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Abstract

In the first part of this work, we study a particular class of infinite dimensional linear

programs on the value of a function at a given number of points, with the additional

constraint that this function be convex. Convexity is shown to be the key ingredient

making these problems tractable. We detail some applications, with a particular focus

on arbitrage constraints between call options.

In the second part, we use the results of chapter one to compute tractable relax-

ations to some multivariate or basket option pricing problems. We then derive tight

price bounds on basket options in some particular cases.

Finally, part three uses some recent results in moment theory and semidefinite

programming to refine the convex relaxation techniques of part two and compute

tighter constraints linking the prices of basket options.
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Chapter 1

Convexity constraints

In this chapter, we start by presenting an efficient technique to solve the problem of

finding optimal bounds on a function at a given point under the following conditions:

it must satisfy a set of polyhedral constraints on its value at some given points and

must be convex and/or monotone. We observe that this infinite dimensional problem

can be cast as a linear program in O(nm) variables and O(m2) constraints, where

n is the dimension and m the number of data points. Finally, we detail various

applications in consumer preference assessment, nonlinear pricing, imaging, norm

problems, finance, etc.

1



2 CHAPTER 1. CONVEXITY CONSTRAINTS

1.1 Introduction

Infinite dimensional linear programs show up in a wide variety of applications under

various names: semi infinite programs, infinite linear programs, continuous linear

programs, chance constrained programs, etc... In stark contrast with their finite

dimensional counterparts, infinite dimensional linear programs are intractable (NP-

Hard) in general as they include for example all polynomial optimization problems.

However, a number of good heuristic methods exist to solve some particular cases (see

Hettich & Kortanek (1993) for a survey). In this chapter, we observe that a particular

class of infinite dimensional linear programs formulated on the values and variations

of a convex function at a finite set of points can be reduced to a polynomial size

linear program. This simple result turns out to have a broad range of applications

and we provide various examples in finance, economics, imaging, etc. . . Moreover,

we will observe in some of these examples that the convexity constraint provides

tight relaxations to otherwise intractable problems. Finally, we explore in detail an

application of this result to multivariate option pricing.

1.1.1 Problem statement

We shall denote as z = [f(x1), . . . , f(xm), gT
1 , . . . , g

T
m], the vector composed of the val-

ues of a convex continuous function f : Rn → R at a finite set of points x1, . . . , xm ∈
Rn and its subgradients at those points g1, . . . , gm ∈ Rn. We consider the following

infinite linear program:

minimize cT z

subject to Az � b, Cz = d

z =
[

f(x1), . . . , f(xm), gT
1 , . . . , g

T
m

]T

f monotone, convex

gi subgradient of f at xi, i = 1, . . . ,m,

(1.1)
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in the variables f ∈ C (Rn), z ∈ R(n+1)m and g1, . . . , gm ∈ Rn, with parameters

A ∈ Rp×(n+1)m, C ∈ Rq×(n+1)m, c ∈ R(n+1)m, b ∈ Rp, d ∈ Rq. The feasible set of this

problem is convex as the intersection of the set of convex functions with a polyhedron

and the objective is linear, which means that problems of the form (1.1) are convex.

However, problem (1.1) is infinite dimensional since the main variable f lies in the

space C (Rn) of continuous functions. Thus, despite its convexity, problem (1.1) is

potentially intractable. In what follows, we will observe that a solution can be found

efficiently by solving a finite dimensional linear program. We will also detail the

solution to a variant of the generic problem (1.1) where the convexity constraint is

dropped to keep only a monotonicity requirement.

1.1.2 Existing results

Hereafter, we call infinite linear program (ILP) the infinite dimensional linear pro-

grams such as (1.1). These were first formally introduced in Bellman (1953) and later

used in, for example, the “bottleneck problem” in Bellman (1957). The entire class

of linear programming problems in infinite dimensional spaces is explicitly treated in

the book by Anderson & Nash (1987). Some particular instances where it is possible

to get strong duality results very similar to those derived in the finite case have re-

ceived special attention in the literature, these include semi-infinite programs where

either the number of variables or the number of constraints is finite (see Hettich &

Kortanek (1993) for a recent survey) and separable continuous linear programs (see

Bellman (1953) and Pullan (2000)) where the convergence of a general class of algo-

rithms that are not based on discretization can be proved. Here, we will focus on a

class of problems where the solution can be obtained with no discretization error.
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1.2 Linear programming solution

1.2.1 Generic problem

Let us first reformulate (1.1) as a standard form infinite linear program. We can write

it as:
minimize cT z

subject to Az � b, Cz = d

z = [f(x1), . . . , f(xm), g1, . . . , gm]T

f(y) ≤ f(z) if y ≤ z, z, y ∈ Rn

f(θz + (1 − θ)y) ≤ θf(z) + (1 − θ)f(y), θ ∈ [0, 1]

gT
i (y − xi) ≤ f(y) − f(xi), i = 1, . . . ,m,

(1.2)

and because all the constraints on the variables f and g are linear, the problem is

an infinite linear program on the product space C (Rn) × R(n+1)m, with parameters

A ∈ Rp×(n+1)m, C ∈ Rq×(n+1)m, c ∈ R(n+1)m, b ∈ Rp, d ∈ Rq.

We first look for a lower bound on the solution of that program. We can form

a finite-dimensional problem by only enforcing the convexity and subgradient con-

straints at the points xi:

minimize cT z

subject to Az � b, Cz = d

z =
[

f(x1), . . . , f(xm), gT
1 , . . . , g

T
m

]T

gT
i (xj − xi) ≤ f(xj) − f(xi), i, j = 1, . . . ,m,

(1.3)

which is a linear program in the variables f(xi) and g in Rn × Rn×m. Note that the

monotonicity constraints are simple positivity constraints on the subgradients, and

have been implicitly included in the Az � b inequalities for simplicity.

This linear program produces a lower bound on the optimal value of the original

ILP (1.2) because the LP problem (1.3) is formed using a finite subset of the con-

straints in problem (1.2). We will now show that this bound is actually equal to the



1.2. LINEAR PROGRAMMING SOLUTION 5

optimal value of (1.2).

Proposition 1 The infinite linear program (1.2) and the linear program (1.3) have

the same optimal value and problem (1.2) has a piecewise affine solution that can be

constructed explicitly from the solution to (1.3).

Proof. We shall denote as

zopt =
[

f opt(x1), . . . , f
opt(xm), goptT

1 , . . . , goptT
m

]T

the optimal solution to the linear programming problem (1.3) above and define:

s(x) = max
i=1,...,m

{

f opt(xi) + goptT
i (x− xi)

}

.

s(x) satisfies:

s(xi) = f opt(xi), i = 1, . . . ,m,

and, by construction, s(x) attains the lower bound cT zopt computed by solving prob-

lem (1.3). Because s(x) is monotone convex as the pointwise maximum of monotone

affine functions, it is also a feasible point of problem (1.2), hence problem (1.2) and

(1.3) must have the same optimal value and s(x) is an optimal solution to the infinite

linear program in (1.2).

The result above shows that, because of the convex shape constraints, a global

optimum to the infinite program can be found by sampling the constraints only at

the data points.

1.2.2 Monotone variation

Let us introduce a small variation to the generic problem in (1.2) where we drop the

convex constraint. The only global requirement that remains is that the function be
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monotone. The problem now becomes:

minimize cT z

subject to Az � b, Cz = d

z = [f(x1), . . . , f(xm)]T

f monotone.

(1.4)

The problem is again an infinite linear program in the variables (z, f), on the product

of the space BV (Rn) of functions on Rn with bounded variations and Rm, with

parameters A ∈ Rp×m, C ∈ Rq×m, c ∈ Rm, b ∈ Rp, d ∈ Rm. Without loss of

generality, we can focus on the case where f has to be nondecreasing. Again, we first

look for a lower bound and form a finite dimensional problem by only enforcing the

monotonicity constraints at the points xi:

minimize cT z

subject to Az � b, Cz = d

z = [f(x1), . . . , f(xm)]T

f(xi) ≤ f(xj) if xi � xj, (i, j) = 1, . . . ,m,

(1.5)

this is a linear program in the variables (f(x1), . . . , f(xm), z) in Rm × Rm, with the

same set of parameters as above. Because this linear program forms a set of necessary

conditions on the values of the feasible points of (1.4), the optimum of (1.5) is a lower

bound on that of (1.4). Again, let us show that this bound is actually equal to the

optimal value of the infinite program (1.4).

Proposition 2 The infinite linear program (1.4) and the linear program (1.5) have

the same optimal value and problem (1.4) has a piecewise constant solution that can

be constructed explicitly from the solution to (1.5).

Proof. We shall denote as zopt = [f opt(x1), . . . , f
opt(xm)]

T
the optimal solution to

the linear programming problem (1.5) above. Let {Pi}i=1,...,l be a partition of Rn in
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rectangles such that xi ∈ Pi for i = 1, . . . ,m and xj /∈ Pi for i 6= j with i, j = 1, . . . ,m.

Let us define a piecewise constant function f such that f(x) = f opt (xi) for x ∈ Pi. To

complete the definition of f as a monotone function, we pick some additional points

xi ∈ Pi, for i = (m+ 1), . . . , l and set:

f(xi) = max {f(xj) | i 6= j, xj � xi}

and we take f(xi) = minj=1,...,m f(xj) if the set {xj | i 6= j, xj � xi} is empty. By

construction, f attains the lower bound found in (1.5) and is monotone, hence it is

an optimal solution of (1.4).
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1.3 Applications

In this section, we detail some applications of the result in proposition 1.

1.3.1 Preference assessment

Here, we show that the concave preference assessment problem as posed by Meyer

& Pratt (1968) (see also Pratt, Raiffa & Schlaifer (1964), Keeney & Raiffa (1993) or

Keeney (1977)) can be solved exactly and we extend this result to multidimensional

utilities.

We consider different baskets of goods, consisting of different amounts of n con-

sumer goods. A goods basket is specified by a vector x ∈ Rn where xi denotes

the amount of consumer good i. We assume the amounts are normalized so that

0 ≤ xi ≤ 1, i.e., xi = 0 is the minimum and xi = 1 is the maximum possible amount

of good i. Given two baskets of goods x and x̃, a consumer can either prefer x to

x̃, or prefer x̃ to x, or consider x and x̃ equally attractive. We consider one model

consumer, whose choices are repeatable.

We model consumer preference in the following way. We assume there is an

underlying utility function u : Rn → R, with domain [0, 1]n; u(x) gives a measure of

the utility derived by the consumer from the goods basket x. Given a choice between

two baskets of goods, the consumer chooses the one that has larger utility, and will be

ambivalent when the two baskets have equal utility. It is reasonable to assume that

u is monotone nondecreasing. This means that the consumer always prefers to have

more of any good, with the amounts of all other goods the same. It is also reasonable

to assume that u is concave. This models satiation, or decreasing marginal utility as

we increase the amount of goods.

Now suppose we are given some consumer preference data, but we do not know the

underlying utility function u. Specifically, we have a set of goods baskets a1, . . . , am ∈
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[0, 1]n, and some information about preferences among them:

u(ai) > u(aj) for (i, j) ∈ P, u(ai) ≥ u(aj) for (i, j) ∈ Pweak, (1.6)

where P , Pweak ⊆ {1, . . . ,m} × {1, . . . ,m} are given. Here P gives the set of known

preferences: (i, j) ∈ P means that basket ai is known to be preferred to basket aj.

The set Pweak gives the set of known weak preferences: (i, j) ∈ Pweak means that

basket ai is preferred to basket aj, or that the two baskets are equally attractive.

We first consider the following question: How can we determine if the given data

are consistent, i.e., whether or not there exists a concave nondecreasing utility func-

tion u for which (1.6) holds? This is equivalent to solving the feasibility problem

find u

subject to u : Rn → R concave and nondecreasing

u(ai) > u(aj), (i, j) ∈ P
u(ai) ≥ u(aj), (i, j) ∈ Pweak,

(1.7)

with the function u as the (infinite-dimensional) optimization variable. Since the

constraints in (1.7) are all homogeneous, we can express the problem in the equivalent

form
find u

subject to u : Rn → R concave and nondecreasing

u(ai) ≥ u(aj) + 1, (i, j) ∈ P
u(ai) ≥ u(aj), (i, j) ∈ Pweak,

(1.8)

which uses only nonstrict inequalities. (It is clear that if u satisfies (1.8), then it must

satisfy (1.7); conversely, if u satisfies (1.7), then it can be scaled to satisfy (1.8).) This

problem, in turn, can be cast as a (finite-dimensional) linear programming feasibility
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problem, using the interpolation result in prop. 1:

find u1, . . . , um, g1, . . . , gm

subject to gi � 0, i = 1, . . . ,m

uj ≤ ui + gT
i (aj − ai), i, j = 1, . . . ,m

ui ≥ uj + 1, (i, j) ∈ P
ui ≥ uj, (i, j) ∈ Pweak.

(1.9)

By solving this linear programming feasibility problem, we can determine whether

there exists a concave, nondecreasing utility function that is consistent with the given

sets of strict and nonstrict preferences. If (1.9) is feasible, there is at least one such

utility function (and indeed, we can construct one that is piecewise-linear, from a

feasible u1, . . . , um, g1, . . . , gm). If (1.9) is not feasible, we can conclude that there is

no concave increasing utility function that is consistent with the given sets of strict

and nonstrict preferences.

As an example, suppose that P and Pweak are consumer preferences that are known

to be consistent with at least one concave increasing utility function. Consider a pair

(k, l) that is not in P or Pweak, i.e., consumer preference between baskets k and l is

not known. In some cases we can conclude that a preference holds between basket

k and l, even without knowing the underlying preference function. To do this we

augment the known preferences (1.6) with the inequality u(ak) ≤ u(al), which means

that basket l is preferred to basket k, or they are equally attractive. We then solve

the feasibility linear program (1.9), including the extra weak preference u(ak) ≤
u(al). If the augmented set of preferences is infeasible, it means that any concave

nondecreasing utility function that is consistent with the original given consumer

preference data must also satisfy u(ak) > u(al). In other words, we can conclude that

basket k is preferred to basket l, without knowing the underlying utility function.
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0 0.5 1
0

0.5

1

x1

x
2

Figure 1.1: Forty goods baskets a1, . . . , a40, shown as circles. The 0.1, 0.2, . . ., 0.9
level curves of the true utility function u are shown as dashed lines. This utility
function is used to find the consumer preference data P among the 40 baskets.

Example

Here we give a simple numerical example that illustrates the discussion above. We

consider baskets of two goods (so we can easily plot the goods baskets). To generate

the consumer preference data P , we compute 40 random points in [0, 1]2, and then

compare them using the utility function

u(x1, x2) = (1.1x
1/2
1 + 0.8x

1/2
2 )/1.9.

These goods baskets, and a few level curves of the utility function u, are shown in

figure 1.1.

We now use the consumer preference data (but not, of course, the true utility

function u) to compare each of these 40 goods baskets to the basket a0 = (0.5, 0.5). For

each original basket ai, we solve the linear programming feasibility problem described



12 CHAPTER 1. CONVEXITY CONSTRAINTS

above, to see if we can conclude that basket a0 is preferred to basket ai. Similarly,

we check whether we can conclude that basket ai is preferred to basket a0. For each

basket ai, there are three possible outcomes: we can conclude that a0 is definitely

preferred to ai, that ai is definitely preferred to a0, or (if both LP feasibility problems

are feasible) that no conclusion is possible. (Here, definitely preferred means that

the preference holds for any concave nondecreasing utility function that is consistent

with the original given data.)

We find that 21 of the baskets are definitely rejected in favor of (0.5, 0.5), and

14 of the baskets are definitely preferred. We cannot make any conclusion, from the

consumer preference data, about the remaining 5 baskets. These results are shown

in figure 1.2. The vertical and horizontal lines passing through (0.5, 0.5) divide [0, 1]2

into four quadrants. Points in the upper right quadrant must be preferred to (0.5, 0.5),

by the monotonicity assumption on u. Similarly, (0.5, 0.5) must be preferred to the

points in the lower left quadrant. For the points in the other two quadrants, the

results are not obvious. So for these 17 points, there is no need to solve the feasibility

LP (1.9). Classifying the 23 points in the other two quadrants, however, requires the

concavity assumption, and solving the feasibility LP (1.9).

1.3.2 Multidimensional screening

We describe here the multidimensional screening problem formulated by Rochet &

Chone (1998)1, in a setting derived from the general nonlinear pricing and optimal

taxation problems detailed in Wilson (1993) or Mirrlees (1971) respectively.

A monopolist has to design a product lineQ ⊆ Rn and a price schedule p : Q→ R,

to jointly maximize her profit based on the knowledge of the distribution of consumer

types. We shall denote this distribution’s density f(t) ∈ C1
(

Rn
+

)

. As in Rochet &

Chone (1998), without loss of generality, we can assume that a consumer of type t

has a bilinear individual utility function given by u(t, q) = tT q for (t, q) ∈ Rn
+ × Q.

1We are very grateful to Bob Wilson for suggesting this example.
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0 0.5 1
0

0.5

1

x1

x
2

Figure 1.2: Results of consumer preference analysis using the LP (1.9), for a new
goods basket a0 = (0.5, 0.5). The original baskets are displayed as open circles if
they are definitely rejected (u(ak) < u(a0)), as solid black circles if they are definitely
preferred (u(ak) > u(a0)), and as squares when no conclusion can be made. The
level curve of the underlying utility function, that passes through (0.5, 0.5), is shown
as a dashed curve.
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We suppose that there is an outside good with quality q0 ∈ Q and price p0 so that

the investor will choose the product q solution to:

U(t) = max
q∈Q

tq − p(q)

if and only if U(t) ≥ q0t − p0 and the outside product otherwise. Finally, we make

the simplifying assumption that the monopolist’s cost function is linear:

C(q) = cT q, q ∈ Q.

Following Rochet & Chone (1998) we know that the monopolist’s problem is then

given by:

maximize
∫

Rn
+

((t− c)∇U(t) − U(t)) f(t)dt

subject to U convex continuous

U(t) ≥ tq0 − p0

(1.10)

We can approximate the expected profit E
(

(t− c)T∇U(t) − U(t)
)

using Monte-Carlo

as

E ((t− c)∇U(t) − U(t)) = 1/N
N
∑

i=1

(ti − c)∇U(ti) − U(ti),

where the ti are N random sample points distributed with density f(t). The monop-

olist’s problem then becomes:

maximize 1/N
∑N

i=1(ti − c)∇U(ti) − U(ti)

subject to U convex continuous

U(t) ≥ tq0 − p0

which can be solved efficiently using proposition 1. Hence, in a particular case,

proposition 1 has allowed us to reduce the complex variational problem in (1.10) into

a linear program.
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1.3.3 Imaging

In a first simple example, suppose that a laser is scanning a convex object and allows

the detection of both range and gradient at a set of points xi on the object’s sur-

face. The problem of reconstructing an approximate image of the object using this

Laserobject

Figure 1.3: 3D laser scanning.

information can be formulated as:

find gi

subject to gT
i (xj − xi) ≤ f(xj) − f(xi) i, j = 1, . . . ,m,

and proposition 1 allows a direct reconstruction of an estimated shape by solving for

the subgradients at the points xi.

Hansen & Lauritzen (1998) or Hansen, Gill & Baddeley (1996) show a similar

result on the linear contact distribution. If we let X be a stationary random set in

Rn. The problem is, based on the observable data on X, to estimate the function F

defined as follows. Let

ρB(A) = inf{r ≥ 0 : rB ∩ A 6= ∅}

the function F is then defined as

F (r) = P (ρB(X) ≤ r).

Hansen et al. (1996) show that if X is a random closed set in Rn, then F must be

concave. This is used to discriminate between different kinds of heat treatments for
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milk.

1.3.4 Statistics

We know from Grenander (1956) or, more recently, Groeneboom, Jongbloed & Well-

ner (2001) that the maximum likelihood estimator for a distribution with concave

CDF, is precisely the least concave majorant of the sample CDF. Thus, the estima-

tion problem can be reduced to a concave interpolation problem as in (1.1). Further

applications of the linear contact distribution to the study of spatial patterns can be

found in Hansen et al. (1996), Hansen & Lauritzen (1998) or Serra (1982), while appli-

cations of nonparametric estimation with monotonicity and/or convexity constraints

are discussed in Groeneboom et al. (2001).

