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IRÈNE WALDSPURGER, ALEXANDRE D’ASPREMONT, AND STÉPHANE MALLAT

ABSTRACT. Phase retrieval seeks to recover a signal x ∈ Cp from the amplitude |Ax| of linear measure-
ments Ax ∈ Cn. We cast the phase retrieval problem as a non-convex quadratic program over a complex phase
vector and formulate a tractable relaxation (called PhaseCut) similar to the classical MaxCut semidefinite pro-
gram. We solve this problem using a provably convergent block coordinate descent algorithm whose structure
is similar to that of the original greedy algorithm in Gerchberg and Saxton [1972], where each iteration is a
matrix vector product. Numerical results show the performance of this approach over three different phase
retrieval problems, in comparison with greedy phase retrieval algorithms and matrix completion formulations.

1. INTRODUCTION

The phase recovery problem, i.e. the problem of reconstructing a complex phase vector given only the
magnitude of linear measurements, appears in a wide range of engineering and physical applications. It
is needed for example in X-ray and crystallography imaging [Harrison, 1993], diffraction imaging [Bunk
et al., 2007] or microscopy [Miao et al., 2008]. In these applications, the detectors cannot measure the phase
of the incoming wave and only record its amplitude. Recovering the complex phase of wavelet transforms
from their amplitude also has applications in audio signal processing [Griffin and Lim, 1984].

In all these problems, complex measurements of a signal x ∈ Cp are obtained from a linear injective
operator A, but we can only measure the magnitude vector |Ax|. Depending on the properties of A, the
phase of Ax may or may not be uniquely characterized by the magnitude vector |Ax|, up to an additive
constant, and it may or may not be stable. For example, if A is a one-dimensional Fourier transform, then
the recovery is not unique but it becomes unique almost everywhere for an oversampled two-dimensional
Fourier transform, although it is not stable. Uniqueness is also obtained with an oversampled wavelet
transform operator A, and the recovery of x from |Ax| is then continuous [Waldspurger and Mallat, 2012].
If A consists in random Gaussian measurements then uniqueness can be proved, together with stability
results [Candes et al., 2011b; Candes and Li, 2012].

Recovering the phase of Ax from |Ax| is a nonconvex optimization problem. Until recently, this prob-
lem was solved using various greedy algorithms [Gerchberg and Saxton, 1972; Fienup, 1982; Griffin and
Lim, 1984], which alternate projections on the range of A and on the nonconvex set of vectors y such that
|y| = |Ax|. However, these algorithms often stall in local minima. A convex relaxation called PhaseLift
was introduced in [Chai et al., 2011] and [Candes et al., 2011b] by observing that |Ax|2 is a linear function
of X = xx∗ which is a rank one Hermitian matrix. The recovery of x is thus expressed as a rank minimiza-
tion problem over positive semidefinite Hermitian matrices X satisfying some linear conditions. This last
problem is approximated by a semidefinite program. It has been shown that this program recovers x with
high probability when A has gaussian independant entries [Candes et al., 2011b,a]. Numerically, the same
result seems to hold for several classes of linear operators A.

Our main contribution here is to formulate phase recovery as a quadratic optimization problem over
the unit complex torus. We then write a convex relaxation to phase recovery very similar to the MaxCut
semidefinite program (we call this relaxation PhaseCut in what follows). While the resulting SDP is typically
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larger than the PhaseLift relaxation, its simple structure (the constraint matrices are singletons) allows us to
solve it very efficiently. In particular, this allows us to use a provably convergent block coordinate descent
algorithm whose iteration complexity is similar to that of the original greedy algorithm in Gerchberg and
Saxton [1972] (each iteration is a matrix vector product, which can be computed efficiently). We also show
that tightness of PhaseLift implies tightness of a modified version of PhaseCut. Furthermore, under the
condition thatA is injective and b has no zero coordinate, we derive an equivalence result between PhaseLift
and a modified version of PhaseCut, in the noiseless setting. This result implies that both algorithms are
simultaneously tight (an earlier version of this paper showed PhaseLift tightness implies PhaseCut tightness
and the reverse direction was then proved in [Voroninski, 2012] under mild additional assumptions). In a
noisy setting, one can show that PhaseCut is at least as stable as a variant of PhaseLift, while PhaseCut
empirically appears to be more stable in some cases, e.g. when b is sparse.

Seeing the MaxCut relaxation emerge in a phase recovery problem is not entirely surprising: it appears,
for example, in an angular synchronization problem where one seeks to reconstruct a sequence of angles θi
(up to a global phase), given information on pairwise differences θi−θj mod. 2π, for (i, j) ∈ S [see Singer,
2011], the key difference between this last problem and the phase recovery problem in (1) is that the sign
information is lost in the input to (1). Complex MaxCut-like relaxations of decoding problems also appear
in maximum-likelihood channel detection [Luo et al., 2003; Kisialiou and Luo, 2010; So, 2010]. From
a combinatorial optimization perspective, showing the equivalence between phase recovery and MaxCut
allows us to expose a new class of nontrivial problem instances where the semidefinite relaxation for a
MaxCut-like problem is tight, together with explicit conditions for tightness directly imported from the
matrix completion formulation of these problems (these conditions are of course also hard to check, but
hold with high probability for some classes of random experiments).

