

which shows that
σk(F ) = max

{(u+,u−)∈{0,1}2n,1Tu≤k}

∥∥(u+ − u−)TF
∥∥

2

is a Lipschitz function of the entries of F (with respect to Euclidian norm). Now when the entries of F are
i.i.d N (0, 1/m), σk(F ) is a Lipschitz function of standard Gaussian variables with Lipschitz constant

max
{(u+,u−)∈{0,1}2n,1Tu≤k}

‖u+ − u−‖2√
m

≤
√
k

m
,

and (Massart, 2007, Th. 3.12) yields the desired result.

Next, to bound E[σk(F )], we first show a bound on the supremum of an arbitrary number of χ distributed
random variables.

Lemma 8.4. Let {yi}i∈T be χ distributed variables with m degrees of freedom, then

E[supi∈T yi] ≤
√

2 log |T |+
√

2 Γ((m+1)/2)
Γ(m/2) ≤

√
2 log |T |+

√
m .

We note that the proof we present applies non only to χ distributed random variables but more generally
to Lipschitz functions of i.i.d normal random variables.

Proof. Since yi’s have the same mean, we have

sup
i∈T

yi = E[yi] + supi∈T (yi −E[yi]) .

Here we know that E[yi] =
√

2 Γ((m+1)/2)
Γ(m/2) and we also know using Jensen’s inequality that E[yi] ≤√

E[y2
i ] =

√
m.

The fact that a standard multivariate normal satisfies a log-Sobolev inequality (with constant 1 in the
setup of Ledoux (2005, Chap. 5)) implies through the Herbst argument that any 1-Lipschitz function F
(with respect to Euclidian norm) of i.i.d Gaussian random variables satisfies (see Ledoux (2005, Eq.5.8))

log Ψ(z) , logE[exp{z(F (X)−E[F (X)])}] ≤ z2

2 .

The previous inequality naturally applies to yi’s since a χm random variable is just the norm of a m-
dimensional vector with i.i.d entries (and the norm is 1-Lipschitz by the triangle inequality).

Using a classic approach in probability, namely a “soft-max” inequality, the concavity of the log, the
definition of Ψ(z) and the fact that the variables yi are identically distributed, we now have, if ỹi = yi−E[yi],

E[supi∈T ỹi] ≤
1

z
E
[
log
(∑

i∈T e
zỹi
)]

≤ 1

z
log

(∑
i∈T

E
[
ezỹi
])

≤ log |T |+ log Ψ(z)

z
≤ log |T |+ z2/2

z

for any z > 0. Optimizing over z, we get that

E[supi∈T ỹi] ≤
√

2 log |T | .

This gives the desired result.
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Let us now assume that the basis F ∈ Rn×m is a Gaussian random matrix (hence A is implicitly defined
here as a matrix annihilating F on the left) with Fij ∼ N (0, 1/m). As detailed below and throughout this
appendix, standard concentration arguments allow us to directly show that F satisfies condition (5), without
resorting to the restricted isometry property. We assume that m scales proportionally to n, with m = µn as
n goes to infinity. We also assume that k scales as κmum with um → 0 when m and n go to infinity.

Proposition 8.5. Suppose m = µn and k = κmum for some µ, κ ∈ (0, 1), with um → 0 as m → ∞.
Let F ∈ Rn×m be an i.i.d. Gaussian random matrix with Fij ∼ N (0, 1/m) and β > 0, then F satisfies
condition (5) with high probability as n goes to infinity.

Proof. We first study the left hand side of (5), which reads(√
2k

(
1 + log

2n

k

)
+ β

)
σk(F ) ≤

(√
2

π

n∑
i=1

‖Fi‖2 − βL(F )

)
αk,

when n goes to infinity. Because
√
m/k

∥∥(u+ − u−)TF
∥∥

2
is χ distributed with m d.f. whenever u =

(u+, u−) ∈ {0, 1}2n with 1Tu = k and uT+u− = 0, Lemma 8.4 shows that for n large enough

E[σk(F )] = E
[
max{u=(u+,u−)∈{0,1}2n,1Tu≤k}

∥∥(u+ − u−)TF
∥∥

2

]
= E

[
max{u=(u+,u−)∈{0,1}2n,1Tu=k,uT+u−=0}

∥∥(u+ − u−)TF
∥∥

2

]
≤

√
k

m

[√
2k

(
1 + log

(
2n

k

))
+
√
m

]
.

Here we have used the fact that the cardinality of the set T over which we are taking a supremum is such
that log |T | ≤ k

(
1 + log

(
2n
k

))
, as shown in the proof of Lemma 2.2. We note that for a constant c > 0,

we have k log
(

2n
k

)
≤ cmum log(1/um) � m. Therefore, if c denotes a constant that may change from

display to display (but does not depend on n or m), we have

E[σk(F )] ≤ c
√
k ,

and (√
2k log

2n

k

)
E[σk(F )]

m
≤ c k

m

√
− log(um) ≤ c

√
−u2

m log(um) −−−→
n→∞

0

where c > 0 does not depend on n. For some arbitrarily small ν > 0, setting x = nν
√

2k/m in Lemma
8.3, yields

Prob
[
σk(F ) ≥ E[σk(F )] + nν

√
2k/m

]
≤ e−n2ν

.

We now focus on the right hand side of (5). Lemma 8.1 shows that

lim
n→∞

∑n
i=1 E [‖Fi‖2]

m
= lim

n→∞

n

m
=

1

µ
.

because
√
m‖Fi‖2 is χ distributed with m degrees of freedom. Setting x2 = nν+1/m in Lemma 8.2 then

yields

Prob

[∑n
i=1 ‖Fi‖2
m

≤
∑n

i=1 E [‖Fi‖2]

m
− nν+1/2

√
2

m3/2

]
≤ e−n2ν

which, together with the inequality on the left hand side derived above, means that for n large enough, the
matrix F satisfies condition (5) with probability at least 1− 2e−n

2ν
. Finally, with L(F )2 ≤ n‖FF T ‖2, the

fact that ‖F‖2 is 1-Lipschitz (with respect to Euclidian norm as a function of the (Gaussian) entries of F )
combined with the bound on E[‖F‖2] detailed in Davidson and Szarek (2001, Prop. 2.14) shows that

Prob
[
‖F‖2 ≤ c+

√
2nν
]
≤ e−n2ν

,

20



for some absolute constant c > 0. This means that L(F )/m → 0 when n goes to infinity and the second
term of the right-hand side of (5) is then negligible compared to the first.

This last result shows that the sufficient condition in (5) is weak enough on Gaussian matrices to hold
w.h.p. near optimal values of the cardinality where the number of samples m is almost proportional to the
number of nonzero coefficients in the signal.
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