1.3.5 Norm problems

Here, we are given a set of points xi in Rn and a corresponding set of intervals

[αi, βi] ⊂ R+ and we want to determine if there is a norm f such that f(xi) ∈ [αi, βi]

for i = 1, . . . ,m. We also want to compute bounds on the norm of another element

x0. In general, we can write this type of problems as the following infinite dimensional

program:

minimize cT z

subject to Az � b, Cz = d

z = [f(x0), . . . , f(xm)]T

f is a norm,

(1.11)

in the variables (f, z) ∈ C (Rn)×Rm+1, with parameters A ∈ Rp×(m+1), C ∈ Rq×(m+1),

c ∈ Rm+1, b ∈ Rp, d ∈ Rq.
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Proposition 3 We can find the solution to the problem in (1.11) by solving:

minimize cT z

subject to [A, 0]z � b, [C, 0]z = d

z =
[

f(x0), . . . , f(xm), gT
1 , . . . , g

T
m

]T

gT
i (xj − xi) ≤ f(xj) − f(xi), i, j = 0, . . . ,m

gT
i xi = f(xi), i = 0, . . . ,m,

(1.12)

which is a linear program in the variables f(xi) ∈ R and gi ∈ Rn.

Proof. Let us first show that the above set of conditions is necessary. To be a

norm, the real-valued function f must satisfy the following properties:

• f(x) > 0 for all x 6= 0,

• f(x1 + x2) ≤ f(x1) + f(x2) for all x1, x2 ∈ Rn,

• f(λx) = |λ| f(x) for all x ∈ Rn, λ ∈ R.

Using Euler’s theorem for homogeneous functions we also know that if f is homoge-

neous of degree r and differentiable, then for any x ∈ Rn, ∇f(x)Tx = rf(x). If f is

convex, we can replace ∇f by a subgradient g. This proves that the constraints in

program (1.12) are necessary conditions on f , hence problem (1.12) provides a lower

bound on the optimum of problem (1.11). Let

zopt =
[

f opt(x1), . . . , f
opt(xm), goptT

1 , . . . , goptT
m

]

be the optimal solution to the linear programming problem (1.12) above. Let hi for

i = 1, . . . , l, be a set of vectors such that

span(hi)i=1,...,l ⊕ span(gopt
i )i=1,...,m = Rn
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where we choose h such that maxi,j{
∣

∣hT
i xj

∣

∣} ≤ mini,j{
∣

∣

∣g
optT
i xj

∣

∣

∣}. We then define:

n(x) = max

{

max
i=1,...,l

{∣

∣hT
i x
∣

∣

}

, max
i=1,...,m

{∣

∣

∣
goptT

i x
∣

∣

∣

}

}

.

Let us show that n(x) is in fact a norm:

• n(x) > 0, for all x 6= 0. Suppose n(x) = 0, then hT
i x = 0 for i = 1, . . . , l

and gT
i x = 0 for i = 1, . . . ,m, which implies x = 0 because span(hi)i=1,...,l ⊕

span(gi)i=1,...,m = Rn.

• n(λx) = |λ|n(x), for all x ∈ Rn, λ ∈ R. This holds true because n is the

maximum of homogeneous functions of degree one and n(x) = n(−x).
• n(x1 + x2) ≤ n(x1) + n(x2), for all x1, x2 ∈ Rn. Because n is homogeneous of

degree one and convex as the pointwise maximum of affine functions, it satisfies

the triangle inequality.

Also, by construction, we have n(xi) = f opt(xi), so n(x) is a norm that attains

the lower bound computed in (1.12), hence it is an optimal solution of the original

problem (1.11).

1.3.6 Interpolation with convex functions

Perhaps the simplest application example is to compute the least-squares fit of a

convex function to a given data set (ui, yi), i = 1, . . . ,m:

minimize
∑m

i=1(yi − f(ui))
2

subject to f : Rn → R is convex, dom f = Rn.

This is an infinite-dimensional problem, since the variable is f , which is in the space

of continuous real-valued functions on Rn. Using the result in proposition 1, we can
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Figure 1.4: Least-squares fit of a convex function to data, shown as circles. The
(piecewise-linear) function shown minimizes the sum of squared fitting error, over
all convex functions.

formulate this problem as

minimize
∑m

i=1(yi − ŷi)
2

subject to ŷj ≥ ŷi + gT
i (uj − ui), i, j = 1, . . . ,m,

which is a quadratic program with variables ŷ ∈ Rm and g1, . . . , gm ∈ Rn. The

optimal value of this problem is zero if and only if the given data can be interpolated

by a convex function, i.e., if there is a convex function that satisfies f(ui) = yi. An

example is shown in figure (1.4).
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1.4 Option pricing

The now classic Black & Scholes (1973) option pricing model is based on two funda-

mental assumptions. The first supposes that agents can trade dynamically in stocks

and cash to hedge their position in the option, this is called dynamic hedging. The

second models the asset dynamics as following lognormal processes. It is then quite

natural that the option prices obtained via these modelling assumptions be very sen-

sitive to illiquidity, transaction costs and model risk (stocks not being lognormal).

Here we take the complementary approach, asking what can be said about option

prices with a very minimal set of assumptions, i.e. with little trading involved and

no assumption on the assets’ distribution.

The valuation of derivative securities (see Duffie (1996) for example) is based on

the conic duality between portfolios and probability measures in the fundamental

theorem of asset pricing, which (roughly) states that:

Absence of Arbitrage ⇔ Price = Eπ[Payoff]

where π is a probability measure. The exact meaning of arbitrage depends on what

set of trading strategies one is willing to allow, but this result says that there is no

arbitrage if and only if we can evaluate securities in a very natural way: by computing

their expected payoff with respect to a certain probability measure.

In the classic Black & Scholes (1973) model case, these strategies are all continuous

self-financing portfolios (barring some extreme doubling strategies, etc. . . ). Here

however, we will only allow trading today and at the option’s maturity and we will

make no assumption on the assets’ distribution. The corresponding notion of arbitrage

is then very much immune to liquidity issues and independent of any assumption on

the dynamics of the assets. This means that we can expect this method to give much

more robust information on prices, however we also have to expect this information

to be much coarser.
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1.4.1 Some definitions

In our context, we define an arbitrage as the following buy-and-hold strategy:

• form a portfolio at no cost today with a strictly positive payoff,

• carry it without further trading until maturity,

• liquidate the entire position at maturity.

When such a strategy exists, it allows for unlimited profits with zero initial invest-

ment, hence prices allowing for such arbitrage opportunities are not viable. We will

sometimes refer to such a strategy as a static arbitrage to clearly distinguish it from

the dynamic arbitrage strategies defining prices in the Black & Scholes (1973).

A call with maturity T and strike K on the stock S is a security that pays (S−K)+

at a certain maturity date T , where S is the value of the stock at time T . A put is

defined in a similar way, except that the payoff is given instead by (K − S)+. We

shall denote as C(K) the price today of the call with terminal payoff (S −K)+. As

an example, in figure (1.5), we plot a set of market prices for IBM calls with maturity

one week, arranged by strike price. Finally, the forward price of the stock S is the

price today of getting the asset S at maturity T. We now look at what constraints

link option prices in the absence of static arbitrage in this setting.

Call put parity

If we know the forward prices, then we can deduce call prices from puts using the

classical “call put parity” relationship. It states that buying a put option and selling

a call with identical strike K produces the same payoff at maturity as selling (short)

the stock and holding K in cash. Then, absence of arbitrage states that we must

have:

put − call = K − S.

This is illustrated in figure (1.6).
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IBM calls, Oct. 10 2003, maturity 1 week

Figure 1.5: IBM call prices vs. strike K, vertical dashed line is the forward price
(source: REUTERS).

Call spread

A call spread is formed by buying a call with strike price K, while selling a call with

a higher strike price K + ε, see figure (1.7). Since the payoff of such a strategy is

strictly positive, absence of arbitrage implies that its price today be positive. So call

prices must be decreasing with strike to preclude arbitrage:

C(K + ε) − C(K) ≤ 0,

for ε > 0.

Butterfly spread

A butterfly spread is formed by buying a call with strike price K − ε, while selling

two calls with a higher strike price K and buying another call with strike price K+ ε,
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see figure (1.8). Again, since the payoff of such a strategy is strictly positive, absence

of arbitrage implies that the price of a butterfly spread be positive, hence call prices

must be convex with strike:

C(K + ε) − 2C(K) + C(K − ε) ≥ 0,

for ε > 0.

1.4.2 Sufficient conditions

To summarize, the absence of arbitrage implies that if C(K) is a function giving the

price of an option of strike K, then C(K) must be positive, nonincreasing and convex.

With C(0) = S, we have a set of necessary conditions on call prices for the absence

of arbitrage

In fact, Breeden & Litzenberger (1978), Laurent & Leisen (2000) or Bertsimas &

Popescu (2002) among others, show that these conditions are also sufficient :
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Proposition 4 Suppose we have a set of market prices for calls C(Ki) = pi, then

there is no arbitrage iff there is a function C(K) such that:

1. C(K) positive

2. C(K) decreasing

3. C(K) convex

4. C(Ki) = pi and C(0) = S, i = 1, . . . ,m.

We remark that this is a shape constrained feasibility problem of the form (1.1). If we

look back at the market prices in figure (1.5), we notice that the prices are far from

satisfying the arbitrage conditions above. In particular, the convexity condition is

violated around K = 65. How can we explain that such an obvious violation of basic

arbitrage relationships is allowed to persist? The first possible explanation is that all

the call prices in the data set are last quotes, hence do not reflect simultaneous option

transactions. In particular, some of these options might be illiquid enough to prevent

any arbitrage strategy (a butterfly spread in this case) to be formed. Finally, we

haven’t accounted for transaction costs which might also hamper arbitrage trading.

However, the key problem here is not that the option prices published are not

viable. The danger is that this data is used by derivatives trading desks to calibrate

more complex models and price other derivative products. If the call pricing data is

not viable as is in (1.5), then calibration of any model on these prices is impossible.

Worst, as algorithms used in practice to calibrate on this data often use a “best-fit”

approach, this problem in the market data could go unnoticed and get incorporated

into the model, with unpredictable consequences.

1.4.3 Basket options

In the case of simple call and put options, we have seen that the viability of prices is

equivalent to a set of shape constraints on prices as functions of the option’s strike. In

particular, these conditions can be checked by inspection. For multivariate options,

or basket options, the situation is entirely different.
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A basket call payoff is given by

(

n
∑

i=1

wiSi −K

)

+

where w1, . . . , wn are the basket’s weights and K is the option’s strike price. These

options appear in many markets, examples including: index options, spread options

(options on the difference of two assets), swaptions (options on a swap rate)..., where

basket option prices are used to gather information on the correlation among assets.

We shall denote here as C(w,K) the price of such an option. The question is now:

Can we get tractable conditions to test basket price data for arbitrage opportunities?

Arguments similar to the ones used above on simple calls an puts allow us to show

the following result.

Proposition 5 Given a set of market prices for basket calls C(wi, Ki) = pi, suppose

there is no arbitrage, then the function C(w,K) must satisfy:

1. C(w,K) positive

2. C(w,K) decreasing in K, increasing in w

3. C(w,K) jointly convex in (w,K)

4. C(wi, Ki) = pi and C(0) = S, i = 1, . . . ,m.

As in the unidimensional case, this is a shape constrained feasibility problem of the

form (1.1), hence is tractable as a polynomial size linear program. However, in a key

difference with dimension one, the conditions above are necessary but not sufficient.

In particular Bertsimas & Popescu (2002) show that the exact problem (showing the

absence of arbitrage between basket options) is NP-Hard.

The exact conditions for a function to represent the price of basket calls with

weights w and strike K were derived by Henkin & Shananin (1990) in their investi-

gation of production functions:
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Proposition 6 A function can be written

C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x)

with w ∈ Rn
+ and K > 0, if and only if:

• C(w,K) is convex and homogenous of degree one

• for every w ∈ Rn
++, we have limK→∞C(w,K) = 0 and limK→0+

∂C(w,K)
∂K

= −1

• F (w) =

∫ ∞

0

e−Kd

(

∂C(w,K)

∂K

)

belongs to C∞
0 (Rn

+)

• For some w̃ ∈ Rn
+, (−1)k+1Dξ1 ...Dξk

F (λw̃) ≥ 0, for all positive integers k and

λ ∈ R++ and all ξ1, . . . , ξk in Rn
+.

If we want to keep the problem tractable as in (1.1), we can use only a subset of

the conditions above. Given a set of market prices for basket calls C(ωi, Ki), testing

for the absence of arbitrage supposes that we solve the following shape constrained

feasibility problem:

find C(ω,K)

subject to C(ωi, Ki) = pi, i = 1, . . . ,m

C(ω,K) convex in (K,ω)

C(ω,K) nonincreasing in K, nondecreasing in ω

∂C(ω,K, 0)/∂K ≥ −1 and limK→∞C(ω,K, 0) = 0

C(ω,K, T ) homogeneous of degree 1 in (K,ω) ,

(1.13)

which is formed using a subset of the exact conditions in the result by Henkin &

Shananin (1990). Using the conditions above and given prices pi for basket calls

C(ωi, Ki), we can also compute upper and lower bounds on the price of another
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basket C(ω0, K0) by solving:

max./min. C(ω0, K0)

subject to C(ωi, Ki) = pi, i = 1, . . . ,m

C(ω,K) convex in (K,ω)

C(ω,K) nonincreasing in K, nondecreasing in ω

∂C(ω,K, 0)/∂K ≥ −1 and limK→∞C(ω,K, 0) = 0

C(ω,K, T ) homogeneous of degree 1 in (K,ω) .

(1.14)

We notice that this is an infinite linear program of the form (1.1) and can be solved

using the result in proposition 1.

Proposition 7 If the following finite LP:

maximize/minimize p0

subject to gT
i ((wj, Kj) − (wi, Ki)) ≤ pj − pi, i, j = 0, . . . ,m

gi,j ≥ 0,−1 ≤ gi,n+1 ≤ 0, i = 0, ...,m, j = 1, . . . , n

gT
i ((wi, Ki)) = pi, i = 0, . . . ,m,

(1.15)

in the variables p0 ∈ R+ and gi ∈ Rn+1 for i = 0, ...,m, is strictly feasible and

its optimal value is finite (hence it is attained), the infinite program (1.14) and its

discretization (1.15) have the same optimal value. Furthermore, an optimal point of

(1.14) can be constructed from the optimal solution to (1.15).

Solving this linear program will produce outer price bounds, i.e. a lower bound on the

lower bound and an upper bound on the upper bound. The numerical cost involved,

in O(mn +m2), is minimal, however these conditions are of course not sufficient for

the absence of arbitrage between basket call options.
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1.4.4 Numerical example

Discrete model

Here, we try to quantify on simple examples the magnitude of the gap between the

relaxed conditions in (1.13) and the exact ones in (6). To do this, we simulate a

set of arbitrage free basket call prices using a simple model. Given these prices and

the absence of arbitrage between basket calls, we study the price bounds induced on

another basket call. We will discuss the exact interpretation of these bounds in much

more detail in the next chapter, here we just want to get a rough idea of how good

the convex relaxation in (1.13) is.

We can’t compare these bounds with the exact solution since the exact problem

is intractable in the general case, however we can try to compare these bounds with

inner bounds obtained by maximizing and minimizing the price C(ω0, K0) over a set

of probability measures satisfying the price constraints C(ωi, Ki) = pi. If we consider

only discrete measures, this becomes a (exponentially large) linear program.

We suppose here that the asset price at maturity T lies within the unit box [0, 1]n.

We then discretize the probability density using a grid with N bins per asset. The

problem of finding (inner) upper and lower bounds on a basket (ω0, K0) can then be

written as:
max./min. Eν

(

ωT
0 x−K0

)

+

subject to Eν

(

ωT
i x−Ki

)

+
= pi, i = 1, . . . ,m,

(1.16)

which is a linear program of (exponential) size Nn in the (discrete) measure ν.

We test these two sets of upper and lower bounds in dimension two. Program (1.16)

can be written:

max./min.
∑

k,l=0,...,N νkl

(

ωT
0 [k/N, l/N ]T −K0

)

+

subject to
∑

k,l=0,...,N νkl

(

ωT
i [k/N, l/N ]T −Ki

)

+
= pi, i = 1, . . . ,m.

which is a linear program in the variable ν ∈ RN×N . The assets are noted x1, x2 and

we look for bounds on the price of an index option with payoff (x1 + x2 −K)+. To
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x (0, 0) (0, .8) (.8, .3) (.6, .6) (.1, .4) (1, 1)
probability .2 .2 .2 .1 .1 .2

Table 1.1: Asset distribution.

produce price data, we use a simple discrete model for the assets, their distribution

has finite support and is given by table (1.1). The input data set is composed of the

forward prices together with the following call prices:

(.2x1 + x2 − .1)+, (.5x1 + .8x2 − .8)+, (.5x1 + .3x2 − .4)+,

(x1 + .3x2 − .5)+, (x1 + .5x2 − .5)+, (x1 + .4x2 − 1)+, (x1 + .6x2 − 1.2)+.

We plot the inner and outer bounds obtained using this data in figure (1.9). We

observe that sometimes the bounds match, i.e. the price bounds given by the relax-

ation are tight, while sometime there is a gap and not much can be said about the

relaxation’s suboptimality. In the next chapter, we will detail some cases where the

exact problem is tractable and test the relaxation’s performance in those cases.

We also examine how these bounds evolve as more and more instruments are

incorporated into the data set. For a particular choice of strike price (here K = 1),

we compute the outer bounds (1.15) and inner bounds (1.16) obtained when using

only the k first instruments in the data set, for k = 2, . . . , 7. The result is plotted

in figure (1.10). Finally, we plot in figure (1.11) the distribution ν obtained while

solving for the last lower inner bound in the previous example.

Black-Scholes model

Here again, we simulate a set of arbitrage free basket call prices using this time a

multivariate Black & Scholes (1973) model. Given these prices and the absence of

arbitrage between basket calls, we study the price bounds induced on another basket

call.
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Figure 1.9: Comparison of the inner bounds computed by discretization (solid
lines, computed using (1.16)) and the outer bounds obtained by relaxation (dashed
lines, computed using (1.14)).
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There is no closed form formula to compute the price of a basket call option

in a multivariate model, and to get inner bounds on the basket price, we use the

approximation technique in d’Aspremont (2003). In this market, the dynamics of the

assets F i
t are given by:

dF i
s = F i

sσ
idWs,

where Ws is a d-dimensional Brownian motion and σ = (σi)i=1,...,n ∈ Rn×d is the

volatility matrix. We shall denote as Γ ∈ Sn the corresponding covariance matrix,

with Γij = σiTσj. The sum of lognormally distributed assets is not lognormal, but

we can approximate it by a lognormal distribution to price a basket call. We use the

following result from d’Aspremont (2003):

Proposition 8 The price of a basket call with payoff:

(

n
∑

i=1

wiF
i
T −K

)

+

at time T , can be approximated by a Black & Scholes (1973) call price using an

appropriate variance VT such that:

C = BS(T,wTFt, VT ) = (wTFt)N (h(VT )) − κN
(

h(VT ) −
√

VT

)

, (1.17)

where N (x) is the CDF of the normal distribution,

h (VT ) =

(

ln
(

wT Ft

κ

)

+ 1
2
VT

)

√
VT

,

and with

VT = Tr (ΩtΓ)T,

where

Ωt = ŵtŵ
T
t and ŵi,t =

wiF
i
t

wTFt

.
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Since the Black & Scholes (1973) formula is increasing with its variance term VT ,

computing bounds on the model price of a basket call given market price data on

other baskets is equivalent to solving the following semidefinite program:

max./min. Tr(Ω0,tX)

subject to Tr(Ωi,tX) = VT,i, i = 1, . . . ,m

X � 0,

(1.18)

with VT,i such that:

BS(T,wT
i Ft, Vi,T ) = pi, i = 1, . . . ,m,

where pi ∈ Rn are the market prices of basket call options with weights wi.

We look for bounds on the price of an index option: (.2
∑5

i=1 xi −K)+, given the

price of at-the-money options with the following weights:
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The assets initial values F i
t are (0.03, 0.03, .05, .07, .07) and the model covariance
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matrix Γ is given by:


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
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

We plot the inner and outer bounds obtained using this data in figure (1.12).
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Figure 1.10: Inner bounds (solid lines, computed using (1.16)) and outer bounds
(dotted lines, computed using (1.14)) versus number of instruments in the data set.
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Figure 1.11: An example of discrete distribution minimizing the price of the basket
(x1 + x2 − K)+.
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Figure 1.12: Comparison of the inner bounds computed using the Black & Sc-
holes model (solid lines, computed using (1.18)) and the outer bounds obtained by
relaxation (dashed lines, computed using (1.14)).