The paper is organized as follows. Section 2 explains how to factorize away the magnitude information
to form a nonconvex quadratic program on the phase vector u ∈ Cn satisfying |ui| = 1 for i = 1, . . . , n,
and a greedy algorithm is derived in Section 2.3. We then derive a tractable relaxation of the phase recovery
problem, written as a semidefinite program similar to the classical MaxCut relaxation in [Goemans and
Williamson, 1995], and detail several algorithms for solving this problem in Section 3. Section 4 proves
that a variant of PhaseCut and PhaseLift are equivalent in the noiseless case and thus simultaneously tight.
We also prove that PhaseCut is as stable as a weak version of PhaseLift and discuss the relative complexity
of both algorithms. Finally, Section 5 performs a numerical comparison between the greedy, PhaseLift and
PhaseCut phase recovery algorithms for three phase recovery problems, in the noisy and noiseless case. In
the noisy case, these results suggest that if b is sparse, then PhaseCut may be more stable than PhaseLift.

Notations. We write Sp (resp. Hp) the cone of symmetric (resp. Hermitian) matrices of dimension p ; S+
p

(resp. H+
p ) denotes the set of positive symmetric (resp. Hermitian) matrices. We write ‖ · ‖p the Schatten

p-norm of a matrix, that is the p-norm of the vector of its eigenvalues (in particular, ‖ · ‖∞ is the spectral
norm). We write A† the (Moore-Penrose) pseudoinverse of a matrix A and ‖A‖`1 the sum of the modulus of
the coefficients of A. For x ∈ Rp, we write diag(x) the matrix with diagonal x. When X ∈ Hp however,
diag(X) is the vector containing the diagonal elements of X . For X ∈ Hp, X∗ is the Hermitian transpose
of X , with X∗ = (X̄)T . Finally, we write b2 the vector with components b2i , i = 1, . . . , n.

2. PHASE RECOVERY

The phase recovery problem seeks to retrieve a signal x ∈ Cp from the amplitude b = |Ax| of n linear
measurements, solving

find x
such that |Ax| = b,

(1)

in the variable x ∈ Cp, where A ∈ Cn×p and b ∈ Rn.
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2.1. Greedy Optimization in the Signal. Approximate solutions x of the recovery problem in (1) are
usually computed from b = |Ax| using algorithms inspired from the alternating projection method in [Ger-
chberg and Saxton, 1972]. These algorithms compute iterates yk in the set F of vectors y ∈ Cn such that
|y| = b = |Ax|, which are getting progressively closer to the image of A. The Gerchberg-Saxton algorithm
projects the current iterate yk on the image of A using the orthogonal projector AA† and adjusts to bi the
amplitude of each coordinate. We describe this method explicitly below.

Algorithm 1 Gerchberg-Saxton.

Input: An initial y1 ∈ F, i.e. such that |y1| = b.
1: for k = 1, . . . , N − 1 do
2: Set

yk+1
i = bi

(AA†yk)i
|(AA†yk)i|

, i = 1, . . . , n. (Gerchberg-Saxton)

3: end for
Output: yN ∈ F.

Because F is not convex however, this alternating projection method usually converges to a stationary
point y∞ which does not belong to the intersection of F with the image of A, and hence |AA†y∞| 6= b.
Several modifications proposed in [Fienup, 1982] improve the convergence rate but do not eliminate the
existence of multiple stationary points. To guarantee convergence to a unique solution, which hopefully be-
longs to the intersection of F and the image of A, this non-convex optimization problem has recently been
relaxed as a semidefinite program [Chai et al., 2011; Candes et al., 2011b], where phase recovery is formu-
lated as a matrix completion problem (described in Section 4). Although the computational complexity of
this relaxation is much higher than that of the Gerchberg-Saxton algorithm, it is able to recover x from |Ax|
(up to a multiplicative constant) in a number of cases [Chai et al., 2011; Candes et al., 2011b].

2.2. Splitting Phase and Amplitude Variables. As opposed to these strategies, we solve the phase recov-
ery problem by explicitly separating the amplitude and phase variables, and by only optimizing the values
of the phase variables. In the noiseless case, we can write Ax = diag(b)u where u ∈ Cn is a phase vector,
satisfying |ui| = 1 for i = 1, . . . , n. Given b = |Ax|, the phase recovery problem can thus be written as

min
u∈Cn, |ui|=1,

x∈Cp

‖Ax− diag(b)u‖22,

where we optimize over both variables u ∈ Cn and x ∈ Cp. In this format, the inner minimization problem
in x is a standard least squares and can be solved explicitly by setting

x = A† diag(b)u,

which means that problem (1) is equivalent to the reduced problem

min
|ui|=1
u∈Cn

‖AA† diag(b)u− diag(b)u‖22.

The objective of this last problem can be rewritten as follows

‖AA† diag(b)u− diag(b)u‖22 = ‖(AA† − I)diag(b)u‖22
= u∗ diag(bT )M̃ diag(b)u.

where M̃ = (AA† − I)∗(AA† − I) = I−AA†. Finally, the phase recovery problem (1) becomes

minimize u∗Mu
subject to |ui| = 1, i = 1, . . . n,

(2)
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in the variable u ∈ Cn, where the Hermitian matrix

M = diag(b)(I−AA†)diag(b)

is positive semidefinite. The intuition behind this last formulation is simple, (I − AA†) is the orthogonal
projector on the orthogonal complement of the image of A (the kernel of A∗), so this last problem simply
minimizes in the phase vector u the norm of the component of diag(b)u which is not in the image of A.