Chapter 2

Tightness results

In the previous chapter, we obtained bounds on the price of basket options using a

linear programming relaxation. In this chapter, we consider again the problem of

computing upper and lower bounds on the price of a European basket call option,

given prices on other similar baskets. Although we have seen that this problem is

very hard to solve exactly in the general case, we show that in some instances the

exact upper and lower bounds can be computed via simple closed-form expressions,

or linear programs. We also show that the relaxation (1.15) discussed in the previous

chapter is tight in some of the special cases examined.

Notation

Hereafter, x+ will denote the positive part of x, which is the vector with components

max(xi, 0). e is the n-vector with all components equal to one, and ei is the i-th unit

vector of Rn. The set Rn
+ denotes the set of n-vectors with non-negative components,

and Rn
++ its interior. The cone of nonnegative measures with support included in Rn

+

is denoted by K. For w ∈ Rs, K ∈ R and g ∈ Rs+1, the notation 〈g, (w,K)〉 denotes

the scalar product g̃Tw + gm+1K, where g̃ contains the first s elements of g.

38
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2.1 Introduction

2.1.1 Problem setup

Let p ∈ Rm
+ , K ∈ Rm

+ , w ∈ Rn, wi ∈ Rn, i = 1, . . . ,m and K0 ≥ 0. We consider the

problem of computing upper and lower bounds on the price of an European basket

call option with strike K0 and weight vector w0:

Eπ(wT
0 x−K0)+, (2.1)

with respect to all probability distributions π ∈ K on the asset price vector x, con-

sistent with a given set of observed prices pi of options on other baskets, that is,

given

Eπ(wT
i x−Ki)+ = pi, i = 1, . . . ,m. (2.2)

Note that we implicitly assume that all the options have the same maturity, and that,

without loss of generality, the risk-free interest rate is zero (we compare prices in the

forward market).

As in the previous chapter, we seek non-parametric bounds, that is, we do not

assume any specific model for the underlying asset prices. Our sole assumption is

the absence of a static arbitrage today (i.e. the absence of an arbitrage that only

requires trading today and at maturity, see §1.4 for a complete definition and simple

examples. The primary objective of these bounds is not to detect and exploit arbitrage

opportunities in the basket vs. vanilla market near the money, the amplitude of

the Bid-Ask spreads being likely to make those opportunities very rare. However,

the data on basket prices (index options in equity markets or swaptions in fixed

income) is usually very sparse and traders often rely on intuitive guesses to extrapolate

the remaining points. Our results provide a simple method to check the validity of

these extrapolated prices where they are the most likely to create static arbitrage

opportunities, i.e. very far in or out of the money (cf. figure (1.5)).
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From a financial point of view, our approach can be seen as a one-period, non-

parametric computation of the upper and lower hedging prices defined in El Karoui

& Quenez (1991), El Karoui & Quenez (1995) or Karatzas & Shreve (1998)). The

necessary conditions we detail in §2.3 in a multidimensional setup have been exten-

sively used in the unidimensional case to infer information on the state-price density

given option prices (see Breeden & Litzenberger (1978), Buchen & Kelly (1996) or

Laurent & Leisen (2000) among others).

From an optimization point of view, problems such as the one above have received

a significant amount of attention in various forms. First, we can think of (2.2) as a

linear semi-infinite program, i.e. a linear program with a finite number of linear

constraints on an infinite dimensional variable. We use this interpretation and the

related duality results to compute closed-form solutions, for a particular subclass

of problems. Secondly, we can see (2.2) as generalized moment constraints. This

approach was successfully used in dimension one by Bertsimas & Popescu (2002) and

we will come back to this in the last chapter. In higher dimensions however, the

proposed relaxation algorithm in Bertsimas & Popescu (2002) requires the solution

of a number of linear programs that is potentially exponential in n, the number

of underlying assets. This makes the method prohibitive for large-scale problems.

Finally, as Henkin & Shananin (1990), one can think of (2.2) as an integral transform

inversion problem. This is the approach we adopt to design an efficient relaxation

in the general case, based on shape constraints on the call price as a function of the

weight vector w and strike price K.

We examine in detail a special case of the problem, in which prices on options of

individual assets, as well as forward prices, are given, and the option to be priced

involves a non-negative weight vector w. Our contribution there is to provide a

solution that is polynomial-time in the number of assets, involving a linear program

with O(n) variables and constraints, where n is the number of assets. We prove that

our bounds are exact in most of the cases, that is, they are attained (possibly in

the limit) by some distribution π consistent with observed option prices. We obtain
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expressions for these optimal measures, and use them to prove tightness of the linear

programming relaxations (1.15) in some special cases.

This chapter is organized as follows. We first detail a dual formulation of the

general problem in §2.1.2. We obtain in §2.2 upper and lower bounds, in the special

cases referred to above, and then for the general problem through a relaxation of the

type (1.15). We discuss the tightness of the bounds in §2.4 and summarize these

results in §2.5. Finally, §2.6 provides some numerical examples.

2.1.2 Dual program: a portfolio problem

In the general case, we can write the upper bound problem as a semi-infinite program:

psup := sup
π∈K

∫

Rn
+

ψ(x)π(x)dx subject to

∫

Rn
+

φ(x)π(x)dx = p,

∫

Rn
+

π(x)dx = 1, (2.3)

where

ψ(x) := (wTx−K0)+, φi(x) := (wT
i x−Ki)+, i = 1, . . . ,m.

We define the Lagrangian (on K × Rm+1):

L(π, λ, λ0) =

∫

Rn
+

ψ(x)π(x)dx+ λT

(

p−
∫

Rn
+

φ(x)π(x)dx

)

+ λ0(1 −
∫

Rn
+

π(x)dx),

and, as in Hettich & Kortanek (1993), we can explicit the dual of (2.3):

dsup := inf
λ0,λ

: λTp+ λ0 : λTφ(x) + λ0 ≥ ψ(x) for every x ∈ Rn
+

= inf
λ

: sup
x≥0

: λTp+ ψ(x) − λTφ(x).
(2.4)

Both primal and dual problems have very intuitive financial interpretations. The

primal problem looks for a state price density (see for example Duffie (1996)) that

maximizes the target option while satisfying the pricing constraints imposed by the

current market conditions. The dual problem looks for the least expensive portfolio
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of options plus cash, λTφ(x) + λ0, that dominates the option payoff ψ(x). Of course,

the dual problem above yields an upper bound on the upper bound.

Similarly, the computation of the lower bound involves

pinf := inf
π∈K

∫

Rn
+

ψ(x)π(x)dx subject to

∫

Rn
+

φ(x)π(x)dx = p,

∫

Rn
+

π(x)dx = 1, (2.5)

whose dual is

dinf := sup
λ0,λ

: λTp+ λ0 : λTφ(x) + λ0 ≤ ψ(x) for every x ∈ Rn
+

= sup
λ

: inf
x≥0

: λTp+ ψ(x) − λTφ(x).
(2.6)

Here, the dual problem provides a lower bound on the lower bound.

General results on semi-infinite linear programs establish the equivalence between

the primal and dual formulations. We cite here a sufficient constraint qualification

condition for perfect duality from Hettich & Kortanek (1993), which makes an as-

sumption about the support of optimal distributions. (We focus now on the lower

bound; a similar result holds for the upper bound problem.)

Proposition 9 Assume that for problem (2.6), without loss of generality, the support

of the asset price distribution can be restricted to a given compact set B ⊂ Rn
+.

Assume further that there exist a pair (λ0, λ) ∈ Rn+1 such that:

λTφ(x) + λ0 < ψ(x) for all x ∈ B.

Then if dinf is finite, perfect duality holds, namely dinf = pinf .

This constraint qualification condition trivially holds when φ(x) and ψ(x) are call

option payoffs hence we have dinf = pinf , provided that the support of distributions

feasible for our problem can be restricted to some compact B ⊂ Rn
+. However, this

may not be the case for the bounds detailed below and we will prove perfect duality

directly whenever possible.
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2.2 Upper and lower bounds

In this section, we address the problem of computing the bounds. We first consider

the case when the observed prices correspond to options on each individual assets.

In practice, these observations always include the forward contract prices Eπxi = qi,

i = 1, . . . , n, which are quoted by the market, and we seek to exploit the forward price

information. Then we specialize in §2.2.2 these results to the case when the forward

prices are ignored; we examine this case because it is useful in the proofs of perfect

duality in §2.4. Finally we address the general case in §2.3.

2.2.1 Option and forward price constraints

We examine the problem of computing upper and lower bounds on

Eπ(wTx−K0)+,

given the 2n constraints

Eπ(xi −Ki)+ = pi, Eπxi = qi, i = 1, . . . , n, (2.7)

where K0 > 0 and w,K, p, q are given vectors of Rn
++.

We will assume that 0 ≤ p ≤ q ≤ p + K, which is a necessary and sufficient

condition for the problem above to be feasible. Sufficiency is obtained with the

discrete distribution defined by

x =

{

2p+K with probability 1/2,

2(q − p) −K with probability 1/2.
(2.8)

From the form of the constraints, we also observe that the constraints 0 ≤ p ≤ q ≤
p+K are necessary.
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Upper bound

In this section, we apply the duality formalism to the upper bound problem with

constraints described in (2.7).

In view of the general result (2.4), the dual problem can be expressed as

dsup = inf
λ+µ≥w

sup
x≥0

λTp+ µT q + (wTx−K0)+ − λT (x−K)+ − µTx, (2.9)

where, without loss of generality, we have included the constraint λ + µ ≥ w, in

order to ensure that the inner supremum is finite. We introduce a partition of Rn
+ as

follows. To a given subset I of {1, . . . , n}, we associate a subset DI of Rn
+, defined by

DI = {x : xi > Ki, i ∈ I, 0 ≤ xi ≤ Ki, i ∈ J} ,

where J denotes the complement of I in {1, . . . , n}. For z ∈ Rn, let zI be the vector

formed with the elements (zi)i∈I , in the ascending order of indices in I.

We have

dsup = inf
λ+µ≥w

max
t∈{0,1}

max
I⊆{1,...,n}

sup
x∈DI

λTp+ µT q + t(wTx−K0)

−λT
I (xI −KI) − µTx

= inf
λ+µ≥w

max
t∈{0,1}

max
I⊆{1,...,n}

λTp+ µT q + h(λ, µ, I, t),

where h(λ, µ, I, t) is given by

h(λ, µ, I, t)

:= sup
x∈DI

t(wTx−K0) − λT
I (xI −KI) − µTx

= sup
0≤xJ≤KJ

(twJ − µJ)TxJ − tK0 + λT
I KI

+ sup
xI>KI

(twI − µI − λI)
TxI

=

{

(twJ − µJ)T
+KJ − tK0 + (twI − µI)

TKI if λI + µI ≥ twI ,

+∞ otherwise.
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We note that finiteness of h(λ, µ, I, t) is guaranteed by λ + µ ≥ w and t ≥ 0. When

these conditions hold, the maximum value of h(λ, µ, I, t) over I ⊆ {1, . . . , n} is ob-

tained when the complement J is the full set, that is, when I is empty. We obtain

max
I⊆{1,...,n}

h(λ, µ, I, t) = (tw − µ)T
+K − tK0.

Optimizing over t, we obtain

max
t∈{0,1}

max
I⊆{1,...,n}

h(λ, µ, I, t) = max
(

(−µ)T
+K, (w − µ)T

+K −K0

)

.

This results in the following expression for dsup:

dsup = inf
λ+µ≥w

λTp+ µT q + max
(

(−µ)T
+K, (w − µ)T

+K −K0

)

= inf
µ
wTp+ µT (q − p) + max

(

(−µ)T
+K, (w − µ)T

+K −K0

)

, (2.10)

which admits the following linear programming representation:

dsup = inf
µ,t,v,z

: wTp+ µT (q − p) + t t ≥ vTK, v ≥ 0, v + µ ≥ 0

t ≥ zTK −K0, z ≥ 0, z + µ ≥ w.

The problem is feasible, and is thus equivalent to its dual. After some elimination of

dual variables, the dual writes

dsup = max
y,β

wTp+ wTy − βK0 : (1 − β)K ≥ q − p− y ≥ 0

βK ≥ y ≥ 0.

Note that the above problem is feasible if and only if p ≤ q ≤ p+K. We thus recover

the primal feasibility condition mentioned before. This condition ensures that the



46 CHAPTER 2. TIGHTNESS RESULTS

dual bound dsup is finite. The above further reduces to the one-dimensional problem:

dsup = max
0≤β≤1

: wTp+
∑

i

wi min(qi − pi, βKi) − βK0. (2.11)

The above problem is the maximization of a piecewise linear concave function of one

variable, thus the maximum is attained at one of the break points βj := (qj−pj)/Kj ∈
[0 : 1], j = 1, . . . , n, or for β = 0, 1. This way, we can obtain a closed-form expression

for the upper bound, namely

dsup = max
0≤j≤n+1

wTp+
∑

i

wi min(qi − pi, βjKi) − βjK0,

with the convention β0 = 0, βn+1 = 1.

We can check that the above bound satisfies some basic properties: it is convex

in w and concave in p, q. Also, when w = ei (the i-th unit vector), and K0 = Ki, we

obtain dsup = pi, while for Ki = 0, we obtain dsup = qi.

Lower bound

In the lower bound case, the dual problem is

dinf = sup
λ+µ≤w

inf
x≥0

λTp+ µT q + (wTx−K0)+ − λT (x−K)+ − µTx,

where we exploited the fact that the inner infimum is −∞ unless λ+ µ ≤ w.

Let us use the same notation as before. We have

dinf = sup
λ+µ≤w

min
I⊆{1,...,n}

inf
x∈DI

λTp+ µT q + (wTx−K0)+ − λT
I (xI −KI) − µTx

= sup
λ+µ≤w

min
I⊆{1,...,n}

λTp+ µT q + h(λ, µ, I),
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where

h(λ, µ, I) = inf
x,y0

y0 − λT
I (xI −KI) − µTx : x ∈ DI , y0 ≥ wTx−K0, y0 ≥ 0.

We have by linear programming duality

h(λ, µ, I) = sup (αw − µ)TK − αK0 − (αwJ − µJ)T
+KJ : αwI − λI − µI ≥ 0

0 ≤ α ≤ 1

Thus

dinf = sup
λ+µ≤w

λTp+ µT (q −K) + min
I⊆{1,...,n}

f(λ, µ, I),

where

f(λ, µ, I) := sup
α(λ,µ,I)≤α≤1

α(wTK −K0) − (αwJ − µJ)T
+KJ ,

and

α(λ, µ, I) := max
i∈I

(λi + µi)+

wi

,

with the convention that α(λ, µ, I) = 0 when I is empty.

Let I be a non-empty subset of {1, . . . , n}. Let i ∈ arg maxi∈I(λi + µi)+/wi. We

observe that

α(λ, µ, I) = α(λ, µ, {i}),

and

f(λ, µ, I) ≥ f(λ, µ, {i}),

which dramatically reduces the complexity of the minimization subproblem: instead

of computing the minimum over all 2n sets I ⊆ {1, . . . , n} it is sufficient to pick I in

the set of singletons of {1, . . . , n}, or I = ∅. Therefore, the problem reads as a linear
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program

dinf = sup
λ,µ,α0,...,αn

λTp+ µT (q −K) + h

subject to λ+ µ ≤ w

h ≤ α0(w
TK −K0) − (α0w − µ)T

+K

0 ≤ α0 ≤ 1

∀i : h ≤ αi(w
TK −K0) −

∑

j 6=i(αiwj − µj)+Kj

(λi + µi)+/wi ≤ αi ≤ 1,

(2.12)

and can be solved efficiently, since it has O(n) constraints and variables.

2.2.2 Ignoring forward price constraints

In this section, we examine the problem in the case when the forward price constraints

Eπx = q are ignored. The simple bounds we obtain in this setting will prove useful

for obtaining perfect duality results later.

Upper bound

The new upper bound is readily obtained by setting the variable µ, which is the

variable dual to the constraint Eπx = q, to zero in the expression (2.10). We get the

simple closed-form expression

dsup = wTp+ (wTK −K0)+, (2.13)

which can be obtained as a direct consequence of Jensen’s inequality applied to the

function x→ x+.
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Lower bound

A closed-form expression. For the lower bound, we again set the dual variable

µ to zero in the expression (2.12). We obtain

dinf = sup
0≤ξ≤e

p(w)T ξ + h : h ≤ 0, h ≤ ξi(wiKi −K0), 1 ≤ i ≤ n. (2.14)

We note that dinf can be expressed as the solution of a non-linear, convex opti-

mization problem:

dinf = sup
ξ

p(w)T ξ − max
1≤i≤n

ξi(K0 − wiKi)+ : 0 ≤ ξ ≤ e, (2.15)

or its dual:

dinf = inf
ν

n
∑

i=1

(piwi − νi(K0 − wiKi)+)+ : νT e = 1, ν ≥ 0. (2.16)

We can reduce the optimization problem to a line search over a scalar parameter,

by elimination of the variable ξ. We obtain

dinf =
∑

i : Kiw(i)≥K0

piw(i) + sup
v≥0

∑

i : Kiw(i)<K0

piw(i) min(1,
v

K0 −Kiw(i)
) − v.

The minimization above can be further reduced to a closed-form expression by noting

that the piecewise-linear function (of v) involved has break points at γi = K0 −Kiwi

(for i such that γi > 0) and 0. Thus:

dinf =
∑

i : Kiwi≥K0
piwi

+ max
j : Kjwj<K0

(

∑

i : Kiwi<K0

piwi min(1,
K0 −Kjwj

K0 −Kiwi

) −K0 + wjKj

)

+

.

(2.17)
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Interpretation in terms of portfolios. Although the development above has the

definite advantage of being completely constructive, we can get a more direct and

perhaps more intuitive proof of (2.17) by interpreting its equivalent form (2.15) in

terms of portfolio inequalities. Without loss of generality, we can assume that w0 = e,

where e is the n-vector of ones. To show

dinf = sup
0≤ξ≤e

pT ξ − max
1≤i≤n

ξi(K0 −Ki)+,

it suffices to show that

ξT (x−K)+ − max
1≤i≤n

ξi(K0 −Ki)+ ≤
(

eTx−K0

)

+
for all x ∈ Rn

+ (2.18)

holds for every ξ such that 0 ≤ ξ ≤ e. The above can be interpreted as a portfolio

inequality: the price of the options portfolio ξT (x−K)+, together with a certain

amount of cash (negative values meaning borrowing), is dominated by the payoff.

Let us prove the portfolio inequality above. Let ξ be such that 0 ≤ ξ ≤ e.

Condition (2.18) trivially holds when x = 0. Let us now consider x ∈ Rn
+, x 6= 0.

Then, eTx > 0. First, assume (0 <)eTx ≤ K0, then:

ξT (x−K)+ ≤ ξT
( x

eTx
K0 −K

)

+
,

and by convexity of the function x→ x+, we have:

ξT
( x

eTx
K0 −K

)

+
≤

n
∑

i=1

ξi
xi

eTx
(K0 −Ki)+

≤ max
i=1,...,n

ξi (K0 −Ki)+ . (2.19)

Assume now that eTx ≥ K0, and let i0 = arg maxi=1,...,n ξi (K0 −Ki)+ , we can
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write

n
∑

i=1,i6=i0

ξixi + ξi0 (xi0 −Ki)+ − max
i=1,...,n

ξi (K0 −Ki)+ ≤
(

eTx−K0

)

+

as
n
∑

i=1,i6=i0

ξixi + ξi0 (xi0 −Ki)+ − max
i=1,...,n

ξi (K0 −Ki)+ ≤ eTx−K0,

which holds since 0 ≤ ξ ≤ e and

ξi0
(

(xi0 −Ki0)+ − (K0 −Ki0)+

)

≤ xi0 −K0.