2.3. Greedy Optimization in Phase. Having transformed the phase recovery problem (1) in the quadratic
minimization problem (2), suppose that we are given an initial vector u ∈ Cn, and focus on optimizing over
a single component ui for i = 1, . . . , n. The problem is equivalent to solving

minimize ūiMiiui + 2 Re
(∑

j 6=i ūjMjiui

)
subject to |ui| = 1, i = 1, . . . n,

in the variable ui ∈ C where all the other phase coefficients uj remain constant. Because |ui| = 1 this then
amounts to solving

min
|ui|=1

Re

ui∑
j 6=i

Mjiūj


which means

ui =
−
∑

j 6=iMjiūj∣∣∣∑j 6=iMjiūj

∣∣∣ (3)

for each i = 1, . . . , n, when u is the optimum solution to problem (2). We can use this fact to derive
Algorithm 2, a greedy algorithm for optimizing the phase problem.

Algorithm 2 Greedy algorithm in phase.

Input: An initial u ∈ Cn such that |ui| = 1, i = 1, . . . , n. An integer N > 1.
1: for k = 1, . . . , N do
2: for i = 1, . . . n do
3: Set

ui =
−
∑

j 6=iMjiūj∣∣∣∑j 6=iMjiūj

∣∣∣
4: end for
5: end for

Output: u ∈ Cn such that |ui| = 1, i = 1, . . . , n.

This greedy algorithm converges to a stationary point u∞, but it is generally not a global solution of prob-
lem (2), and hence |AA† diag(u∞)b| 6= b. It has often nearly the same stationary points as the Gerchberg-
Saxton algorithm. One can indeed verify that if u∞ is a stationary point then y∞ = diag(u∞)b is a
stationary point of the Gerchberg-Saxton algorithm. Conversely if b has no zero coordinate and y∞ is a
stable stationary point of the Gerchberg-Saxton algorithm then u∞i = y∞i /|y∞i | defines a stationary point of
the greedy algorithm in phase.

IfAx can be computed with a fast algorithm usingO(n log n) operations, which is the case for Fourier or
wavelets transform operators for example, then each Gerchberg-Saxton iteration is computed withO(n log n)
operations. The greedy phase algorithm above does not take advantage of this fast algorithm and requires
O(n2) operations to update all coordinates ui for each iteration k. However, we will see in Section 3.6 that
a small modification of the algorithm allows for O(n log n) iteration complexity.

4



2.4. Complex MaxCut. Following the classical relaxation argument in [Shor, 1987; Lovász and Schrijver,
1991; Goemans and Williamson, 1995; Nesterov, 1998], we first write U = uu∗ ∈ Hn. Problem (2), written

QP (M) , min. u∗Mu
subject to |ui| = 1, i = 1, . . . n,

in the variable u ∈ Cn, is equivalent to

min. Tr(UM)
subject to diag(U) = 1

U � 0, Rank(U) = 1,

in the variable U ∈ Hn. After dropping the (nonconvex) rank constraint, we obtain the following convex
relaxation

SDP (M) , min. Tr(UM)
subject to diag(U) = 1, U � 0,

(PhaseCut)

which is a semidefinite program (SDP) in the matrix U ∈ Hn and can be solved efficiently. When the
solution of problem PhaseCut has rank one, the relaxation is tight and the vector u such that U = uu∗ is an
optimal solution of the phase recovery problem (2). If the solution has rank larger than one, a normalized
leading eigenvector v of U is used as an approximate solution, and diag(U − vvT ) gives a measure of the
uncertainty around the coefficients of v.

In practice, semidefinite programming solvers are rarely designed to directly handle problems written
over Hermitian matrices and start by reformulating complex programs in Hn as real semidefinite programs
over S2n based on the simple facts that follow. For Z, Y ∈ Hn, we define T (Z) ∈ S2n as in [Goemans and
Williamson, 2004]

T (Z) =

(
Re(Z) − Im(Z)
Im(Z) Re(Z)

)
(4)

so that Tr(T (Z)T (Y )) = 2Tr(ZY ). By construction, Z ∈ Hn iff T (Z) ∈ S2n. One can also check that
z = x+ iy is an eigenvector of Z with eigenvalue λ if and only if(

x
y

)
and

(
−y
x

)
are eigenvectors of T (Z), both with eigenvalue λ (depending on the normalization of z, one corresponds
to (Re(z), Im(z)), the other one to (Re(i z), Im(i z)). This means in particular that Z � 0 if and only if
T (Z) � 0.

We can use these facts to formulate an equivalent semidefinite program over real symmetric matrices,
written

minimize Tr(T (M)X)
subject to Xi,i +Xn+i,n+i = 2

Xi,j = Xn+i,n+j , Xn+i,j = −Xi,n+j , i, j = 1, . . . , n,
X � 0,

in the variable X in S2n. This last problem is equivalent to PhaseCut. In fact, because of symmetries in
T (M), the equality constraints enforcing symmetry can be dropped, and this problem is equivalent to a
MaxCut like problem in dimension 2n, which reads

minimize Tr(T (M)X)
subject to diag(X) = 1, X � 0,

(5)

in the variable X in S2n. As we will see below, formulating a relaxation to the phase recovery problem as a
complex MaxCut-like semidefinite program has direct computational benefits.
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3. ALGORITHMS

In the previous section, we have approximated the phase recovery problem (2) by a convex relaxation,
written

minimize Tr(UM)
subject to diag(U) = 1, U � 0,

which is a semidefinite program in the matrix U ∈ Hn. The dual, written

max
w∈Rn

nλmin(M + diag(w))− 1Tw, (6)

is a minimum eigenvalue maximization problem in the variablew ∈ Rn. Both primal and dual can be solved
efficiently. When exact phase recovery is possible, the optimum value of the primal problem PhaseCut is
zero and we must have λmin(M) = 0, which means that w = 0 is an optimal solution of the dual.

3.1. Interior Point Methods. For small scale problems, with n ∼ 102, generic interior point solvers such
as SDPT3 [Toh et al., 1999] solve problem (5) with a complexity typically growing as O

(
n4.5 log(1/ε)

)
where ε > 0 is the target precision [Ben-Tal and Nemirovski, 2001, §4.6.3]. Exploiting the fact that the
2n equality constraints on the diagonal in (5) are singletons, Helmberg et al. [1996] derive an interior point
method for solving the MaxCut problem, with complexity growing as O

(
n3.5 log(1/ε)

)
where the most

expensive operation at each iteration is the inversion of a positive definite matrix, which costs O(n3) flops.

3.2. First-Order Methods. When n becomes large, the cost of running even one iteration of an interior
point solver rapidly becomes prohibitive. However, we can exploit the fact that the dual of problem (5)
can be written (after switching signs) as a maximum eigenvalue minimization problem. Smooth first-order
minimization algorithms detailed in [Nesterov, 2007] then produce an ε-solution after

O

(
n3
√

log n

ε

)
floating point operations. Each iteration requires forming a matrix exponential, which costs O(n3) flops.
This is not strictly smaller than the iteration complexity of specialized interior point algorithms, but matrix
structure often allows significant speedup in this step. Finally, the simplest subgradient methods produce an
ε-solution in

O

(
n2 log n

ε2

)
floating point operations. Each iteration requires computing a leading eigenvector which has complexity
roughly O(n2 log n).

3.3. Block Coordinate Descent. We can also solve the semidefinite program in PhaseCut using a block
coordinate descent algorithm. While no explicit complexity bounds are available for this method in our
case, the algorithm is particularly simple and has a very low cost per iteration (it only requires computing
a matrix vector product). We write ic the index set {1, . . . , i − 1, i + 1, . . . , n} and describe the method as
Algorithm 3.

Block coordinate descent is widely used to solve statistical problems where the objective is separable
(LASSO is a typical example) and was shown to efficiently solve semidefinite programs arising in covariance
estimation [d’Aspremont et al., 2006]. These results were extended by [Wen et al., 2012] to a broader class
of semidefinite programs, including MaxCut. We briefly recall its simple construction below, applied to a
barrier version of the MaxCut relaxation PhaseCut, written

minimize Tr(UM)− µ log det(U)
subject to diag(U) = 1

(7)

which is a semidefinite program in the matrix U ∈ Hn, where µ > 0 is the barrier parameter. As in interior
point algorithms, the barrier enforces positive semidefiniteness and the value of µ > 0 precisely controls the
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distance between the optimal solution to (7) and the optimal set of PhaseCut. We refer the reader to [Boyd
and Vandenberghe, 2004] for further details. The key to applying coordinate descent methods to problems
penalized by the log det(·) barrier is the following block-determinant formula

det(U) = det(B) det(y − xTB−1x), when U =

(
B x
xT y

)
, U � 0. (8)

This means that, all other parameters being fixed, minimizing the function det(X) in the row and column
block of variables x, is equivalent to minimizing the quadratic form y − xTZ−1x, arguably a much simpler
problem. Solving the semidefinite program (7) row/column by row/column thus amounts to solving the
simple problem (9) described in the following lemma.

Lemma 3.1. Suppose σ > 0, c ∈ Rn−1, and B ∈ Sn−1 are such that b 6= 0 and B � 0, then the optimal
solution of the block problem

min
x

cTx− σ log(1− xTB−1x) (9)

is given by

x =

√
σ2 + γ − σ

γ
Bc

where γ = cTBc.

Proof. As in [Wen et al., 2012], a direct consequence of the first order optimality conditions for (9).

Here, we see problem (7) as an unconstrained minimization problem over the off-diagonal coefficients
of U , and (8) shows that each block iteration amounts to solving a minimization subproblem of the form (9).
Lemma 3.1 then shows that this is equivalent to computing a matrix vector product. Linear convergence
of the algorithm is guaranteed by the result in [Boyd and Vandenberghe, 2004, §9.4.3] and the fact that
the function log det is strongly convex over compact subsets of the positive semidefinite cone. So the
complexity of the method is bounded by O

(
log 1

ε

)
but the constant in this bound depends on n here, and

the dependence cannot be quantified explicitly.

Algorithm 3 Block Coordinate Descent Algorithm for PhaseCut.

Input: An initial X0 = In and ν > 0 (typically small). An integer N > 1.
1: for k = 1, . . . , N do
2: Pick i ∈ [1, n].
3: Compute

x = Xk
ic,icMic,i and γ = x∗Mic,i

4: If γ > 0, set

Xk+1
ic,i = Xk+1∗

i,ic = −
√

1− ν
γ

x

else
Xk+1
ic,i = Xk+1∗

i,ic = 0.

5: end for
Output: A matrix X � 0 with diag(X) = 1.
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3.4. Initialization & Randomization. Suppose the Hermitian matrix U solves the semidefinite relax-
ation PhaseCut. As in [Goemans and Williamson, 2004; Ben-Tal et al., 2003; Zhang and Huang, 2006;
So et al., 2007], we generate complex Gaussian vectors x ∈ Cn with x ∼ NC(0, U), and for each sample x,
we form z ∈ Cn such that

zi =
xi
|xi|

, i = 1, . . . , n.