The above, together with (2.19), proves the inequality (2.18). This shows (2.15)

directly.
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2.3 Relaxation for the general case

2.3.1 An integral transform

Let us come back to the original problem, for p ∈ Rm
+ , K ∈ Rm

+ , w0 ∈ Rn, wi ∈ Rn,

i = 1, ...,m and K0 ≥ 0. We consider the problem of computing upper and lower

bounds on the price of an European call basket option with strike K0 and weight

vector w0:

Eπ(wT
0 x−K0)+,

with respect to all probability distributions π ∈ K on the asset price vector x, consis-

tent with a given set of m observed prices pi of options on other baskets and forward

prices qi, that is, given

Eπ(wT
i x−Ki)+ = pi, i = 1, . . . ,m and Eπxj = qj, j = 1, . . . , n.

If we write, for some π ∈ K:

C(w,K) = Eπ(wTx−K)+

=

∫

Rn
+

(wTx−K)+dπ(x),

we can think of Cπ(w,K) as a particular integral transform of the measure π. We

can compute the inverse of this integral transform. If we assume that the measure

π is absolutely continuous with respect to the Lebesgue measure with density π(x),

then for almost all K we have:

f̂(w,K) :=
∂2C(w,K)

∂K2
=

∫

Rn
+

δ(wTx−K)π(x)dx,

where δ(x) is the Dirac Delta function. This means that f̂(w,K) is the Radon

transform (see Helgason (1999) or Ramm & Katsevich (1996)) of the measure π.
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The general pricing problem above can then be rewritten as the following infinite

dimensional problem:

minimize/maximize f(w0, K0)

subject to f(wi, Ki) = pi, i = 1, . . . ,m

f(w,K) ∈ RC ,

where RC is the range of the (linear) integral transform

C : K → RC

π → C(w,K) =
∫

Rn
+

(wTx−K)+dπ(x).

Thus, the problem of finding all possible arbitrage-free option prices becomes equiva-

lent to that of characterizing the range of the Radon transform on the set of nonnega-

tive measures K. This has been done by Henkin & Shananin (1990) in the context of

production functions (which can be thought of as put options). Using call-put parity,

we can directly derive from Henkin & Shananin (1990, Theorem 3.2) the following

result:

Proposition 10 A function C(w,K), with w ∈ Rn
+ and K > 0 belongs to RC, i.e. it

can be represented in the form

C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x),

where π is a nonnegative measure on a compact of Rn
+, if and only if the following

conditions hold.

• C(w,K) is convex and homogenous of degree one;

• for every w ∈ Rn
++, we have

lim
K→∞

C(w,K) = 0 and lim
K→0+

∂C(w,K)

∂K
= −1;



54 CHAPTER 2. TIGHTNESS RESULTS

• the function

F (w) =

∫ ∞

0

e−Kd

(

∂C(w,K)

∂K

)

belongs to C∞
0 (Rn

+) and for some w̃ ∈ Rn
+ the inequalities:

(−1)k+1Dξ1 ...Dξk
F (λw̃) ≥ 0

hold for all positive integers k and λ ∈ R++ and all ξ1, ..., ξk in Rn
+.

2.3.2 Linear programming relaxation

The conditions above are not tractable in the general case but we can formulate a

relaxation of the original program by simply dropping the last condition, and replacing

it with a (necessary) linearity condition on C(w, 0) with respect to w. We get an upper

bound on the upper bound (resp. a lower bound on the lower bound) solution by

computing:

sup / inf C(w0, K0)

subject to C(w,K) convex in (K,w)

C(w,K) homogeneous of degree 1

−1 ≤ ∂C(w,K)/∂K ≤ 0 and C(w,K) nondecreasing in w

C(wi, 0) = wT
i q, i = 1, ...,m

C(wi, Ki) = pi, i = 1, ...,m.

(2.20)

This is an infinite dimensional linear program in the variable C(w,K) ∈ C(Rn+1).

As we have seen in proposition (1), this infinite program can be reduced to a finite

LP if we define pi = wT
i q and Ki = 0 for i = m + 1, ...,m + n and pm+n+1 = wT q

with Km+n+1 = 0.

Proposition 11 If the following finite LP in the variables p0 ∈ R+ and gi ∈ Rn+1
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for i = 0, ...,m+ n+ 1:

max./min. p0

subject to 〈gi, (wj, Kj) − (wi, Ki)〉 ≤ pj − pi, i, j = 0, ...,m+ n+ 1

gi,j ≥ 0,−1 ≤ gi,n+1 ≤ 0, i = 0, ...,m+ n+ 1, j = 1, ..., n

〈gi, (wi, Ki)〉 = pi, i = 0, ...,m+ n+ 1,

(2.21)

is strictly feasible and its optimal value is finite (hence it is attained), the infinite pro-

gram (2.20) and its discretization (2.21) have the same optimal value. Furthermore,

an optimal point of (2.20) can be constructed from the optimal solution to (2.21).

As in proposition (1), let us construct a solution to program (2.20). We first notice

that as a discretization of the infinite program (2.20), the finite LP will compute a

lower (or upper) bound on its optimal value. Let us now show that this bound is in

fact equal to the optimal value of (2.20). If we note zopt =
[

popt
0 , goptT

0 , . . . , goptT
k

]T

the optimal solution to the LP problem above and if we define:

s(w,K) = max
i=0,...,m+n+1

{

popt
i +

〈

gopt
i , (w,K) − (wi, Ki)

〉}

,

s(x) satisfies

s(xi) = pi, i = 1, . . . ,m+ n+ 1.

Again, by construction, s(x0) attains the lower bound p0 computed in the finite LP.

Also, s(x) is convex as the pointwise maximum of affine functions and is piecewise

affine with gradient gi, which implies that it also verifies the convexity and monotonic-

ity conditions in (2.20) and it is a feasible point of the infinite dimensional problem.

This means that both problems have the same optimal value and s(x) is an optimal

solution to the Infinite Linear Program in (2.20).
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2.4 Some cases of perfect duality

In this section, we prove that the bounds we obtained before are tight in some special

cases.

2.4.1 Upper bound without forwards

We first compute the optimal probability measures corresponding to the upper and

lower price bounds, when forward prices are ignored. We thus consider the problem

examined in §2.2.2. Based on (2.13), we can recover an optimal distribution, or

a sequence of distributions which achieve the bound in the limit. This provides a

direct proof of the fact that psup = dsup in the case when we ignore the forward price

information.

If wTK ≥ K0, we choose a distribution π of asset prices such that x = p+K with

probability one. Then, constraints (2.2) are trivially satisfied, and the objective (2.1)

becomes

Eπ(wTx−K0)+ = (wT (p+K) −K0)+ = wTp+ wTK −K0 = dsup.

If wTK < K0, we have dsup = wTp, and the upper bound is only attained in the

limit. For a given ε > 0, we define a probability distribution π(ε) on the asset prices

as follows:

x =

{

ε−1p+K with probability ε,

0 with probability 1 − ε.
(2.22)

Then, we have

Eπ(ε)(x−K)+ = ε(ε−1p+K −K))+ + (1 − ε)(−K)+ = p,
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while the objective becomes

Eπ(ε)(w
Tx−K0)+ = ε(wT (ε−1p+K) −K0)+ + (1 − ε)(−K0)+

= (wTp+ ε(wTK −K0))+.

When ε→ 0, the above quantity goes to wTp = dsup, as claimed.

2.4.2 Upper bound with forwards

We now consider the upper bound result with option and forward price constraints,

obtained in §2.2.1. Without loss of generality, we assume eTw = 1. In (2.11) we

obtained:

dsup = sup
0≤β≤1

: wTp+
∑

i

wi min(qi − pi, βKi) − βK0,

which can be rewritten (the min is taken elementwise):

sup
0≤β≤1

wT min(q − βK0e, p+ β (K −K0)),

or again:

sup
0≤β≤1

inf
t∈[0,1]m

wT ((1 − t)(q − βK0e) + t(p+ β (Ki −K0))).

Using LP duality we know that this is also equal to (with eTw = 1):

inf
t∈[0,1]m

sup
0≤β≤1

β
(

wT tK −K0

)

+ wT (1 − t)q + wT tp.

We express the above as

inf
t∈[0,1]m

wT (1 − t)q + wT tp+
(

wT tK −K0

)

+
.



58 CHAPTER 2. TIGHTNESS RESULTS

This problem can be solved exactly as a finite linear program, and we obtain topt such

that:

dsup = wT
(

(1 − topt)q + toptp
)

+
(

wT toptK −K0

)

+
. (2.23)

We recognize here the expression of the upper bound on the price of a basket, where

we are only given the following option price constraints (see 2.2.2):

Eπ(xi − K̂i)+ = p̂i, i = 1, . . . , n,

where K̂ := toptK and p̂ := (1−topt)q+toptp. This means that we can directly recover

the upper bound probability as in (2.22), substituting (p̂, K̂) with (p,K), setting π(ε)

such that:

x =

{

ε−1p̂+ K̂ with probability ε,

0 with probability 1 − ε,

and taking the limit when ε→ 0.

2.4.3 Lower bound without forwards

We consider the problem examined in §2.2.2. The linear programming expression

(2.16) allows us to recover a sequence of distributions that are optimal in the limit,

as follows.

Let ν be an optimal vector for problem (2.16). We remark that ν can be interpreted

as a probability distribution. Let I be the set of indices i such that K0 > wiKi. We

note that i 6∈ I implies νi = 0. For simplicity we assume that I = {1, . . . ,m}, where

0 ≤ m ≤ n (the choice m = 0 corresponding to empty I).

First we examine the case when m = 0, that is, I is empty. In other words,

miniw(i)Ki ≥ K0, and therefore dinf = pTw. For a given ε > 0, we choose the

probability distribution on the asset prices given by (2.22), and follow the same steps

taken before, for the upper bound. We obtain that dinf is attained as ε→ 0.
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Next, we assume m ≥ 1. Let α = (n−m)/m. For ε such that

ε < α−1 min
1≤i≤m

νi( 6= 0),

we define the vector ν(ε) by

νi(ε) =

{

νi − αε if 1 ≤ i ≤ m,

ε otherwise.

Since ε is small enough, vector ν(ε) satisfies the constraints of problem (2.16).

We now define a distribution π(ε) on the asset price vector x as follows.

x = xε(i) with probability νi(ε),

where

xε
j(i) =







pj

νj(ε)
+Kj if j = i,

0 otherwise.

Note that xε
j(i) is always well-defined, since νj(ε) > 0 for every j.

Let us check that the distribution π(ε) of asset prices satisfies the constraints (2.2).

For every j, 1 ≤ j ≤ n, we have

E(xj −Kj)+ =
∑n

i=1 νi(ε)(x
ε
j(i) −Kj)+

= νj(ε)(x
ε
j(j) −Kj)+

= pj.

Let us now check that with this choice of asset price distribution, the objective
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(2.1) attains the lower bound dinf , when we let ε→ 0. We have

Eπ(ε)(w
Tx−K0)+ =

∑n
i=1 νi(w

Txε(i) −K0)+

=
∑n

i=1 νi(ε)(
∑n

j=1wjx
ε
j(i) −K0)+

=
∑n

i=1 νi(ε)(wix
ε
i(i) −K0)+

=
∑n

i=1 νi(ε)(wi(
pi

νi(ε)
+Ki) −K0)+

=
∑n

i=1(wipi − νi(ε)(K0 − wiKi))+.

Letting ε→ 0, we obtain

limε→0Eπ(ε)(w
Tx−K0)+ =

∑m
i=1(wipi − νi(K0 − wiKi))+ +

∑n
i=m+1wipi

=
∑n

i=1(wipi − νi(K0 − wiKi)+)+

= dinf ,

as claimed. This concludes our proof that dinf = pinf in the absence of constraints on

forward prices.

2.4.4 Tightness of the linear programming upper bound re-

laxation

We now show that for the special case considered in §2.2.1, namely when we have

option and forward price constraints on individual assets, and we seek to compute

the upper bound, the linear programming relaxation devised in (2.21) yields a tight

result. In order for our problem to be feasible, we have assumed 0 ≤ p ≤ q ≤ p+K.

In this case, the LP (2.21) is feasible and its feasible set is compact, which ensures

that there exist an optimal solution. Indeed, we can form a piecewise affine function

that is feasible for (2.20) by taking C(w0, k0) = Eπ(wT
0 x − K0)+, where π is the

probability measure defined in (2.8), precisely

Eπ(wT
0 x−K0)+ = max

{

wT
0 q −K0, w

T
0 p−K0/2, w

T
0 (q − p) −K0/2, 0

}

.
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This function also turns out to correspond to a feasible point of (2.21); the variables

gi in (2.21) are simply the subgradients of C(w0, k0) at the data points. Finally, the

LP in (2.21) is finite, since we always have 0 ≤ Eπ(wT
0 x−K0)+ ≤ wT

0 q and the feasible

set of (2.21) is compact. This means that the optimum in (2.21) is attained.

First, we prove tightness of the LP relaxation in the case when forward price

information is ignored. The setting of (2.2.2) assumes that m = n, and w0 ∈ Rn
+.

We note ei, the i-th unit vector. Without loss of generality, we set wT
0 e = 1. Since

the function C(w0, K0) = wT
0 p +

(

wT
0 K −K0

)

+
is a feasible point of the infinite LP

(2.20), if we call V LP the upper bound computed by the linear program (2.21), we

must have:

V LP ≥ wT
0 p+

(

wT
0 K −K0

)

+
.

Now, using the necessary conditions in (2.20) and the convexity of

Eπε

(

wTx−K
)

+

in (w,K) we can write

Eπε

(

wT
0 x−K0

)

+
= Eπε

(

wT
0 x−

(

wT
0 K +

(

K0 − wT
0 K
)))

+

≤
n
∑

i=1

w0,iEπε

(

xi −
(

Ki +
(

K0 − wT
0 K
)))

+

=
n
∑

i=1

w0,iC
(

ei, Ki +
(

K0 − wT
0 K
))

.

The conditions on the slope of the function C(w,K) imply

n
∑

i=1

w0,iC
(

ei, Ki +
(

K0 − wT
0 K
))

≤ wT
0 p+

(

wT
0 K −K0

)

+
.
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Hence, V LP ≤ wT
0 p+

(

wT
0 K −K0

)

+
and finally

V LP = wT
0 p+

(

wT
0 K −K0

)

+
, (2.24)

where we recover the expression found in (2.13). This means that the upper bound

computed by the LP relaxation is tight in the particular case considered above.

Now we turn to the case when forward price constraints Eπxi = qi for i = 1, . . . , n,

are included. As already observed in §2.2.1, the function

dsup(w0, K0) = max
0≤j≤n+1

: wT
0 p+

∑

i

w0,i min(qi − pi, βjKi) − βjK0,

is convex in (w0, K0). Also, when w0 = ei, and K0 = Ki, we obtain dsup = pi, while

for Ki = 0, we obtain dsup = qi. This means that dsup(w,K) is a feasible point of the

infinite program (2.20) and hence V LP ≥ dsup(w0, K0).

Since the finite LP (2.21) is attained, at a point denoted by

zopt =
[

popt
0 , goptT

0 , . . . , goptT
k

]T

,

we can define the call price function

dLP(w,K) = max
i=0,...,m+n+1

{

popt
i +

〈

gopt
i , (w,K) − (wi, Ki)

〉}

,

corresponding to the strike prices K̂ = toptK and option prices p̂ = (1− topt)q+ toptp,

as in §2.4.2. By convexity of dLP(w,K), we have dLP(ei, K̂) ≤ p̂i for i = 1, . . . , n.

We know then from (2.24) that dLP(w0, K0) = V LP ≤ dsup(w0, K0), hence finally

dLP(w0, K0) = dsup(w0, K0). This shows that the LP relaxation of the upper bound

is tight when the input is composed of options and forward prices as in (2.7).
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2.5 Summary

We are ready to summarize our results.

Theorem 12 Tight upper and lower bounds on the price pbasket of an European basket

call option involving n assets, with weight vector w > 0 and strike K0, given the n

prices pi of individual European call options with strike Ki > 0, are given by

pinf ≤ pbasket = Eπ(wTx−K0)+ ≤ psup =
n
∑

i=1

piwi + (
n
∑

i=1

wiKi −K0)+,

where

pinf =
∑

i : Kiwi≥K0

piwi

+ max
j : Kjwj<K0

(

∑

i : Kiwi<K0

piwi min(1,
K0 −Kjwj

K0 −Kiwi

) −K0 + wjKj

)

+

.

When one includes the forward contract prices information Eπx = q, then the problem

is feasible if and only if p ≤ q ≤ p+K. The tight upper bound then becomes

psup = max
0≤j≤n+1

wTp+
∑

i

wi min(qi − pi, βjKi) − βjK0,

with the convention β0 = 0, βn+1 = 1, and βj := (qj − pj)/Kj, j = 1, . . . , n.

The lower bound pinf is given by the solution of the linear program defined in

(2.12). This bound is tight when forward prices are ignored.

In the general version of the problem, the linear programming relaxation (2.21)

provides bounds in polynomial-time. The upper bound is tight in the special cases

considered above.

Note that we have not proven the tightness of the lower bound in the case when

individual option prices are given, and forward price constraints are included. We
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conjecture that the lower bound computed by (2.12) is tight, and we leave this topic

for further research.

We observe that the results pertaining to our special cases (those involving indi-

vidual option and forward prices only) are readily extended to a situation where we

only have upper and lower bounds on these prices: simply replace the prices pi by

their upper bound in the expression for the upper bound of the basket price, and by

their lower bound to compute the lower bound on the basket price.
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2.6 Numerical results

We test here the various bounds obtained above on a simulated arbitrage-free data

set. We first evaluate by Monte-Carlo simulation the following option prices:

C(w0, K0) = E
(

wT
0 x−K0

)

+
,

where xi,T = Si exp
(

gi

√
T − 1

2
Vi,iT

)

for i = 1, . . . , 5, with g a centered multivariate

Gaussian variable with given covariance matrix V . The xi are the simulated Black &
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Figure 2.1: Upper and lower price bounds obtained for various strikes using both
the explicit bounds and the LP relaxation method.

Scholes (1973) lognormal asset prices at maturity, with S the initial stock values. The

numerical values used here are S = {0.7, 0.5, 0.4, 0.4, 0.4}, w0 = {0.2, 0.2, 0.2, 0.2, 0.2},
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T = 5 years and the covariance matrix is given by:

V =
11

100



















0.64 0.59 0.32 0.12 0.06

0.59 1 0.67 0.28 0.13

0.32 0.67 0.64 0.29 0.14

0.12 0.28 0.29 0.36 0.11

0.06 0.13 0.14 0.11 0.16



















.

All individual options are at-the-money, hence K = {0.7, 0.5, 0.4, 0.4, 0.4}. We get

p = {0.0161, 0.0143, 0.0093, 0.0070, 0.0047}. In figure (2.1), we plot the upper and

lower bounds obtained for various strikes using both the explicit bounds and the LP

relaxation methods. We can notice that the lower bound computed using (2.12) is

tighter than that provided by the LP relaxation in (2.21). We also observe that, as

showed in §2.4.4, the two upper bounds coincide.



Chapter 3

Semidefinite relaxations

In the previous two chapters, we have seen how linear programs on the values and

variations of a convex functions could be used to provide tractable relaxations of some

hard optimization problems. In particular we focused on the following option pricing

problem:

max./min. C(ωT
0 , K0)

subject to C(ωT
i , Ki) = pi, i = 1, . . . ,m,

C(ω,K) = Eν

(

ωTx−K
)

+
,

which is an infinite linear program in the function C(ω,K) and the measure ν. In the

first chapter, we formulated a relaxation of this problem as a shape constrained prob-

lem. In the second chapter, we studied some particular cases where this relaxation

was tight. In this chapter, we look at ways of improving these relaxations by impos-

ing progressively stricter constraints beyond the convexity requirement on C(ω,K)

used in the first chapter. In general terms, we are interested in the following type of

67
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moment problem:

minimize cT z

subject to Az � b, Cz = d

z = [f(x1), . . . , f(xm)]T

f(x) = E(g(y, x)), x ∈ Rn,

(3.1)

in the variables f ∈ C (Rn), z ∈ Rm, with parameters A ∈ Rp×m, C ∈ Rq×m, c ∈ Rm,

b ∈ Rp, d ∈ Rq. Problems of this type are NP-hard in general since they include for

example all multivariate moment problems:

minimize cT z

subject to Az � b, Cz = d

z = [f(x1), . . . , f(xm)]T

f(xi) = E(yxi), xi ∈ Nn
+, i = 1, . . . ,m,

in the variables f ∈ C (Rn), z ∈ Rm. We will see that the dual of a multivariate

moment problem is a polynomial optimization problem and problem class (3.1) also

includes all problems of the form:

minimize g0(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m.

in the variable x ∈ Rn, where gi(x) ∈ R[x] are multivariate polynomials.