All the sample points z generated using this procedure satisfy |zi| = 1, hence are feasible points for prob-
lem (2). This means in particular that QP (M) ≤ E[z∗Mz]. In fact, this expectation can be computed
almost explicitly, using

E[zz∗] = F (U), with F (w) = 1
2e
i arg(w)

∫ π

0
cos(θ) arcsin(|w| cos(θ))dθ

where F (U) is the matrix with coefficients F (Uij), i, j = 1, . . . , n. We then get

SDP (M) ≤ QP (M) ≤ Tr(MF (U)) (10)

In practice, to extract good candidate solutions from the solution U to the SDP relaxation in PhaseCut, we
sample a few points from NC(0, U), normalize their coordinates and simply pick the point which mini-
mizes z∗Mz.

This sampling procedure also suggests a simple spectral technique for computing rough solutions to prob-
lem PhaseCut: compute an eigenvector of M corresponding to its lowest eigenvalue and simply normalize
its coordinates (this corresponds to the simple bound on MaxCut by [Delorme and Poljak, 1993]). The infor-
mation contained in U can also be used to solve a robust formulation [Ben-Tal et al., 2009] of problem (1)
given a Gaussian model u ∼ NC(0, U).

3.5. Approximation Bounds. The semidefinite program in PhaseCut is a MaxCut-type graph partitioning
relaxation whose performance has been studied extensively. Note however that most approximation results
for MaxCut study maximization problems over positive semidefinite or nonnegative matrices, while we are
minimizing in PhaseCut so, as pointed out in [Kisialiou and Luo, 2010; So and Ye, 2010] for example, we
do not inherit the constant approximation ratios that hold in the classical MaxCut setting.

3.6. Exploiting Structure. In some instances, we have additional structural information on the solution of
problems (1) and (2), which usually reduces the complexity of approximating PhaseCut and improves the
quality of the approximate solutions. We briefly highlight a few examples below.

3.6.1. Symmetries. In some cases, e.g. signal processing examples where the signal is symmetric, the
optimal solution u has a known symmetry pattern. For example, we might have u(k− − i) = u(k+ + i)
for some k−, k+ and indices i ∈ [0, k− − 1]. This means that the solution u to problem (1) can be written
u = Pv, where v ∈ Cq with q < n, and we can solve (1) by focusing on the smaller problem

minimize v∗P ∗MPv
subject to |(Pv)i| = 1, i = 1, . . . n,

in the variable v ∈ Cq. We reconstruct a solution u to (1) from a solution v to the above problem as u = Pv.
This produces significant computational savings.

3.6.2. Alignment. In other instances, we might have prior knowledge that the phases of certain samples are
aligned, i.e. that there is an index set I such that ui = uj , for all i, j ∈ I , this reduces to the symmetric
case discussed above when the phase is arbitrary. W.l.o.g., we can also fix the phase to be one, with ui = 1
for i ∈ I , and solve a constrained version of the relaxation PhaseCut

min. Tr(UM)
subject to Uij = 1, i, j ∈ I,

diag(U) = 1, U � 0,

which is a semidefinite program in U ∈ Hn.
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3.6.3. Fast Fourier transform. If the product Mx can be computed with a fast algorithm in O(n log n)
operations, which is the case for Fourier or wavelet transform operators, we significantly speed up the
iterations of Algorithm 3 to update all coefficients at once. Each iteration of the modified Algorithm 3 then
has cost O(n log n) instead of O(n2).

3.6.4. Real valued signal. In some cases, we know that the solution vector x in (1) is real valued. Prob-
lem (1) can be reformulated to explicitly constrain the solution to be real, by writing it

min
u∈Cn, |ui|=1,

x∈Rp

‖Ax− diag(b)u‖22

or again, using the operator T (·) defined in (4)

minimize
∥∥∥∥T (A)

(
x
0

)
− diag

(
b
b

)(
Re(u)
Im(u)

)∥∥∥∥2
2

subject to u ∈ Cn, |ui| = 1
x ∈ Rp.

The optimal solution of the inner minimization problem in x is given by x = A†2B2v, where

A2 =

(
Re(A)
Im(A)

)
, B2 = diag

(
b
b

)
, and v =

(
Re(u)
Im(u)

)
hence the problem is finally rewritten

minimize ‖(A2A
†
2B2 −B2)v‖22

subject to v2i + v2n+i = 1, i = 1, . . . , n,

in the variable v ∈ R2n. This can be relaxed as above by the following problem

minimize Tr(VM2)
subject to Vii + Vn+i,n+i = 1, i = 1, . . . , n,

V � 0,

which is a semidefinite program in the variable V ∈ S2n, whereM2 = (A2A
†
2B2−B2)

T (A2A
†
2B2−B2) =

BT
2 (I−A2A

†
2)B2.

4. MATRIX COMPLETION & EXACT RECOVERY CONDITIONS

In [Chai et al., 2011; Candes et al., 2011b], phase recovery (1) is cast as a matrix completion problem.
We briefly review this approach and compare it with the semidefinite program in PhaseCut. Given a signal
vector b ∈ Rn and a sampling matrix A ∈ Cn×p, we look for a vector x ∈ Cp satisfying

|a∗ix| = bi, i = 1, . . . , n,

where the vector a∗i is the ith row of A and x ∈ Cp is the signal we are trying to reconstruct. The phase
recovery problem is then written as

minimize Rank(X)
subject to Tr(aia

∗
iX) = b2i , i = 1, . . . , n

X � 0

in the variable X ∈ Hp, where X = xx∗ when exact recovery occurs. This last problem can be relaxed as

minimize Tr(X)
subject to Tr(aia

∗
iX) = b2i , i = 1, . . . , n

X � 0
(PhaseLift)
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which is a semidefinite program (called PhaseLift by Candes et al. [2011b]) in the variable X ∈ Hp. Recent
results in [Candes et al., 2011a; Candes and Li, 2012] give explicit (if somewhat stringent) conditions on
A and x under which the relaxation is tight (i.e. the optimal X in PhaseLift is unique, has rank one, with
leading eigenvector x).

4.1. Weak Formulation. We also introduce a weak version of PhaseLift, which is more directly related
to PhaseCut and is easier to interpret geometrically. It was noted in [Candes et al., 2011a] that, when
I ∈ span{aia∗i }ni=1, the condition Tr(aia

∗
iX) = b2i , i = 1, ..., n determines Tr(X), so in this case the trace

minimization objective is redundant and PhaseLift is equivalent to

find X
subject to Tr(aia

∗
iX) = b2i , i = 1, . . . , n

X � 0.
(Weak PhaseLift)

When I /∈ span{aia∗i }ni=1 on the other hand, Weak PhaseLift and PhaseLift are not equivalent: solutions
of PhaseLift solve Weak PhaseLift too but the converse is not true. Interior point solvers typically pick a
solution at the analytic center of the feasible set of Weak PhaseLift which in general can be significantly
different from the minimum trace solution.

However, in practice, the removal of trace minimization does not really seem to alter the performances
of the algorithm. We will illustrate this affirmation with numerical experiments in §5.4 and a formal proof
is given in [Demanet and Hand, 2012] who showed that, in the case of Gaussian random measurements, the
relaxation of Weak PhaseLift was tight with high probability under the same conditions as PhaseLift.

4.2. Phase Recovery as a Projection. We will see in what follows that phase recovery can interpreted as
a projection problem. These results will prove useful later to study stability. The PhaseCut reconstruction
problem defined in PhaseCut is written

minimize Tr(UM)
subject to diag(U) = 1, U � 0,

with M = diag(b)(I−AA†)diag(b). In what follows, we assume bi 6= 0, i = 1, ..., n, which means that,
after scaling U , solving PhaseCut is equivalent to solving

minimize Tr(V (I−AA†))
subject to diag(V ) = b2, V � 0.

(11)

In the following lemma, we show that this last semidefinite program can be understood as a projection
problem on a section of the semidefinite cone using the trace (or nuclear) norm. We define

F = {V ∈ Hn : x∗V x = 0, ∀x ∈ R(A)⊥}
which is also F = {V ∈ Hn : (I − AA†)V (I − AA†) = 0}, and we now formulate the objective of
problem (11) as a distance.

Lemma 4.1. For all V ∈ Hn such that V � 0,

Tr(V (I−AA†)) = d1(V,F) (12)

where d1 is the distance associated to the trace norm.

Proof. Let B1 (resp. B2) be an orthonormal basis of rangeA (resp. (rangeA)⊥). Let T be the transfor-
mation matrix from canonical basis to orthonormal basis B1 ∪ B2. Then

F = {V ∈ Hn s.t. T−1V T =
(
S1 S2
S∗2 0

)
, S1 ∈ Hp, S2 ∈Mp,n−p}

As the transformation X → T−1XT preserves the nuclear norm, for every matrix V � 0, if we write

T−1V T =
(
V1 V2
V ∗2 V3

)
10



FIGURE 1. Schematic representation of the sets involved in equations (13) and (14) : the
cone of positive hermitian matrices H+

n (in light grey), its intersection with the affine sub-
spaceHb, and F ∩H+

n , which is a face of H+
n .

then the orthogonal projection of V onto F is

W = T
(
V1 V2
V ∗2 0

)
T−1,

so d1(V,F) = ‖V −W‖1 = ‖
(
0 0
0 V3

)
‖1. As V � 0,

(
V1 V2
V ∗2 V3

)
� 0 hence

(
0 0
0 V3

)
� 0, so d1(V,F) =

Tr
(
0 0
0 V3

)
. Because AA† is the orthogonal projection ontoR(A), we have T−1(I−AA†)T =

(
0 0
0 I

)
hence

d1(V,F) = Tr
(
0 0
0 V3

)
= Tr((T−1V T )(T−1(I−AA†)T )) = Tr(V (I−AA†))

which is the desired result.

This means that PhaseCut can be written as a projection problem, i.e.

minimize d1(V,F)
subject to V ∈ H+

n ∩Hb
(13)

in the variable V ∈ Hn, where Hb = {V ∈ Hn s.t. Vi,i = b2i , i = 1, ..., n}. Moreover, with ai the i-th
row of A, we have for all X ∈ H+

p , Tr(aia
∗
iX) = a∗iXai = diag(AXA∗)i, i = 1, . . . , n, so if we call

V = AXA∗ ∈ F , when A is injective, X = A†V A†∗ and Weak PhaseLift is equivalent to

find V ∈ H+
n ∩ F

subject to diag(V ) = b2.

First order algorithms for Weak PhaseLift will typically solve

minimize d(diag(V ), b2)
subject to V ∈ H+

n ∩ F

for some distance d over Rn. If d is the ls-norm, for any s ≥ 1, d(diag(V ), b2) = ds(V,Hb), where ds is
the distance generated by the Schatten s-norm, the algorithm becomes

minimize ds(V,Hb)
subject to V ∈ H+

n ∩ F
(14)

which is another projection problem in V .
Thus, PhaseCut and Weak PhaseLift are comparable, in the sense that both algorithms aim at finding a

point of H+
n ∩ F ∩ Hb but PhaseCut does so by picking a point of H+

n ∩ Hb and moving towards F while
Weak PhaseLift moves a point of H+

n ∩ F towards Hb. We can push the parallel between both relaxations
much further. We will show in what follows that, in a very general case, PhaseLift and a modified version

11



of PhaseCut are simultaneously tight. We will also be able to compare the stability of Weak PhaseLift and
PhaseCut when measurements become noisy.