Note that in the case where f(x) = E(g(y, x)) is a convex function of x, we can

directly formulate a relaxation of (3.1) as a program of the form (1.1):

minimize cT z

subject to Az � b, Cz = d

z = [f(x1), . . . , f(xm)]T

f(x) convex.
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This is the case when f is a polynomial moment function f(x) = E(yx) or when f

is the price of a call option f(x) = E((y − x)+). This relaxation formulates (3.1) as

a shape constrained problem of the form (1.1), which can be solved efficiently using

the results in the first chapter. Here, we will then study problem (3.1) as a natural

extension of the relaxation techniques discussed in the previous two chapters.

We begin in §3.1 by discussing standard semidefinite programming based relax-

ation techniques for nonconvex quadratically constrained quadratic programs (QCQP).

These programs are very generic and include in particular all combinatorial and poly-

nomial problems. These polynomial problems are the object of §3.2, where we discuss

ways to enhance some classical relaxations using recent results in semialgebraic ge-

ometry. Finally, in §3.3, we extend the relaxation results of the previous sections to

generalized moment problems. As a direct application, we revisit the static basket

option arbitrage problem introduced in §1.4.3.
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3.1 Semidefinite relaxations

While some special classes of nonconvex problems can be efficiently solved, most

nonconvex problems are very difficult to solve (at least, globally). Here, we show

how convex optimization can be used to find bounds on the optimal value of a hard

polynomial problem, and can also be used to find good (but not necessarily optimal)

feasible points. We first focus on Lagrangian relaxations, i.e., using weak duality and

the convexity of duals to get bounds on the optimal value of nonconvex problems.

In a second section, we show how randomization techniques provide near optimal

feasible points with, in some cases, bounds on their suboptimality.

Nonconvex QCQPs

In this note, we will focus on a specific class of problems: nonconvex quadratically

constrained quadratic programs, or nonconvex QCQP (see also §4.4 in Boyd & Van-

denberghe (2003)). We will see that the range of problems that can be formulated

as nonconvex QCQP is vast, and we will focus on some specific examples throughout

the notes. We write a nonconvex QCQP as:

minimize xTP0x+ qT
0 x+ r0

subject to xTPix+ qT
i x+ ri ≤ 0, i = 1, . . . ,m,

(3.2)

with variable x ∈ Rn, and parameters Pi ∈ Sn, qi ∈ Rn, and ri ∈ R. In the case

where all the matrices Pi are positive semidefinite, the problem is convex and can be

solved efficiently. Here we will focus on the case where at least one of the Pi is not

positive semidefinite. Note that the formulation above implicitly includes problems

with equality constraints, which are equivalent to two opposing inequalities.

The nonconvex QCQP is NP-hard: it is at least as hard as a large number of other

problems that also seem to be hard. While no one has proved that these problems

really are hard, it is widely suspected that they are, and as a practical matter, all

known algorithms to solve them have a complexity that grows exponentially with
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problem dimensions. So it’s reasonable to consider them hard to solve (globally).

Examples and applications

We list here some examples of nonconvex QCQPs.

Boolean least squares The problem is:

minimize ‖Ax− b‖2

subject to xi ∈ {−1, 1}, i = 1, . . . , n,
(3.3)

in the variable x ∈ Rn. This is a basic problem in digital communications (maximum

likelihood estimation for digital signals). A brute force solution is to check all 2n

possible values of x. The problem can be expressed as a nonconvex QCQP:

minimize xTATAx− 2bTAx+ bT b

subject to x2
i − 1 = 0, i = 1, . . . , n.

(3.4)

Minimum cardinality problems The problem is to find a minimum cardinality

solution to a set of linear inequalities:

minimize Card(x)

subject to Ax � b,
(3.5)

in the variable x ∈ Rn, with Card(x) the cardinality of the set {i | xi 6= 0}. We

assume that the feasible set Ax � b is included in an Euclidean ball centered in zero

with radius R > 0. We reformulate this problem as:

minimize 1Tv

subject to Ax � b

−Rv � x � Rv

v ∈ {0, 1}n,

(3.6)
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in the variables x, v ∈ Rn, and we then turn this into a nonconvex QCQP by replacing

the constraints vi ∈ {0, 1} by v2
i − vi = 0. The problem then becomes:

minimize 1Tv

subject to Ax � b

−Rv � x � Rv

v2
i − vi = 0, i = 1, . . . , n.

(3.7)

This problem has many applications in engineering and finance, including for example

low-order controller design and portfolio optimization with fixed transaction costs.

Partitioning problems We consider here the two-way partitioning problem de-

scribed in §5.1.4 and exercise 5.39 of Boyd & Vandenberghe (2003):

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n,

(3.8)

with variable x ∈ Rn, where W ∈ Sn satisfies Wii = 0. This problem is directly a

nonconvex QCQP of the form (3.2). A feasible x corresponds to the partition

{1, . . . , n} = {i | xi = −1} ∪ {i | xi = 1},

and the matrix coefficient Wij can be interpreted as the cost of having the elements i

and j in the same partition, with −Wij the cost of having i and j in different partitions.

The objective in (3.8) is the total cost, over all pairs of elements, and problem (3.8)

seeks to find the partition with least total cost.

MAXCUT MAXCUT is a classic problem in network optimization and a particular

case of the partitioning problem above. Here W ∈ Sn is a matrix with nonnegative

coefficients and Wij = 0 if no arc connects nodes i and j in the network. The problem
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is formulated as:
maximize xTWx

subject to x2
i = 1, i = 1, . . . , n,

(3.9)

with variable x ∈ Rn. The objective here is to find a partition of the set such that

the sum of the coefficients Wij of the nodes linking the two partitions is maximized

(hence the name MAXCUT).

Polynomial problems A polynomial problem seeks to minimize a polynomial over

a set defined by polynomial inequalities:

minimize p0(x)

subject to pi(x) ≤ 0, i = 1, . . . ,m.

While seemingly much more general than simple nonconvex QCQPs, all polynomial

problems can be turned into nonconvex QCQPs. Let us briefly detail how. First, we

notice that we can reduce the maximum degree of an equation by adding variables.

For example, we can turn the constraint

y2n + (. . .) ≤ 0

into

un + (. . .) ≤ 0, u = y2.

We have reduced the maximum degree of the original inequality by introducing a new

variable and a quadratic equality constraint. We can also get rid of product terms;

this time

xyz + (. . .) ≤ 0

becomes

ux+ (. . .) ≤ 0, u = yz.
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Here, we have replaced a product of three variables by a product of two variables

(quadratic) plus an additional quadratic equality constraint. By applying these trans-

formations iteratively, we can transform the original polynomials into quadratic objec-

tive and constraints, thus turning the original polynomial problem into a nonconvex

QCQP, with additional variables.

Example. Let’s work out a specific example. Suppose that we want to solve

the following polynomial problem:

minimize x3 − 2xyz + y + 2

subject to x2 + y2 + z2 − 1 = 0,

in the variables x, y, z ∈ R. We introduce two new variables u, v ∈ R with

u = x2, v = yz.

The problem then becomes:

minimize xu − 2xv + y + 2

subject to x2 + y2 + z2 − 1 = 0

u − x2 = 0

v − yz = 0,

which is a nonconvex QCQP of the form (3.2), in the variables x, y, z, u, v ∈ R.

3.1.1 Convex relaxations

In this section, we begin by describing some direct relaxations of (3.2) using semidefi-

nite programming (cf. Vandenberghe & Boyd (1996)). We then detail how Lagrangian

duality can be used as an “automatic” procedure to get lower bounds on the optimal

value of the nonconvex QCQP described in (3.2). Note that both techniques provide

lower bounds on the optimal value of the problem but give only a minimal hint on

how to find an approximate solution (or even a feasible point . . . ), this will be the
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object of the next section.

Semidefinite relaxations

Starting from the original nonconvex QCQP:

minimize xTP0x+ qT
0 x+ r0

subject to xTPix+ qT
i x+ ri ≤ 0, i = 1, . . . ,m,

using xTPx = Tr(P (xxT )), we can rewrite it:

minimize Tr(XP0) + qT
0 x+ r0

subject to Tr(XPi) + qT
i x+ ri ≤ 0, i = 1, . . . ,m,

X = xxT .

(3.10)

We can directly relax this problem into a convex problem by replacing the last noncon-

vex equality constraint X = xxT with a (convex) positive semidefiniteness constraint

X − xxT � 0. We then get a lower bound on the optimal value of (3.2) by solving

the following convex problem:

minimize Tr(XP0) + qT
0 x+ r0

subject to Tr(XPi) + qT
i x+ ri ≤ 0, i = 1, . . . ,m,

X � xxT .

The last constraint X � xxT is convex and can be formulated as a Schur complement

(see §A.5.5 in Boyd & Vandenberghe (2003)):

minimize Tr(XP0) + qT
0 x+ r0

subject to Tr(XPi) + qT
i x+ ri ≤ 0, i=1,. . . ,m,

[

X xT

x 1

]

� 0,

(3.11)
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which is an SDP. This is called the SDP relaxation of the original nonconvex QCQP.

Its optimal value is a lower bound on the optimal value of the nonconvex QCQP.

Since it’s an SDP, it’s easy to solve, so we have a cheaply computable lower bound

on the optimal value of the original nonconvex QCQP.

Lagrangian relaxations

We now study another method for getting a cheaply computable lower bound on the

optimal value of the nonconvex QCQP. We take advantage of the fact that the dual

of a problem is always convex, hence efficiently solvable. Again, starting from the

original nonconvex QCQP:

minimize xTP0x+ qT
0 x+ r0

subject to xTPix+ qT
i x+ ri ≤ 0, i = 1, . . . ,m,

we form the Lagrangian,

L(x, λ) = xT

(

P0 +
m
∑

i=1

λiPi

)

x+

(

q0 +
m
∑

i=1

λiqi

)T

x+ r0 +
m
∑

i=1

λiri.

To find the dual function, we minimize over x, using the general formula (see exam-

ple 4.5 in Boyd & Vandenberghe (2003)):

inf
x∈R

xTPx+ qTx+ r =

{

r − 1
4
qTP †q, if P � 0 and q ∈ R(P )

−∞, otherwise.
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The dual function is then:

g(λ) = inf
x∈Rn

L(x, λ)

= −1

4

(

q0 +
m
∑

i=1

λiqi

)T (

P0 +
m
∑

i=1

λiPi

)†(

q0 +
m
∑

i=1

λiqi

)

+
m
∑

i=1

λiri + r0.

We can form the dual of (3.2), using Schur complements (cf. §A.5.5):

maximize γ +
∑m

i=1 λiri + r0

subject to

[

(P0 +
∑m

i=1 λiPi) (q0 +
∑m

i=1 λiqi) /2

(q0 +
∑m

i=1 λiqi)
T
/2 −γ

]

� 0

λi ≥ 0, i = 1, . . . ,m,

(3.12)

in the variable λ ∈ Rm. As the dual to (3.2), this is a convex program, it is in

fact a semidefinite program. This SDP is called the Lagrangian relaxation of the

nonconvex QCQP. It’s easy to solve, and gives a lower bound on the optimal value of

the nonconvex QCQP.

An interesting question is, what is the relation between the Lagrangian relaxation

and the SDP relaxation? They are both SDPs, and they both provide lower bounds

on the optimal value of the nonconvex QCQP. In particular, is one of the bounds

better than the other? The answer turns out to be simple: (3.11) and (3.12) are

dual of each other, and so (assuming a constraint qualification holds) the bounds are

exactly the same.

Perfect duality

Weak duality implies that the optimal value of the Lagrangian relaxation is a lower

bound on that of the original program. In some particular cases, even though the
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original program is not convex, this duality gap is zero and the convex relaxation

produces the optimal value.

QCQP with only one constraint is a classic example (see Appendix B in Boyd &

Vandenberghe (2003), or Feron (1999) for others), based on the fact that the numerical

range of two quadratic forms is a convex set. This means that, under some technical

conditions, the programs:

minimize xTP0x+ qT
0 x+ r0

subject to xTP1x+ qT
1 x+ r1 ≤ 0,

(3.13)

and
maximize γ + λr1 + r0

subject to

[

(P0 + λP1) (q0 + λq1) /2

(q0 + λq1)
T /2 −γ

]

� 0

λ ≥ 0,

(3.14)

in the variables x ∈ Rn and λ ∈ R respectively, produce the same optimal value,

even if the first one is nonconvex. This result is also known as the S-procedure in

control theory. The key implication here of course is that while the original program

is possibly nonconvex and numerically hard, its dual is a semidefinite program and is

easy to solve.

Examples

Let us now work out the Lagrangian relaxations of the examples detailed above.

MINCARD relaxation Let’s first consider the MINCARD problem detailed in

(3.5):

minimize Card(x)

subject to Ax � b.
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Using the problem formulation in (3.7), the relaxation given by (3.11) is then:

minimize 1Tv

subject to Ax � b

−Rv � x � Rv

Tr(eie
T
i X) − eT

i x = 0, i = 1, . . . , n
[

X xT

x 1

]

� 0,

where ei is the Euclidean basis in Rn. Both Boyd, Fazel & Hindi (2000) and

Lemaréchal & Oustry (1999, Th. 5.2) show that this relaxation produces the same

lower bound as the direct linear programming relaxation:

minimize 1Tv

subject to Ax � b

−Rv � x � Rv

v ∈ [0, 1]n.

(3.15)

It is also related to the classical `1 heuristic described in Boyd et al. (2000), which

replaces the function Card(x) with its largest convex lower bound (over a ball in `∞)

‖x‖1:

minimize ‖x‖1

subject to Ax � b.
(3.16)

Boolean least squares The original boolean least squares problem in (3.3) is

written:
minimize ‖Ax− b‖2

subject to x2
i = 1, i = 1, . . . , n,
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We can relax its QCQP formulation (3.4) as an SDP:

minimize Tr(AX) + 2bTAx+ bT b

subject to

[

X xT

x 1

]

� 0

Xii = 1, i = 1, . . . , n,

(3.17)

in the variables x ∈ Rn and X ∈ Sn
+. This program then produces a lower bound on

the optimal value of the original problem.

Partitioning and MAXCUT The partitioning problem defined above reads:

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n.

(3.18)

Here, the problem is directly formulated as a nonconvex QCQP and the variable x

disappears from the relaxation, which becomes:

minimize Tr(WX)

subject to X � 0

Xii = 1, i = 1, . . . , n.

(3.19)

MAXCUT corresponds to a particular choice of matrix W .

3.1.2 Randomization

The Lagrangian relaxation techniques developed in §3.1.1 provided lower bounds on

the optimal value of the program in (3.2), but did not however give any particular

hint on how to compute good feasible points. The semidefinite relaxation in (3.11)

produces a positive semidefinite or covariance matrix together with the lower bound

on the objective. In this section, we exploit this additional output to compute good

approximate solutions with, in some cases, hard bounds on their suboptimality.
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Randomization

In the last section, the original nonconvex QCQP:

minimize xTP0x+ qT
0 x+ r0

subject to xTPix+ qT
i x+ ri ≤ 0, i = 1, . . . ,m,

was relaxed into:

minimize Tr(XP0) + qT
0 x+ r0

subject to Tr(XPi) + qT
i x+ ri ≤ 0, i = 1, . . . ,m,

[

X xT

x 1

]

� 0.

(3.20)

The last (Schur complement) constraint being equivalent to X − xxT � 0, if we

suppose x and X are the solution to the relaxed program in (3.20), then X − xxT is

a covariance matrix.

If we pick x as a Gaussian variable with x ∼ N (x,X − xxT ), x will solve the

nonconvex QCQP in (3.2) “on average” over this distribution, meaning:

minimize E(xTP0x+ qT
0 x+ r0)

subject to E(xTPix+ qT
i x+ ri) ≤ 0, i = 1, . . . ,m,

and a “good” feasible point can then be obtained by sampling x a sufficient number

of times, then simply keeping the best feasible point.

Feasible points

Of course the direct sampling technique above does not guarantee that a feasible point

will be found. In particular, if the program includes an equality constraint, then this

method will certainly fail. However, it is sometimes possible to directly project the

random samples onto the feasible set. This is the case, for example, in the partitioning
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problem, where we can discretize the samples by taking the sgn(x) function. In this

case, the randomization procedure then looks like this. First, sample points xi with

a normal distribution N (0, X), where X is the optimal solution of (3.19). Then get

feasible points by taking x̂i = sgn(xi).

Bounds on suboptimality

In certain particular cases, it is also possible to get a hard bound on the gap between

the optimal value and the relaxation result. A classic example is that of the MAXCUT

bound described in Goemans & Williamson (1995) or Ben-Tal & Nemirovski (2001,

Th. 4.3.2). The MAXCUT problem (3.9) reads:

maximize xTWx

subject to x2
i = 1, i = 1, . . . , n,

(3.21)

its Lagrangian relaxation was computed in (3.19):

maximize Tr(WX)

subject to X � 0

Xii = 1, i = 1, . . . , n.

(3.22)

We then sample feasible points x̂i using the procedure described above. Crucially,

when x̂ is sampled using that procedure, the expected value of the objective E(x̂TWx)

can be computed explicitly:

E(x̂TWx) =
2

π

n
∑

i,j=1

Wij arcsin(Xij) =
2

π
Tr(W arcsin(X)).

We are guaranteed to reach this expected value 2/πTr(W arcsin(X)) after sampling a

few (feasible) points x̂, hence we know that the optimal value OPT of the MAXCUT

problem is between 2/πTr(W arcsin(X)) and Tr(WX).

Furthermore, with arcsin(X) � X (see Ben-Tal & Nemirovski (2001, p. 174)), we
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can simplify (and relax) the above expression to get:

2

π
Tr(WX) ≤ OPT ≤ Tr(WX).

This means that the procedure detailed above guarantees that we can find a feasible

point that is at most 2/π suboptimal (after taking a certain number of samples from

a Gaussian distribution).

3.1.3 Linearization and convex restriction

The relaxation techniques detailed in §3.1.1 produce lower bounds on the optimal

value but no feasible points. Here, we work on the complementary approach and try

to find “good” feasible points corresponding to a local minimum. Let x(0) be an initial

feasible point which might be found using the results in the last section or by a phase

I procedure; see the discussion on phase I problems in §11.4 of Boyd & Vandenberghe

(2003)).

Linearization

We start by leaving all convex constraints unchanged, linearizing the nonconvex ones

around the original feasible point x(0). Consider for example the constraint:

xTPx+ qTx+ r ≤ 0,

we decompose the matrix P into its positive and negative parts:

P = P+ − P−, P+, P− � 0.

The original constraint can be rewritten as

xTP+x+ qT
0 x+ r0 ≤ xTP−x,
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and both sides of the inequality are now convex quadratic functions. We linearize the

right hand side around the point x0 to obtain

xTP+x+ qT
0 x+ r0 ≤ x(0)TP−x

(0) + 2x(0)TP−(x− x(0)).

The right hand side is now an affine lower bound on the original function xTP−x

(see §3.1.3 in Boyd & Vandenberghe (2003)). This means that the resulting constraint

is convex and more conservative than the original one, hence the feasible set of the

new problem will be a convex subset of the original feasible set. Thus, by linearizing

the concave parts of all constraints, we obtain a set of convex constraints that are

tighter than the original nonconvex ones. In other words, we form a convex restriction

of the problem.

Iteration

The new problem, formed by linearizing all the nonconvex constraints using the

method described above, is a convex QCQP and can be solved efficiently to pro-

duce a new feasible point x(1) with a lower objective value. If we linearize again the

problem around x(1) and repeat the procedure, we get a sequence of feasible points

with decreasing objective values.

This simple idea has been discovered and rediscovered several times. It is some-

times called the convex-concave procedure. It doesn’t work for Boolean problems,

since the only convex subsets of the feasible set are singletons.

3.1.4 Numerical examples

In this section, we work out some numerical examples.
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Figure 3.1: Distribution of objective values for points sampled using the random-
ization technique in §3.1.2.

Boolean least-squares

We use (randomly chosen) parameters A ∈ R150×100, b ∈ R150 and x ∈ R100, the

feasible set has 2100 ≈ 1030 points. In figure (3.1.4), we plot the distribution of the

objective values reached by the feasible points found using the randomized procedure

above. Our best solution comes within 2.6% of the SDP lower bound.

Partitioning

We consider here the two-way partitioning problem described in (3.8) and compare

various methods.

A simple heuristic for partitioning One simple heuristic for finding a good

partition is to solve the SDPs above, to find X? (and the bound d?). Let v denote
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an eigenvector of X? associated with its largest eigenvalue, and let x̂ = sgn(v). The

vector x̂ is our guess for a good partition.

A randomized method We generate independent samples using the procedure

described in §3.1.2.

Greedy method We can improve these results a little bit using the following simple

greedy heuristic. Suppose the matrix Y = x̂TWx̂ has a column j whose sum
∑n

i=1 yij

is positive. Switching x̂j to −x̂j will decrease the objective by 2
∑n

i=1 yij. If we pick

the column yj0 with largest sum, switch x̂j0 and repeat until all column sums
∑n

i=1 yij

are negative, we further decrease the objective.

Numerical Example For our example, the optimal SDP lower bound d? is equal

to −1641 and the sgn(x) heuristic gives a point (partition) with total cost −1348.

Extracting a solution from the SDP solution using the simple heuristic above gives a

solution with cost −1280, while applying the greedy method pushes that cost down

to −1372. Exactly what the optimal value is, we can’t say; all we can say at this

point is that it is between −1641 and −1372.

We then try the randomized method, applying the greedy method to each sample,

and plot in figure (3.1.4) a histogram of the objective obtained over 1000 samples.

Many of these samples have an objective value larger than the original one above,

but some have a lower cost. For our implementation, we found the minimum value

−1392. The evolution of the minimum value found as a function of the sample size is

shown in figure (3.1.4). Note that our best partition was found in around 100 samples.

We’re not sure what the optimal cost is, but now we know it’s between −1641 and

−1392.
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Figure 3.3: Best objective value versus number of sample points.

3.2 Polynomial problems

Here, we discuss direct extensions of the results detailed in the last section, using

techniques developed in Putinar (1993), Lasserre (2001) or Parillo & Sturmfels (2001).

As an application, we show that some minimum cardinality problems subject to

linear inequalities can be represented as finite sequences of semidefinite programs. In

particular, we provide a semidefinite representation of the minimum rank problem on

positive semidefinite matrices.

Notation

We note R[x1, ..., xn] (or R[x] when there is no ambiguity) the ring of multivariate

polynomials p(x) = p(x1, ..., xn) on a variable x ∈ Rn. We say that p(x) ∈ R[x] is

SOS when p(x) is a sum of squares of polynomials in R[x]. For x ∈ Rn, Card(x) will

be the cardinal of the set {i : xi 6= 0}. We note Sn the set of n×n symmetric matrices.
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For multivariate polynomials, we adopt the multiindex notation p(x) =
∑

α pαx
α,

where xα := xα1

1 x
α2

2 ...x
αn
n , and we note d =

∑n
i=1 αi the degree of p(x). Rd[x] is the

set of polynomials of degree at most d. Finally, C(p) will be the Newton polytope of

the polynomial p(x), with C(p) = Co ({α : pα 6= 0}).

3.2.1 Introduction

Given a convex set C ⊂ Rn, we are interested in solving the following problem:

minimize Card(x)

subject to x ∈ C,
(3.23)

in the particular case where C is described by a set of linear inequalities. Except in

certain rare instances, this problem is very hard to solve (see Vandenberghe & Boyd

(1996)). Excellent heuristics exist however, a classical one (see Hassibi, How & Boyd

(1999) for example) replacing the function Card(x) by ‖x‖1, its largest convex lower

bound on the unit cube.

A related problem is that of minimizing the rank of a p.s.d. matrix subject to

LMI constraints:
minimize Rank(X)

subject to X ∈ C,
(3.24)

where C is here an affine subset of the semidefinite cone (a LMI). In this case also, min-

imizing the nuclear norm ‖X‖opt of X will produce excellent approximate solutions

(see Boyd et al. (2000)).

In this paper, using results by Cassier (1984), Shor (1987), Putinar (1993), Choi,

Lam & Reznick (1995), Nesterov (2000), Lasserre (2001), Parillo & Sturmfels (2001)

and Lasserre (2002), we show that the MinCard(x) and MinRank(X) problems

in (3.23) and (3.24) are equivalent to large semidefinite programs (see Nesterov &

Nemirovskii (1994)). To be precise, based on a reformulation à la Shor (1987) of

problems (3.23) and (3.24), we use the technique in Lasserre (2002) to produce a
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finite (possibly exponential) sequence of increasingly tighter semidefinite relaxations.

The rest of the paper is organized as follows. In §3.2.2, we recall some key defi-

nitions and properties on semidefinite representability and the sum of squares repre-

sentation of positive polynomials. We also summarize the application of these repre-

sentations to semialgebraic problems. In §3.2.3, we show that both the MinCard(x)

and the MinRank(X) problems are equivalent to large scale semidefinite programs.

Based on the work by Putinar (1993), Nesterov (2000) and Lasserre (2002) we explic-

itly construct in §3.2.4 a sequence of semidefinite programs solving problems (3.23)

and (3.24). We also show how the problem of finding optimal convex lower bounds

on the objective function can be represented in a similar way. Finally, in §3.2.5, we

discuss the complexity of these techniques.

3.2.2 Sums of squares and semidefinite programming

We quickly recall here some key definitions and properties linking semidefinite and

semialgebraic problems.

Hilbert’s 17th problem (see Reznick (1996) for an overview), which asked if all

positive polynomials could be written as sums of squares of other polynomials, has

a positive answer in dimension one. Nesterov (2000) provides an efficient way of

computing the SOS representation of a given positive univariate polynomial in the

following result from Nesterov (2000).

Proposition 13 Let p(x) ∈ R[x] be a univariate polynomial of degree d. Then p(x)

for all x ∈ R iff there exists a matrix X ∈ Sv such that:

p(x) = yT
xXyx, with X � 0, for all x ∈ R (3.25)

with v = dd/2e and yx = (1, x, x2, ..., xv) is the list of univariate monomials up to

degree v.

The coefficients of the polynomials in the representation are then computed as the
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eigenvectors of the matrix X.

In the general multivariate case, that representation property of positive polyno-

mials is lost. It can be shown (see Berg (1980)) that the set of multivariate SOS

polynomials is dense in the set of positive polynomials, but there are simple examples

of positive polynomials that are not SOS. However, recent results in semialgebraic ge-

ometry (see Cassier (1984), Schmüdgen (1991), Putinar (1993) or Putinar & Vasilescu

(1999)) bridge the gap between positive and SOS polynomials on compact semial-

gebraic sets. We cite here the result in Putinar (1993). Let gk(x) ∈ R[x1, ..., xn] for

j = 1, ..., r, and we note K, the semialgebraic set defined by

K = {x ∈ Rn : gk(x) ≥ 0, k = 1, ..., r} .

We suppose that K is compact and that there exists u(x) ∈ R[x1, ..., xn] such that

{u(x) ≥ 0} is compact with

u(x) = u0(x) +
r
∑

k=1

gk(x)uk(x), for all x ∈ Rn (3.26)

where the polynomials uk(x) ∈ R[x1, ..., xn] are SOS for k = 1, ..., r. Under this

assumption, we can represent all polynomials positive on K using SOS polynomials

as in Putinar (1993) or Putinar & Vasilescu (1999).

Proposition 14 Suppose (3.26) holds. A polynomial p(x) ∈ R[x1, ..., xn] is positive

on K iff:

p(x) = q0(x) +
r
∑

k=1

gk(x)qk(x), for all x ∈ Rn (3.27)

where the polynomials qk(x) ∈ R[x1, ..., xn] are SOS for k = 0, ..., r.

Now, as in Parillo (2000) or Lasserre (2001), we can write the multivariate version

of the relation (3.25) mapping SOS polynomials to the semidefinite cone.

Proposition 15 Let p(x) ∈ R[x1, ..., xn] be a polynomial and K a semialgebraic set
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defined by K = {x ∈ Rn : gk(x) ≥ 0, k = 1, ..., r}, satisfying assumption (3.26). Then

p(x) ≥ 0 on K iff there is an integer m ∈ Z+ and matrices Xk ∈ SN , with Xk � 0

for k = 0, ..., r such that:

p(x) = yT
xX0yx +

r
∑

k=1

(

yT
xXkyx

)

gk(x), for all x ∈ Rn, (3.28)

where N =
⌈(

n+m−1
m

)

/2
⌉

and

yx =
(

1, x1, ..., xn, x
2
1, x1x2, ..., x1xn, x

2
2, x2x3, ..., x

2
n, ..., x

m
1 , ..., x

m
n

)

is the vector of all monomials in R[x1, ..., xn], up to degree m, listed in graded lexico-

graphic order.

The result on polynomials above shows that testing the positivity of a multivariate

polynomial on a semialgebraic set K satisfying the assumption (3.26) can be cast

as a semidefinite program. In general, the result in Lasserre (2001) shows that all

compact semialgebraic problems, i.e. problems seeking to minimize a polynomial over

a compact semialgebraic set, are equivalent to large-scale semidefinite programs. This

provides a positive answer in the compact multivariate case to all the open questions

in §4.10.2 in Ben-Tal & Nemirovski (2001). A converse result is also true (and much

simpler). Because the positive semidefiniteness of a matrix is equivalent to that of

all its principal minors, all semidefinite programs are semialgebraic programs, with

additional convexity and invariance properties.

The central result of moment theory exploited in Lasserre (2001) sets polynomial

positivity problems and moment problems as duals (see e.g. Berg (1980)). Let s be

a positive semidefinite sequence s ∈ RN , we have

s is p.s.d.

m
〈s, pα〉 ≥ 0, for all p(x) ∈ Rm[x] with p(x) SOS,
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and
s is a moment sequence

m
〈s, pα〉 ≥ 0, for all p(x) ∈ Rm[x] with p(x) ≥ 0 on Rn,

hence the cone of coefficients of SOS polynomials and that of p.s.d. sequences are

polar, and so are the cones of moment sequences and positive polynomials.

From Putinar (1993) then, we know that the problem of testing if a sequence y

is the moment sequence of some measure µ with support in a compact semialgebraic

set

K = {x ∈ Rn : gk(x) ≥ 0, k = 1, ..., r}

and the problem of representing positive polynomials on K as gk(x) weighted sums

of SOS polynomials are dual of each other and both representable as linear matrix

inequalities.

3.2.3 Semidefinite representations of MinCard(x) and Min-

Rank(X)

As above K is the semialgebraic set defined by

K = {x ∈ Rn : gk(x) ≥ 0, k = 1, ..., r}

and we assume that (3.26) holds. Let p(x) ∈ R[x1, ..., xn] and as K is compact, we

also note topt = minK p(x). Of course, p(x) − topt ≥ 0 on K, hence there are SOS

polynomials qk(x) ∈ R[x1, ..., xn] for k = 1, ..., r such that (3.27) holds for p(x)− topt

on K. We first show that the MinCard(x) problem can be cast as a semialgebraic

program, hence a semidefinite program, using the results from §3.2.2.

Proposition 16 Let A ∈ Rm×n and b ∈ Rm. There are polynomials gk(x) ∈
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R[x1, ..., xn], for k = 0, ..., r such that the optimum values of:

minimize Card(x)

subject to Ax ≥ b,
(3.29)

and
minimize g0(x)

subject to gk(x) � 0, for k = 1, ..., r,

are equal.

Proof. First, as in Shor (1987) we notice that:

Card(x) = min
∑n

i=1 vi

s.t. (vi − 1)xi = 0

vi ≥ 0, for i = 1, ..., n,

hence the MinCard(x) problem in (3.29) can be written:

MinCard(x) ≡ min.
∑n

i=1 vi

s.t. (vi − 1)xi = 0

vi ≥ 0, for i = 1, ..., n

Ax ≥ b.

which is a semialgebraic problem.

We now show a similar result on the MinRank(X), a minimum cardinality prob-

lem on the eigenvalues of the matrix X.

Proposition 17 Let Ai ∈ Sn, for i = 1, ..., p and b ∈ Rp. There are polynomials
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gk(x) ∈ R[x1, ..., xn], for k = 0, ..., r such that the optimum values of:

minimize Rank(X)

subject to Tr (AiX) = bi, for i = 1, ..., p

X � 0

(3.30)

and
minimize g0(x)

subject to gk(x) � 0, for i = 1, ...,M

are equal.

Proof. We note (λ1, ..., λn) the eigenvalues of the matrix X � 0 and

σk(X) =
∑

α⊂{1,...,n},|α|=k

λα

the symmetric functions. We note χt (X) the characteristic polynomial of the matrix

X, with χt (X) =
∑n

i=1 (−1)i σi(X)ti. Because the matrix X is semidefinite positive,

we have σk(X) = 0 iff Rank (X) < k, hence the MinRank(X) problem can be

expressed as a minimum cardinality problem on the coefficients of the characteristic

polynomial. With

Rank(X) = min vi

s.t. σi(X)(vi − 1) = 0

vi ≥ 0, for i = 1, ..., n,
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we enforce the remaining constraints and the MinRank(X) problem becomes:

minimize
∑n

i=1 vi

s.t. (vi − 1)σi(X) = 0

vi ≥ 0, for i = 1, ..., n

Tr (AiX) = bi, for i = 1, ..., p

dI(X) ≥ 0, for I ⊂ {1, . . . , n},

where dI(X) is the principal minor with index set I ⊂ {1, . . . , n}. This is a semial-

gebraic program in the coefficients of the matrix X.

These two results together with the results cited in §3.2.2 show that the two

problems considered are equivalent to very large scale semidefinite programs.

3.2.4 Semidefinite relaxations

In practice, the exact representations obtained in the last section can be exponentially

large and in general, we cannot expect these problems to be tractable. Hence, the

central contribution of these representations is not to reduce the complexity of these

problems, but to provide a sequence of successively sharper relaxations covering the

entire complexity spectrum, thus allowing the complexity/sharpness tradeoff to be

tuned. This is what we intend to describe in this section.

We begin by recalling the construction of moment matrices as detailed in Curto

& Fialkow (2000), Lasserre (2001) and Lasserre (2002). Again, we let

yx =
(

1, x1, ..., xn, x
2
1, x1x2, ..., x1xn, x

2
2, x2x3, ..., x

2
n, ..., x

m
1 , ..., x

m
n

)

be the vector of all monomials in R[x1, ..., xn], up to degree m, listed in increasing

graded lexicographic order. We note s(m) the size of the vector yx. Let y ∈ Rs(2m) be

the vector of moments (indexed according to yx) of some probability measure µ with

support K = {x ∈ Rn : g(x) ≥ 0}, we note Mm(y) ∈ Ss(m), for the moment matrix
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defined by

Mm(y)i,j =

∫

K

(yx)i (yx)j µ (dx) , for i, j = 1, ..., s(m) (3.31)

i.e. the (symmetric) matrix of moments with rows and columns indexed as in yx. We

note β(i) the exponent of the monomial (yx)i and conversely, we note i(β) the index

of the monomial xβ in yx. For a given moment vector y ∈ Rs(m) ordered as in (3.2.4),

the first row and columns of the matrix Mm(y) are then equal to y. The rest of the

matrix is then constructed following:

Mm(y)i,j = yα+β if Mm(y)1,i = yα and Mm(y)j,1 = yβ.

Similarly, let g(x) ∈ R[x1, ..., xn], we derive the moment matrix for the measure

g(x)µ (dx) on K (called the localizing matrix), noted Mm(gy) ∈ Ss(m), from the

matrix of moments Mm(y) by:

Mm(gy)i,j =

∫

K

(yx)i (yx)j g(x)µ (dx) (3.32)

for i, j = 1, ..., s(m). The coefficients of the matrix Mm(gy) are then given by:

Mm(gy)i,j =
∑

α

gαMm(y)i(β(i)+β(j)+α) (3.33)

We can remark as in Lasserre (2001) that if the measure µ has its support included

in K = {x ∈ Rn : g(x) ≥ 0}, then for all coefficient vectors v ∈ Rs(m):

〈v,Mm(gy)v〉 =

∫

K

v(x)2g(x)µ (dx) ≥ 0

hence Mm(gy) � 0.

In dimension one, for a given vector y ∈ Rs(2m), Mm(y) � 0 (which is a LMI)

is also a sufficient condition in order for y to the moment sequence of a probability

measure. In Rn, this equivalence does not hold in general. The compact semialgebraic
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case is called the K-moment problem and is dual to the compact SOS problem in

(3.28). Following Lasserre (2001), we now exploit this duality to compute a sequence

of semidefinite relaxations for the MinCard(x) and MinRank(X) problems.

The MinCard(x) problem

In §3.2.3, we saw that the optimum value of the MinCard(x) problem can be com-

puted as the optimum value of the semialgebraic program:

min.
∑n

i=1 vi

s.t. (vi − 1)xi = 0

vi ≥ 0, for i = 1, ..., n

aT
j x ≥ bj, for j = 1, ...,m.

(3.34)

As in Lasserre (2001), to ensure compactness, we impose the additional constraint

x2
1 + ... + x2

n ≤ α for some constant α > 1. It is easy to check that the program

above, together with this additional bound on the feasible set, satisfies the constraints

qualification assumption (3.26). For N ≥ 1, a lower bound lN on the optimal value

of the above problem is then computed as:

lN := inf
∑n

i=1 yi

s.t. MN(y) � 0

MN−1 (xi(vi − 1)y) = 0

MN−1

(

(α− xTx− vTv)y
)

� 0

MN−1 (viy) � 0, for i = 1, ..., n

MN−1

((

aT
j x− bj

)

y
)

� 0, for j = 1, ...,m,

(3.35)

in the variable y ∈ Rs(2n). Theorem 3.2 in Lasserre (2002) then states that there

exists some Nopt such that

lN = MinCard(x), for all N ≥ Nopt,
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and the optimum is achieved whenever the rank of the matrices MN((...) y) stabilizes.

The MinRank(X) problem

In §3.2.3, for X ∈ Sn, we saw that the optimum of the MinRank(X) problem can

be computed as the optimum value of the semialgebraic program:

min.
∑n

i=1 vi

s.t. (vi − 1)σi(X) = 0

vi ≥ 0, for i = 1, ..., n

Tr (AjX) = bj, for j = 1, ..., p

dI(X) ≥ 0, I ⊂ [1, n],

To further simplify this program, we can substitute to the 2n constraints on the

principal minors a more economical semialgebraic constraint. The modified program

then reads:
min.

∑n
i=1 vi

s.t. (vi − 1)σi(X) = 0

vi ≥ 0, for i = 1, ..., n

Tr (AjX) = bj, j = 1, ..., p

uTXu ≥ 0, u ∈ Rn,

and again, to ensure compactness, we impose XTX+vTv+uTu ≤ α for some constant

α > 1. If we set the variable x = (u,X, v), for N sufficiently large, a lower bound lN
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on the optimal value of the above problem is computed as:

lN := inf
∑n

i=1 ui

s.t. MN(y) � 0

MN−d i+1

2 e ((vi − 1)σi(X)y) = 0

MN−1 (viy) � 0, i = 1, . . . , n

MN−1 ((Tr (AjX) − bj) y) = 0, j = 1, ..., p

MN−1

((

α−XTX + vTv + uTu
)

y
)

� 0

MN−2

((

uTXu
)

y
)

� 0,

(3.36)

in the variable y ∈ Rs(2n), where the matrices M(q(x)y) are computed as in (3.33).

Theorem 3.2 in Lasserre (2002) then states that there exists some Nopt such that

lN = MinRank(X), for all N ≥ Nopt,

and the optimum is reached whenever the rank of the matrices MN((...) y) stabilizes.

Alternatively, one could use the fact that if we note χt(X) the characteristic polyno-

mial of X, then X � 0 is equivalent to χ−t2(X) being SOS as a univariate polynomial

in t.

Convex envelope

Suppose that instead of having only one MinCard(x) or MinRank(X) problem

to solve, we need to solve a (long) sequence of these problems with only some vari-

ation in the constraints. Here, instead of computing an exact relaxation for every

instance of the problem, we are interested in finding an efficient heuristic method

for approximating the solution to all the problems to be solved. The complexity of

the first ”bound design” program will be high, but that of the subsequent programs

will then be much lower. The heuristics in Boyd et al. (2000) replaced the Card(x)

(resp. Rank(X)) functions by their convex envelope on the sets 0 ≤ x ≤ 1 (resp.
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0 � X � I), i.e. the largest convex function f(x) such that f(x) ≤ Card(x) if

0 ≤ x ≤ 1 (resp. f(X) ≤ Rank(X) if 0 � X � I). In this section, we extend these

bounds to semialgebraic sets with more complex shapes.