4.3. Tightness of the Semidefinite Relaxation. We will now formulate a refinement of the semidefinite
relaxation in PhaseCut and prove that this refinement is equivalent to the relaxation in PhaseLift under mild
technical assumptions. Suppose u is the optimal phase vector, we know that the optimal solution to (1)
can then be written x = A† diag(b)u, which corresponds to the matrix X = A† diag(b)uu∗ diag(b)A†∗

in PhaseLift, hence
Tr(X) = Tr(diag(b)A†∗A† diag(b)uu∗).

Writing B = diag(b)A†∗A† diag(b), when problem (1) is solvable, we look for the “minimum trace”
solution among all the optimal points of relaxation PhaseCut by solving

SDP2(M) , min. Tr(BU)
subject to Tr(MU) = 0

diag(U) = 1, U � 0,
(PhaseCutMod)

which is a semidefinite program in U ∈ Hn. When problem (1) is solvable, then every optimal solution
of the semidefinite relaxation PhaseCut is a feasible point of relaxation PhaseCutMod. In practice, the
semidefinite program SDP (M + γB), written

minimize Tr((M + γB)U)
subject to diag(U) = 1, U � 0,

obtained by replacing M by M + γB in problem PhaseCut, will produce a solution to PhaseCutMod when-
ever γ > 0 is sufficiently small (this is essentially the exact penalty method detailed in [Bertsekas, 1998,
§4.3] for example). This means that all algorithms (greedy or SDP) designed to solve the original PhaseCut
problem can be recycled to solve PhaseCutMod with negligible effect on complexity. We now show that
the PhaseCutMod and PhaseLift relaxations are simultaneously tight when A is injective. An earlier ver-
sion of this paper showed PhaseLift tightness implies PhaseCut tightness and the argument was reversed in
[Voroninski, 2012] under mild additional assumptions.

Proposition 4.2. Assume that bi 6= 0 for i = 1, . . . , n, that A is injective and that there is a solution x
to (1). The function

Φ : Hp → Hn

X 7→ Φ(X) = diag(b)−1AXA∗ diag(b)−1

is a bijection between the feasible points of PhaseCutMod and those of PhaseLift.

Proof. Note that Φ is injective whenever b > 0 and A has full rank. We have to show that U is a
feasible point of PhaseCutMod if and only if it can be written under the form Φ(X), where X is feasible
for PhaseLift. We first show that

Tr(MU) = 0, U � 0, (15)
is equivalent to

U = Φ(X) (16)
for some X � 0. Observe that Tr(UM) = 0 means UM = 0 because U,M � 0, hence Tr(MU) = 0
in (15) is equivalent to

AA† diag(b)U diag(b) = diag(b)U diag(b)

because b > 0 and M = diag(b)(I − AA†)diag(b). If we set X = A† diag(b)U diag(b)A†∗, this last
equality implies both

AX = AA† diag(b)U diag(b)A†∗ = diag(b)U diag(b)A†∗

and
AXA∗ = diag(b)U diag(b)A†∗A∗ = diag(b)U diag(b)

12



which is U = Φ(X), and shows (15) implies (16). Conversely, if U = Φ(X) then diag(b)U diag(b) =
AXA∗ and using AA†A = A, we get AXA∗ = AA†AXA∗ = AA† diag(b)U diag(b) which means
MU = 0, hence (15) is in fact equivalent to (16) since U � 0 by construction.

Now, if X is feasible for PhaseLift, we have shown Tr(MΦ(X)) = 0 and φ(X) � 0, moreover
diag(Φ(X))i = Tr(aia

∗
iX)/b2i = 1, so U = Φ(X) is a feasible point of PhaseCutMod. Conversely,

if U is feasible for PhaseCutMod, we have shown that there exists X � 0 such that U = Φ(X) which
means diag(b)U diag(b) = AXA∗. We also have Tr(aia

∗
iX) = b2iUii = b2i , which means X is feasible

for PhaseLift and concludes the proof.

We now have the following central corollary showing the equivalence between PhaseCutMod and PhaseLift
in the noiseless case.

Corollary 4.3. If A is injective, bi 6= 0 for all i = 1, ..., n and if the reconstruction problem (1) admits an
exact solution, then PhaseCutMod is tight (i.e. has a unique rank one solution) whenever PhaseLift is.

Proof. When A is injective, Tr(X) = Tr(BΦ(X)) and Rank(X) = Rank(Φ(X)).

This last result shows that in the noiseless case, the relaxations PhaseLift and PhaseCutMod are in fact
equivalent. In the same way, we could have shown that Weak PhaseLift and PhaseCut were equivalent. The
performances of both algorithms may not match however when the information on b is noisy and perfect
recovery is not possible.

Remark 4.4. Note that Proposition 4.2 and corollary 4.3 also hold when the initial signal is real and the
measurements are complex. In this case, we define the B in PhaseCutMod by B = B2A

†∗
2 A
†
2B2 (with

the notations of paragraph 3.6.4). We must also replace the definition of Φ by Φ(X) = B−12 A2XA
∗
2B
−1
2 .