Of course, a function and its convex envelope share the same global minimum, so

solving for this optimal lower bound is at least as hard as finding the global minimum.

Here however we look for a convex lower bound for the problem in (3.29) inside the

set of polynomials of degree at most d. This becomes a semialgebraic program:

maximize
∫

[0,1]n
p(x)dx

subject to t− p(x) ≥ 0 on K
∑n

i=1 vi − p(x) ≥ 0 on K

uT∇2p(x)u ≥ 0 on ‖u‖2 = 1

(3.37)

in the coefficients pα of the polynomial p(x) ∈ Rd[x1, ..., xn], where K is the compact

semialgebraic set given by:

K = (v, x) ∈ R2n : (vi − 1)xi = 0

Ax− b ≥ 0

x, v ≥ 0.

(3.38)

Again, this can be cast as a LMI using the technique in Lasserre (2002). We notice

that the l1 heuristic is a particular case when the constraint Ax− b ≥ 0 is dropped.

3.2.5 Complexity

Of course, the two semidefinite programs detailed in the last section are far from

tractable if the dimension n and the relaxation order N grow beyond textbook exam-

ple sizes. The MinCard(x) problem is equivalent to solving 2n linear programs, so

it is right to ask whether the programs above provide any benefit over, for example,

branch-and-bound methods?
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Even if these two methodologies have similar worst-case complexities, the semidef-

inite relaxations in (3.35) and (3.36) do sometimes produce the global optimum for

low order N (see Lasserre (2002)) and because the objective is integer valued here,

they only need to be solved up to an absolute precision of 1/2. We quickly detail

below some other possible simplifications.

But the results above have to be considered first as representations, providing an

insight of the relative complexity of minimum cardinality problems versus that of

tractable convex optimization problems.

Structure, sparsity and symmetry

The first element that can be used to simplify the programs in (3.35) and (3.36) is

structure. In Lasserre (2002) for example, the constraints x ∈ {−1, 1}, that translate

into x2 − x = 0 and Mm((x2 − x) y) = 0 also imply that the variables yα, for α ∈ Zn
+,

can be replaced by yCard(α) in the program. Secondly, if the constraints in (3.35) and

(3.36) include some symmetry, we could use the results in Gatermann (2000) and

Gatermann & Parillo (2002) to preprocess and simplify the original semialgebraic

program. The simplest example of these symmetries is of course when the constraints

are invariant with respect to a change of basis, in which case MinRank(X) reduces to

a MinCard(x) problem and as in Gatermann & Parillo (2002) p. 31, the asymptotic

complexity goes from being exponential in n to being exponential in
√
n.

In general, the complexity of algorithms in semialgebraic geometry grows at least

exponentially with the dimension. Efficiency is then very often measured by the

ability of a method to maintain sparsity. Some results on Newton polytopes and SOS

polynomials can then be used to efficiently handle sparsity in the SOS representations.

In particular, a result of Reznick (1978) shows that if p(x), hi(x) ∈ R[x], for i =

1, ..., r, with p(x) =
∑r

i=1 h
2
i (x), then C(hi) ⊆ 1

2
C(p). That result however does not

hold as is for the representation in (3.27).

Finally, a lower bound on the optimal value can be obtained by simply dropping

some of the constraints in (3.35) and (3.36).
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3.2.6 Numerical example

In this section, we present a brief example of how the relaxation technique from (3.2.4)

can be used to ”spice up” the l1 norm heuristic on a sample MinCard(x) problem.

We look at the following problem:

minimize Card(x)

subject to Ax ≥ b

0 ≤ x ≤ 1,

(3.39)

where

A =



















0.922 0.152 0.606 0.0513 0.318

0.232 0.988 0.393 0.223 0.547

0.236 0.987 0.821 0.111 0.158

0.998 0.279 0.899 0.258 0.39

0.0877 0.206 0.692 0.657 0.00404



















and

b =



















1.18

−1.2

0.715

0.94

1.48



















.

In this case the classic l1 relaxation gives a lower bound on the optimal cardinality

of 2.9193 with a solution of cardinal 4, while the order 2 SDP relaxation detailed in

(3.2.4) gives a lower bound of 3.7508 with a solution of cardinal 4 hence produces a

globally optimal solution. However, the computing time (20 sec.) is far from being

competitive with that of MILP packages (MOSEK took less than a second to solve

globally this example).

One of the central contributions of semidefinite programs to the optimization

toolbox is their ability to efficiently solve a wide class of convex eigenvalue problems.
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In this chapter, we have illustrated how the method described in Lasserre (2001) for

solving semialgebraic programs, by lifting them to semidefinite programs, can also

be used to represent some semialgebraic eigenvalue problems and convex envelope

relaxations. This contribution is centered around semidefinite representations and

the insight they can provide on the theoretical complexity of these problems. Wether

or not they also improve the practical complexity of computing relaxations to these

problems remains to be explored.
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3.3 Generalized moment problems

We focus here on generalized moment problems. Using results by Berg & Maser-

ick (1984), Putinar & Vasilescu (1999) and Lasserre (2001) on harmonic analysis on

semigroups, the K-moment problem and its applications to optimization, we revisit

the problem of computing upper and lower bounds on the price of a European basket

call option, given prices on other similar baskets. We formulate necessary and suffi-

cient conditions for the absence of static (or buy-and-hold) arbitrage between basket

straddles, hence on basket calls and puts. These allow us to produce a sequence

of increasingly tight relaxations of this problem, in the form of increasingly large

semidefinite programs.

3.3.1 Introduction

As in §2.1.1, we let p ∈ Rm
+ , K ∈ Rm+1, wi ∈ Rn, i = 0, . . . ,m and we consider the

problem of computing upper and lower bounds on the price of an European basket

call option with strike K0 and weight vector w0:

maximize/minimize p0 := Eν(w
T
0 x−K0)+

subject to Eν(w
T
i x−Ki)+ = pi, i = 1, . . . ,m,

(3.40)

with respect to all probability measures ν on the asset prices x ∈ Rn
+, consistent with

the (given) set of observed prices pi of options on other baskets.

We implicitly assume that all the options have the same maturity, and that,

without loss of generality, the risk-free interest rate is zero (we compare prices in the

forward market). We seek non-parametric bounds, i.e. we do not assume any specific

model for the underlying asset prices, our only assumption is the absence of a static

arbitrage today (i.e. the absence of an arbitrage that only requires trading today and

at maturity).

Here, we interpret (3.40) as a generalized moment problem. This approach was

successfully used in Bertsimas & Popescu (2002) to get tractable bounds in dimension
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one and to show the NP-hardness of the multivariate problem (3.40). NP-hardness

means that we have no chance of finding a direct and efficient method for detecting all

arbitrage opportunities, our objective here instead is to look for a sequence of succes-

sively tighter price bounds. This would mean that outlandish arbitrage opportunities

can be detected at little numerical cost while detecting finer price discrepancies has

a higher theoretical complexity.

The motivation for this work lies in the fact that most of the interest rate market

volatility information is concentrated in caps and swaptions, which can be interpreted

as basket options. Most interest rate models are flexible enough to calibrate on a vast

range of market conditions, but the question still arises of how to interpret cases

where an exact fit to the market data is impossible. This can be caused by one of

two scenarios. The first one occurs when the market data is arbitrage free but the

model dynamics are not rich enough to calibrate on them. In the second one, the

market data is simply not arbitrage free. This can be a simple technical discrepancy,

i.e. a missing data point or an outlier in the data set, or it can be an actual static

arbitrage opportunity. It is then important to be able to detect where the mispricing

is occurring and how to correct it.

We use here recent results on multivariate moment problems (see Schmüdgen

(1991), Putinar & Vasilescu (1999) or Curto & Fialkow (2000)), semidefinite pro-

gramming (see Nesterov & Nemirovskii (1994), Vandenberghe & Boyd (1996) and

Nesterov (2000)) and harmonic analysis on semigroups (see Berg, Christensen & Res-

sel (1984) and Roman (2003)) allow us to derive static arbitrage price bounds on a

set of products linked by a semigroup structure. The resulting constraints can be

formulated as successively tighter linear matrix inequalities, hence we can compute

increasingly sharp bounds on the solution to problem (3.40) as solutions of increas-

ingly large semidefinite programs (linear programs on the cone of positive semidefinite

matrices). Semidefinite programming has been the object of intensive research since

the seminal work of Nesterov & Nemirovskii (1994) and several numerical packages

(see for example SEDUMI by Sturm (1999)) are now available to solve these problems
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very efficiently.

The core of our argument is to substitute to the classical duality between the cones

of probability measures and positive portfolios, the conic duality between positive

definite functions on one hand and sums of squares on the other. These last two cones

have the advantage of being numerically tractable and lead to exploitable formulations

of the static portfolio super/sub-replication problems.

In the previous chapter, we focused on the interpretations of problem (3.40) as an

integral transform inversion problem or a linear semi-infinite program, i.e. a linear

program with a finite number of linear constraints on an infinite dimensional variable,

and used the related theories to compute closed-form solutions for some particular

cases and a linear programming relaxation for the general case.

This section is organized as follows. In section two, we describe the static market

structure and start with a brief introduction on harmonic analysis on semigroups.

Based on these results, we then derive necessary and sufficient conditions for the

absence of arbitrage in the static market, formulated as semidefinite programs. In

section three, we describe the conic duality between positive definite functions and

sums of squares and use it to show how a super/sub-replicating portfolio can be

constructed from the solution to the programs of the preceding section. Finally,

in section four we discuss the numerical complexity of the arbitrage conditions and

describe in details two applications to spread and FOREX option pricing.

3.3.2 Static arbitrage constraints

Market structure

We work in a one period framework and suppose that the market is composed of

cash and n underlying assets xi for i = 1, . . . , n with x ∈ Rn
+. We suppose that the

forward prices of the assets are known and given by pi, for i = 1, . . . , n, hence wi is

the Euclidean basis and Ki = 0 for i = 1, . . . , n. In addition to these basic products,

there are m+1 basket straddles on the assets x, with payoff given by |wT
n+ix−Kn+i|,
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i = 1, . . . ,m. Because a straddle is obtained as the sum of a call and a put, we get the

market price of straddles from those of basket calls and forward contracts by call-put

parity.

These payoff functions will be denoted by ei, for i = 0, . . . ,m+n, with ei(x) = xi

for i = 1, . . . , n and e(n+j)(x) = |wT
j x−Kj| for j = 0, . . . ,m. In what follows, we will

focus on the Abelian (commutative) semigroup (S, ·) generated by the payoffs ei(x)

for i = 0, . . . ,m+ n, the cash 1S and their products

S = {1, x1, . . . , |wT
mx−Km|, x2

1, . . . , xi|wT
j x−Kj|, . . . }

In this one period setting, we will look for conditions that guarantee the absence

of static arbitrages, i.e. arbitrage opportunities that only involve trading today and

at maturity, assuming that there are no transaction costs.

Harmonic analysis on semigroups

We start by a brief introduction on harmonic analysis on semigroups, for a complete

treatment see Berg et al. (1984) and the references therein. Unless otherwise specified,

all measures are supposed to be positive.

Definition 18 A function ρ : S → R is called a semicharacter iff it satisfies ρ(st) =

ρ(s)ρ(t) for all s, t ∈ S and ρ(1S) = 1.

In Berg et al. (1984) an involution operation is defined on the semigroup (S, ·),
here and in the rest of the paper we suppose that involution to be the identity, which

means in particular that we take all semicharacters to be real valued. The dual

semigroup of S, i.e. the set of semicharacters on S is called S
∗. In this context, we call

a function f : S → R a moment function on S iff f(1S) = 1 and f can be represented

as:

f(s) =

∫

S∗

ρ(s)dν(ρ), for all s ∈ S, (3.41)

where ν is a Radon measure on S
∗.
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When S is the semigroup defined in (3.3.2) as an enlargement of the semigroup

of monomials on Rn, its dual S
∗ is the set of applications ρx : S → R such that

ρx(s) = s(x) for all s ∈ S and all x ∈ Rn. The measure ν is then assimilated to a

probability measure on Rn and the representation above becomes:

f(s) = Eν [s(x)] , for all s ∈ S. (3.42)

Our objective below is to find tractable conditions for a set of prices p0, . . . , pn+m

to be represented as Eν

[

|wT
i x−Ki|

]

= pi for i = 0, . . . , n + m and some positive

measure ν.

The compact case

In this section we assume the asset distribution has a compact support K. We treat

the compact case independently as it is rather simple yet captures many of the key

features of the general result. We begin by a few definitions along the lines of Berg

& Maserick (1984) and Berg et al. (1984). An absolute value on S is a function

| · | : S → R+ satisfying

|s2| ≤ |s|2, for all s ∈ S

and

|1S| ≥ 1.

A function f : S → R is said to be bounded with respect to an absolute value | · | iff

there exists some M > 0 such that

|f(s)| ≤M |s|, for all s ∈ S.

Furthermore, f is called exponentially bounded iff f is bounded with respect to some

absolute value. Remark that if the measure ν in (3.41) has its support contained

in the compact K then the moment function f(s) =
∫

S∗
ρ(s)dν(ρ) is bounded with
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respect to the following absolute value:

|s|K = sup
ρ∈K

ρ(s)

for s ∈ S.

Finally, we define the key notion of positive definite function.

Definition 19 A function f : S → R is called positive semidefinite iff for all fi-

nite families {si} of elements of S, the matrix with coefficients f(sisj) is positive

semidefinite.

We remark that moment functions are necessarily positive semidefinite. Necessary

and sufficient conditions on f(s) for the existence of a measure ν in (3.42) were derived

in Henkin & Shananin (1990), they were however difficult to exploit numerically. Here,

based on the results in Berg et al. (1984), Putinar & Vasilescu (1999) and Roman

(2003), we look for exploitable conditions for representation (3.42) to hold.

Let α be an absolute value, the central result in Berg et al. (1984, Th. 2.6)

states that the set of α-bounded positive semidefinite functions f : S → R such that

f(1S) = 1 is a Bauer simplex whose extreme points are given by the set of α-bounded

semicharacters. Hence a function f is positive semidefinite and exponentially bounded

if and only if it can be represented as f(s) =
∫

S∗
ρdν(ρ) with the support of ν included

in some compact subset of S
∗.

Based on these results, we derive below a set of tractable necessary and sufficient

conditions allowing a function f to be represented as in (3.42). For s, u in S, we denote

by Es the shift operator such that for f : S → R, we have Es(f(u)) = f(su) and we

let E be the commutative algebra generated by the shift operators on S. Finally, we

let β = supx∈K{∑n+m
i=0 ei(x)}.

Theorem 20 Suppose the asset distribution has compact support K and S is the

payoff semigroup defined in (3.3.2), with β is defined as above. A function f(s) : S →
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R can be represented as

f(s) = Eν [s(x)], for all s ∈ S, (3.43)

for some measure ν on K, and satisfies the price constraints in (3.40) if and only if:

(i) f is positive semidefinite,

(ii) Eei
f is positive semidefinite for i = 0, . . . , n+m,

(iii)
(

βI −∑n+m
i=0 Eei

)

f is positive semidefinite,

(iv) f(ei) = pi for i = 1, . . . , n+m.

Furthermore, for each function f satisfying conditions (i) to (iv), the measure ν in

representation (3.43) is unique.

Proof. The family of shift operators τ = {{Eei
}i=0,...,n+m,

(

βI −∑n+m
i=0 Eei

)

} ⊂ E is

such that I−T ∈ span+τ for each T ∈ τ and span τ = E , hence τ is linearly admissible

in the sense of Berg & Maserick (1984, Corollary 2.5) or Maserick (1977), which states

that (ii) and (iii) are equivalent to f being τ -positive. Then, Maserick (1977, Th.

2.1) means that f is τ -positive if and only if there is a measure ν such that f(s) =
∫

S∗
ρ(s)dν(ρ), whose support is a compact subset of the τ -positive semicharacters.

This means in particular that for a semicharacter ρx ∈ supp(ν) we must have ρx(ei) ≥
0, for i = 1, . . . , n hence x ≥ 0. The set of τ -positive semicharacters is then included

in the nonnegative orthant and includes both the simplex {x ≥ 0 : ‖x‖1 ≤ β} and

K, hence f being τ -positive is equivalent to f admitting a representation of the form

f(s) = Eν [s(x)], for all s ∈ S with ν having a compact support K ⊂ Rn
+.

The unbounded case

The conditions derived in the last part do not describe all possible arbitrage free prices

as they cannot account for unbounded asset distributions. Here, we use results from
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Putinar & Vasilescu (1999) and Roman (2003) to derive intrinsic characterizations of

viable multivariate straddle prices.

We denote by A(S) the R-algebra generated by the functions χs : S
∗ → R such

that χs(ρ) = ρ(s) for all s ∈ S. By construction, χs(ρ) = Esρ(1S), and for a poly-

nomial p ∈ A(S) with p =
∑

k qkχgk
and for ρ ∈ S

∗ we have pρ(s) =
∑

k qkρ(sgk)

for all s ∈ S. When S is the payoff semigroup defined in (3.3.2), we naturally have

χs(ρx) = s(x), for all x ∈ Rn, s ∈ S and ρ ∈ S
∗.

We shall denote by Aθ(S) the R-algebra generated by A(S) and θ where

θ(ρ) =

(

1 +
m+n
∑

i=0

χe2
i
(ρ)

)−1

, for all ρ ∈ S
∗, (3.44)

we also denote by A(S, y) the algebra generated by A(S) and R[y]. We first simplify

the equality constraints on 2n variables in Roman (2003, Th. A) to recover an additive

formulation as in Putinar & Vasilescu (1999). We begin by proving the following

lemma.

Lemma 21 The kernel of the algebra homomorphism Φ:

A(S, y) → Aθ(S)

p(ρ, y) 7→ Φp = p(ρ, θ(ρ))
(3.45)

is the ideal generated by σ ∈ A(S, y) such that σ(ρ, y) = y(1 +
∑m+n+1

i=1 χe2
i
(ρ)) − 1.

Proof. We adapt the proof of Putinar & Vasilescu (1999, lemma 2.3) and let p ∈
A(S, y) be such that p(ρ, θ(ρ)) = 0, we write p(ρ, y) =

∑

k qk(ρ)y
k with qk ∈ A(S).

We have:
p(ρ, y) = p(ρ, y) − p(ρ, θ(ρ)) =

∑

k>0 qk(ρ)(y
k − θ(ρ)k)

= (y − θ(ρ))l(ρ, y, (θ(ρ)),
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where l is a polynomial. Let κ = max{k : qk 6= 0} and

τ(ρ) =

(

1 +
m+n+1
∑

i=1

χe2
i
(ρ)

)κ

, for all ρ ∈ S
∗,

we then have

τ(ρ)p(ρ, y) = σ(ρ, y)r(ρ, y), (3.46)

with r(ρ, y) ∈ A(S, y). The case κ = 0 is trivial hence we can assume κ 6= 0. Using

the fact that the polynomials τ(z) and σ(z) have no common zeroes in Cm+n+2[z],

Hilbert’s Nullstellensatz (see Bochnak, Coste & Roy (1998) for example) states that

there must be τ̃ , σ̃ ∈ Cm+n+2[z] such that

τ τ̃ + σσ̃ = 1.

Multiplying this last identity by p yields, together with (3.46):

p = σ(rτ̃ + pσ̃)

hence the desired result.

The next proposition is adapted from the dimensional extension method in Putinar

& Vasilescu (1999, Th. 2.5) and Roman (2003, Th. 4), our objective is to replace the

exponential number of equality constraints in Roman (2003, Th. A) with an additive

formulation as in Putinar & Vasilescu (1999). Remember that the function θ(ρ) is

defined as in (3.44) and Aθ(S) is the R-algebra generated by A(S) and θ.

Proposition 22 With S being the payoff semigroup defined in (3.3.2), let Λ be a

positive semidefinite linear form on Aθ(S) such that Λ (xir
2) ≥ 0 for all r ∈ Aθ(S)

and i = 1, . . . , n, then Λ has a unique representing measure ν with support in Rn
+ and

Aθ(S) is dense in L2(ν).

Proof. We recall that the linear form Λ is positive semidefinite iff Λ(r2) ≥, for all
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r ∈ Aθ(S). As in Roman (2003), we define a bilinear form on r ∈ Aθ(S) by:

〈r1, r2〉 := Λ(r1r2), for all r1, r2 ∈ Aθ(S)

We let N be the set {r ∈ Aθ(S) : Λ(r2) = 0}. The bilinear form above then defines

a scalar product on Aθ(S)/N , and we denote by H the completion of this space. We

define in H the operators:

Ti(r + N ) = χei
r + N , for all r ∈ Aθ(S)/N and i = 0, . . . , n+m,

which are symmetric and densely defined in H. We also define the operator (D(B), B)

by:

D(B) = Aθ(S)/N and B =
m+n
∑

i=0

T 2
i .

The operator B is positive as a sum of squares of operators and, by construction,

the domain D(B) is dense in H and invariant by B. Let τ =
∑m+n

i=0 χe2
i
(ρ) and

r ∈ Aθ(S)/N , then u = rθ is such that (1 + τ)u = r, hence the operator I + B is

bijective on D(B). This means that B satisfies the hypothesis of Putinar & Vasilescu

(1999, Lemma 2.2) and is essentially self-adjoint. Roman (2003, Prop. 1) then implies

that the operators Ti for i = 0, . . . , n + m are essentially normal and that their

canonical closures commute, meaning that there exists a common spectral measure

H for the operators T̄i for i = 0, . . . , n+m. With T = (Ti)i=0,...,n+m and r ∈ Aθ(S)/N ,

we define the operator r(T ) by:

Aθ(S)/N → Aθ(S)/N
w + N 7→ r(T )(w + N ) = rw + N .

(3.47)

With γ(x) =
(
∑n+m

i=0 x2
i

)−1
, there is an element q of Rγ [x], the R-algebra generated

by R[x] and γ(x) such that r(ρ) = q ((χei
)i=0,...,n+m(ρ), θ(ρ)) for all ρ ∈ S

∗. We then
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have:

Λ(r) = 〈r(T )1, 1〉 = 〈q(T̄ )1, 1〉 =

∫

Rn+m+1

q(x)dH1+N ,1+N (x),

The homomorphism f :

Rγ[x] → Aθ(S)

p(x) 7→ f(p) = p((χei
(ρ))i=0,...,n+m, θ(ρ))

(3.48)

satisfies the hypothesis of Roman (2003, Lemma 2) hence there is a (positive) Radon

measure ν on such that:

Λ(r) =

∫

S∗

r(ρ)dν(ρ),

which, if S is defined as in section (3.3.2), is also:

Λ(r) =

∫

Rn

r(x)dν(x).

Uniqueness and density follow from the argument in Roman (2003). Now, because

the operators Ti for i = 1, . . . , n are essentially self-adjoint with Λ (xir
2) ≥ 0 for

r ∈ Aθ(S) and i = 1, . . . , n, we know that the Ti are positive for all i. The spectral

measure Fi of Ti is given by Fi(X) = H
(

T̄−1
i (X)

)

for all Borel sets X ⊂ R and Fi

must be concentrated in R+ for all i = 1, . . . , n hence the spectral measure H of T̄ is

concentrated in Rn
+ and so is the representing measure ν.

We can now formulate a general moment theorem that describes all the price

systems that admit a representation as in (3.42).

Theorem 23 Let S be defined as in (3.3.2). A sequence f(s) : S → R is a moment

sequence and can be represented as in (3.42):

f(s) = Eν [s(x)], for all s ∈ S,

for some measure ν with support in Rn
+, if and only if there is a sequence p(s, k) :
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(S,N) → R such that:

(i) p(s, 0) = f(s) for all s ∈ S,

(ii) p(s, k) is positive semidefinite on (S,N),

(iii) p(eis, k) is positive semidefinite on (S,N) for i = 1, . . . , n,

(iv) p(s, k) = p(s, k + 1) −∑n+m
i=0 p(e2i s, k + 1) for all (s, k) ∈ (S,N).

Furthermore, the representing measure for sequence f is unique if and only if the

sequence p is unique.

Proof. First we show that conditions (i)-(iv) are necessary. With S, the payoff

semigroup defined in (3.3.2), we recall that S
∗ can be identified with Rn

+, hence

χs(ρx) = s(x), for all x ∈ Rn
+, s ∈ S and ρ ∈ S

∗. Suppose that f can be represented

as:

f(s) =

∫

Rn
+

s(x)dν(x), for all s ∈ S,

we let

p(s, k) =

∫

Rn
+

s(x)

(

1 +
m+n
∑

i=0

e2i (x)

)−k

dν(x), for all (s, k) ∈ (S,N),

which satisfies (i) and (iv) by construction, p(s, k) is then a moment sequence on the

product semigroup ((S, ·) × (N,+)) and as such must be positive semidefinite, hence

condition (ii). Then, because for i = 1, .., n we have

p(eis, k) =

∫

Rn
+

s(x)

(

1 +
m+n
∑

i=0

e2i (x)

)−k

ei(x)dν(x), for all (s, k) ∈ (S,N),

we know that p(eis, k) is a moment sequence for the measure ei(x)dν, hence condition

(iii).
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Conversely, let’s assume that we are given a sequence p(s, k) satisfying (i)-(iv).

We let Aθ(S) and A(S, y) be the R-algebras described at the beginning of the section.

We define a linear function Λ on A(S, y) by:

L

(

∑

j,k

ajχsj
yk

)

=
∑

j,k

ajp(sj, k)

and as in lemma 21, we can define the following algebra homomorphism Φ:

A(S, y) → Aθ(S)

p(ρ, y) 7→ Φp = p(ρ, θ(ρ))
(3.49)

whose kernel N has been computed in lemma 21, and Aθ(S) is isomorphic to the

quotient A(S, y)/N . Condition (iv) implies that L(N ) = 0 and we can then define a

linear form Λ on Aθ(S) by:

Λ(r) = L(q), where r(ρ) = q(ρ, θ(ρ)), for all ρ ∈ S
∗,

with r ∈ Aθ(S) and q ∈ A(S, y). Because of (i)-(iv), the form Λ satisfies the hypothesis

of proposition 22 and has a unique representing measure ν.

3.3.3 Price bounds and static hedging

In this section, we show how the classic duality between the existence of a pricing

measure and that of a replicating portfolio transposes into the moment framework

described in the previous section. In particular, we detail how an optimal static

super/sub-replicating portfolio can be constructed using the solution to the dual of

to the moment problem in (3.40). In particular, in a result that is consistent with the

dynamic framework (see Avellaneda, Levy & Paras (1995)), the replicating portfolio

only involves options in the data set and no other option is needed to ”complete the

grid”.
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Price bounds via semidefinite programming

Here, we show how one can compute bounds on the solution of problem (3.40) using

a subset of the moment conditions imposed by theorem 23. These conditions cast

(3.42) as a semidefinite program (see Nesterov & Nemirovskii (1994) or Vandenberghe

& Boyd (1996)), for which there are numerical solvers such as SEDUMI by Sturm

(1999).

Asset distributions with compact support As before, we denote by A(S) the

R-algebra generated by the functions χs : S
∗ → R such that χs(ρ) = ρ(s) for all

s ∈ S and ρ ∈ S
∗. For a polynomial p ∈ A(S) with p =

∑

i qiχgi
where gi ∈ S, and

for s ∈ S we set

pρ(s) =
∑

i

qiρ(sgi).

With S the payoff semigroup defined in (3.3.2), we recall that S
∗ can be identified

with Rn, hence χs(ρx) = s(x), for all x ∈ Rn, s ∈ S and ρx ∈ S
∗. This means that

p ∈ A(S) can be rewritten

p(x) =
∑

i

qis(x)gi(x), for all x ∈ Rn
+.

We now recall the construction of moment matrices as in Curto & Fialkow (2000)

and Lasserre (2001). We adopt the following multiindex notation for monomials in

A(S):

eα(x) := eα0

0 (x)eα1

1 (x) · · · eαm+n

m+n (x),

for α ∈ Nn+m+1 and we let

ye = (1, e0, . . . , em+n, e
2
0, e0e1, . . . , e

d
0, . . . , e

d
m+n) (3.50)

be the vector of all monomials in A(S), up to degree d, listed in graded lexicographic

order. We denote by s(d) the size of the vector ye. Let y ∈ Rs(2d) be the vector of
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moments (indexed as in ye) of some probability measure ν with support in Rn
+, we

denote by Md(y) ∈ Rs(d)×s(d), the symmetric matrix:

Md(y)i,j =

∫

Rn
+

ye
i (x)y

e
j(x)dν(x), for i, j = 1, ..., s(d)

In the rest of the paper, we will always implicitly assume that y1 = 1. With β(i) the

exponent of the monomial ye
i and conversely, i(β) the index of the monomial eβ in

ye. We notice that for a given moment vector y ∈ Rs(d) ordered as in (3.53), the first

row and columns of the matrix Md(y) are then equal to y. The rest of the matrix is

then constructed according to:

Md(y)i,j = yi(α+β) if Md(y)i,1 = yi(α) and Md(y)1,j = yi(β).

Similarly, let g ∈ A(S), we derive the moment matrix for the measure g(x)dν on

Rn
+ (called the localizing matrix in Curto & Fialkow (2000)), denoted by Md(gy) ∈

Ss(d), from the matrix of moments Md(y) by:

Md(gy)i,j =

∫

Rn
+

(ye)i (x) (ye)j (x)g(x)dν(x)

for i, j = 1, ..., s(d). The coefficients of the matrix Mm(gy) are given by:

Md(gy)i,j =
∑

α

gαyi(β(i)+β(j)+α) (3.51)

We can then form a semidefinite program to compute a lower bound on the optimal

solution to (3.40) using a subset of the moment constraints in theorem 3.43, taking

only monomials and moments in y up to a certain degree.

Corollary 24 Let N be a positive integer and y ∈ Rs(2N), a lower bound on the
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optimal value of:

minimize p0 := Eν [e0(x)]

subject to Eν [ei(x)] = pi, i = 1, . . . , n+m,

can be computed as the solution of the following semidefinite program:

minimize y2

subject to MN(y) � 0

MN(ejy) � 0, for j = 1, . . . , n,

MN

(

(β −∑n+m
k=0 ek)y)

)

� 0

y(j+2) = pj, for j = 1, . . . , n+m and s ∈ S

(3.52)

where s is such that i(s) ≤ s(2N). The optimal value of (3.52) converges to the

optimal value of the original program as N → ∞.

Unbounded distributions Here we work on the product semigroup (S, ·)×(N,+).

Its dual is the set of functions ρx : (S,N) → R such that ρx((s, k)) = s(x)xk for all

s ∈ S, k ∈ N and x ∈ Rn. As before, we denote by A(S,N) the R-algebra generated

by the functions χs : (S,N)∗ → R such that χ(s,k)(ρ) = ρ((s, k)) for all s ∈ S and

ρ ∈ (S,N)∗. With S, the payoff semigroup defined in (3.3.2), here (S,N)∗ can again

be identified with Rn, hence χ(s,k)(ρx) = s(x)xk, for all x ∈ Rn, (s, k) ∈ (S,N) and

ρx ∈ (S,N)∗. By construction, we have

(χ(s,k))
2 = χ(s2,2k), for all (s, k) ∈ (S,N),

and for a polynomial p ∈ A(S,N) with p =
∑

i qiχgi
xki where (gi, ki) ∈ (S,N), and

for (s, l) ∈ (S,N) we set

p((s, l))(x) =
∑

i

qis(x)gi(x)x
ki+l,
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for all x ∈ Rn. We adopt here the multiindex notation for monomials in A(S,N):

eα := (e0, 0)α0(e1, 0)α1 · · · (em+n, 0)αm+n(1, 1)αm+n+1 .

We then let

ye = (1, (e0, 0), . . . , (em+n, 0), (1, 1), (e0, 0)2, (e0, 0)(e1, 0), . . . , (e0, 0)d, . . . , (1, 1)d)

(3.53)

be the vector of all monomials in A(S,N), up to degree d, listed in graded lexico-

graphic order. We denote by s(d) the size of the vector ye. The matrices Md(y) and

Md(gy) are defined as in the compact case above.

We can again form a semidefinite program, this time using a subset of the moment

constraints in theorem 23, taking only moments up to a certain degree.

Corollary 25 Let N be a positive integer and y ∈ Rs(2N), a lower bound on the

optimal value of:

minimize p0 := Eν [e0(x)]

subject to Eν [ei(x)] = pi, i = 1, . . . , n+m,

can be computed as the solution of the following semidefinite program:

minimize y2

subject to MN(y) � 0

MN((ej, 0)y) � 0, for j = 1, . . . , n,

yi(s,k) = yi(s,k+1) −
∑n+m

i=0 yi(e2
i s,k+1)

y(j+1) = pj, for j = 1, . . . , n+m and (s, k) ∈ (S,N)

(3.54)

where (s, k) are taken such that i(s, k) ≤ s(2N). The optimal value of (3.54) converges

to the optimal value of the original program as N → ∞.
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Static hedging portfolios and sums of squares

We let here Σ ⊂ A(S) be the set of polynomials that are sums of squares of poly-

nomials in A(S), and P the set of positive semidefinite sequences on S. The central

argument of this paper is to replace the conic duality between probability measures

and positive portfolios:

p(x) ≥ 0 ⇔
∫

p(x)dν ≥ 0, for all measures ν,

by the conic duality between positive semidefinite sequences P and sums of squares

polynomials Σ:

〈f, p〉 ≥ 0 for all p ∈ Σ iff f ∈ P.

for p ∈ A(S) with p =
∑

i qiχsi
and f : S → R having defined 〈f, p〉 =

∑

i qif(si). The

previous section used positive semidefinite sequences to characterize viable price sets,

in this section, we detail the dual point of view and use sum of squares polynomials

to characterize super/sub-replicating portfolios.

From the initial price problem (3.40) written in terms of straddles:

minimize p0 :=
∫

Rn
+

e0(x)dν(x)

subject to
∫

Rn
+

ei(x)dν(x) = pi, i = 1, . . . , n+m,
∫

Rn
+

dν(x) = 1,

(3.55)

in the variable ν, a positive measure on Rn
+. We can form the Lagrangian:

L(ν, λ) = λn+m+1 +
n+m
∑

i=1

λipi +

∫

Rn
+

(

e0(x) −
n+m
∑

i=1

λiei(x) − λn+m+1

)

dν(x)

with variables ν and λ ∈ Rn+m+1. We obtain the classic dual as a portfolio replication
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problem:

maximize λn+m+1 +
∑n+m

i=1 λipi

subject to e0(x) −
∑n+m

i=1 λiei(x) − λn+m+1 ≥ 0, for all x ∈ Rn
+.

(3.56)

in the variable λ ∈ Rn+m+1.

Unfortunately, the problem formulations above are numerically intractable ex-

cept in certain particular cases (see Bertsimas & Popescu (2002) and d’Aspremont &

El Ghaoui (2003)). On the other hand, as we have seen in the previous section, the

conditions of theorem 3.43 turn problem (3.40) into an infinite dimensional semidef-

inite program which can be relaxed to produce tractable bounds on the solution of

(3.40). Here, we detail the accompanying duality theory to exhibit a static hedging

portfolios corresponding to these bounds.

We can assume without loss of generality that the payoff functions ei(x) for i =

0, . . . ,m + n, together with the cash 1S, are linearly independent. Then Berg et al.

(1984, Proposition 6.1.8 and Theorem 6.1.10) hold and we can form a dual to the cone

of positive semidefinite functions on S as follows. For p ∈ A(S) with p =
∑

i qiχsi

and f : S → R with:

〈f, p〉 =
∑

i

qif(si),

Berg et al. (1984, Theorem 6.1.10) states that Σ is the polar cone of P for the above

bilinear form, in other words:

〈f, p〉 ≥ 0 for all p ∈ Σ iff f ∈ P. (3.57)

We can use this conic duality to compute a dual to program (3.52). Considering the

compact case for simplicity, corollary 24 states that the initial pricing problem:

minimize p0 := Eν [e0(x)]

subject to Eν [ei(x)] = pi, i = 1, . . . , n+m,
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is equivalent to the following (infinite) semidefinite program:

minimize y2

subject to M(y) � 0

M(ejy) � 0, for j = 0, . . . , n+m

M
(

(β −∑n+m
k=0 ek)y)

)

� 0

y(j+2) = pj, for j = 1, . . . , n+m

y1 = 1.

in the variable y : S → R. Using the conic duality in (3.57), we form the Lagrangian:

L(y, λ, q) := y2 + (1 − y1)λn+m+1 +
∑n+m

j=1 (pj − y(j+2))λj − 〈y, q0〉
−∑n+m

j=0 〈ejy, qj〉 − 〈(β −∑n+m
k=0 ek)y, qn+1〉

or again:

L(y, λ, q) := y2 + (1 − y1)λn+m+1 +
∑n+m

j=1 (pj − y(j+2))λj − 〈y, q0〉
−∑n+m

j=0 〈y, ejqj〉 − 〈y, (β −∑n+m
k=0 ek)qn+1〉

in the variables y : S → R, λ ∈ Rn+m+1 and qj ∈ Σ for j = 0, . . . , (n + 1). We then

get the dual as a portfolio problem:

maximize
∑n+m

j=1 pjλj + λn+m+1

subject to e0(x) −
∑n+m

j=1 λjej(x) − λn+m+1

= q0(x) +
∑n+m

j=1 qj(x)ej(x) + (β −∑n+m
k=0 ek(x))qn+1(x)

(3.58)

in the variables λ ∈ Rn+m+1 and qj ∈ Σ for j = 0, . . . , (n+ 1).

The key difference between this portfolio problem and the one in (3.56) is that

the (intractable) positivity constraint e0(x) −
∑n+m

i=1 λiei(x) − λn+m+1 ≥ 0 in (3.56)

is replaced by the tractable condition that this portfolio be written as a combination

of sums of squares of polynomials in A(S). Such combinations can be constructed
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directly from the dual solution to the semidefinite program in (3.52), hence a numer-

ical solution to the program in (3.52) provides both a price bound and a super/sub

replicating portfolio.

3.3.4 Applications

In this section, we list common examples of basket options.

Spread options

Spread options are call or put options on the difference of two assets, x1 and x2. Their

payoff at maturity is given by:

(x1 − x2 −K)+.

This is a direct example of basket option, which are used as an instrument to hedge

correlation among assets.

Index options

Indices are computed as a combination of the values of a certain number of assets

xi, weighted by their market capitalization wi. The payoff of an index option is then

naturally:
(

n
∑

i=1

xi −K

)

+

,

which is another very common example of basket option.

Swaptions

In interest rate markets, the equivalent of the equity call option is called a swaption,

which is a call option on a swap rate. As detailed in Rebonato (1998) for example,



126 CHAPTER 3. SEMIDEFINITE RELAXATIONS

swaptions can be treated as options on a basket of rates, with the swaption’s payoff

can approximated by that of a basket call on forward rates.

FOREX options

If we let xAB and xBC be the exchange rate between currencies A & B, and B & C

respectively. Then a call option on the exchange rate between currencies A & C can

be written:

(xABxAC −K)+,

since xAC = xABxAC . This is not a basket option, but we can adapt the result in (3.52)

to get static arbitrage constraints on the price of options on the rate xAC knowing

the price of options on the exchange rates xAB and xBC . The only difference here is

that the semigroup S is her generated by ei(x) for i = 0, . . . ,m+ 2, the cash 1S and

their products, where ei(x) = xi for i = 1, . . . , 2 and e(n+j)(x) = |x1x2 −Ki| for j =

0, . . . ,m. We then have e2(n+j)(x) = (x1x2 −Ki)
2 instead of e2(n+j)(x) = (wT

j x−Kj)
2.

3.3.5 Numerical Example

We consider a model two assets: x1, x2 and look for bounds on the price of the basket

|x1 + x2 −K|. We use a simple discrete model for the assets:

x = {(0, 0), (0, 3), (3, 0), (1, 2), (5, 4)}

with probability

p = (.2, .2, .2, .3, .1)

to simulate market prices for the forwards and the following straddles:

|x1 − .9|, |x1 − 1|, |x2 − 1.9|, |x2 − 2|, |x2 − 2.1|.

The results are detailed in figure (3.4).
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Figure 3.4: Upper and lower price bounds on a straddle (solid lines). The dashed
lines represent the payoff function and the actual price.
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port 56, Séminaire de structures algébriques ordonnées: Equipe de logique
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