Furthermore, all steps in the proof of proposition 4.2 are still valid if we replace M by M2, A by A2 and
diag(b) by B2. The only difference is that now 1

b2i
Tr(aia

∗
iX) = diag(Φ(X))i + diag(Φ(X))n+i.

4.4. Stability in the Presence of Noise. We now consider the case where the vector of measurements b
is of the form b = |Ax0| + bnoise. We first introduce a definition of C-stability for PhaseCut and Weak
PhaseLift. The main result of this section is that, when the Weak PhaseLift solution in (14) is stable at a
point, PhaseCut is stable too, with a constant of the same order. The converse does not seem to be true when
b is sparse.

Definition 4.5. Let x0 ∈ Cn, C > 0. The algorithm PhaseCut (resp. Weak PhaseLift) is said to be C-stable
at x0 iff for all bnoise ∈ Rn close enough to zero, every minimizer V of equation (13) (resp. (14)) with
b = |Ax0|+ bnoise, satisfies

‖V − (Ax0)(Ax0)
∗‖2 ≤ C‖Ax0‖2‖bnoise‖2.

The following matrix perturbation result motivates this definition, by showing that a C-stable algorithm
generates a O(C‖bnoise‖2)-error over the signal it reconstructs.

Proposition 4.6. Let C > 0 be arbitrary. We suppose that Ax0 6= 0 and ‖V − (Ax0)(Ax0)
∗‖2 ≤

C‖Ax0‖2‖bnoise‖2 ≤ ‖Ax0‖22/2. Let y be V ’s main eigenvector, normalized so that (Ax0)
∗y = ‖Ax0‖2.

Then
‖y −Ax0‖2 = O(C‖bnoise‖2),

and the constant in this last equation does not depend upon A, x0, C or ‖b‖2.

Proof. We use [El Karoui and d’Aspremont, 2009, Eq.10] for

u =
Ax0
‖Ax0‖2

v =
y

‖Ax0‖2
E =

V − (Ax0)(Ax0)
∗

‖Ax0‖22
13



This result is based on [Kato, 1995, Eq. 3.29], which gives a precise asymptotic expansion of u− v. For our
purposes here, we only need the first-order term. See also Bhatia [1997], Stewart and Sun [1990] or Stewart
[2001] among others for a complete discussion. We get ‖v − u‖ = O(‖E‖2) because if M = uu∗, then
‖R‖∞ = 1 in [El Karoui and d’Aspremont, 2009, Eq.10]. This implies

‖y −Ax0‖2 = ‖Ax0‖2‖u− v‖ = O

(
‖V − (Ax0)(Ax0)

∗‖2
‖Ax0‖2

)
= O(C‖bnoise‖)

which is the desired result.

Note that normalizing y differently, we would obtain ‖y−Ax0‖2 ≤ 4C‖bnoise‖2. We now show the main
result of this section, according to which PhaseCut is “almost as stable as” Weak PhaseLift. In practice of
course, the exact values of the stability constants has no importance, what matters is that they are of the
same order.

Theorem 4.7. Let A ∈ Cn×m, for all x0 ∈ Cn, C > 0, if Weak PhaseLift is C-stable in x0, then PhaseCut
is (2C + 2

√
2 + 1)-stable in x0.

Proof. Let x0 ∈ Cn, C > 0 be such that Weak PhaseLift is C-stable in x0. Ax0 is a non-zero vector
(because, with our definition, neither Weak PhaseLift nor PhaseCut may be stable in x0 if Ax0 = 0 and
A 6= 0). We set D = 2C + 2

√
2 + 1 and suppose by contradiction that PhaseCut is not D-stable in x0.

Let ε > 0 be arbitrary. Let bn,PC ∈ Rn be such that ‖bn,PC‖2 ≤ max(‖Ax0‖2, ε/2) and such that, for
b = |Ax0|+ bn,PC, the minimizer VPC of (13) verifies

‖VPC − (Ax0)(Ax0)
∗‖2 > D‖Ax0‖2‖bn,PC‖2

Such a VPC must exist or PhaseCut would be D-stable in x0. We call V �
PC the restriction of VPC to

range(A) (that is, the matrix such that x∗(V �
PC)y = x∗(VPC)y if x, y ∈ range(A) and x∗(V �

PC)y = 0 if x ∈

range(A)⊥ or y ∈ range(A)⊥) and V ⊥PC the restriction of VPC to range(A)⊥. Let us set bn,PL =

√
V

�
PC ii−

|Ax0|ii for i = 1, ..., n. As V �
PC ∈ H+

n ∩F , V �
PC minimizes (14) for b = |Ax0|+bn,PL (because V �

PC ∈ Hb).
Lemmas A.1 and A.2 (proven in the appendix) imply that ‖V �

PC − (Ax0)(Ax0)
∗‖2 > C‖Ax0‖2‖bn,PL‖2

and ‖bn,PL‖2 ≤ ε. As ε is arbitrary, Weak PhaseLift is not C-stable in x0, which contradicts our hypotheses.
Consequently, PhaseCut is (2C + 2

√
2 + 1)-stable in x0.

Theorem 4.7 is still true if we replace 2C + 2
√

2 + 1 by any D > 2C +
√

2. We only have to
replace, in the demonstration, the inequality ‖bn,PC‖2 ≤ ‖Ax0‖2 by ‖bn,PC‖2 ≤ α‖Ax0‖2 with α =

D − (2C +
√

2)/(1 +
√

2). Also, the demonstration of this theorem is based on the fact that, when VPC
solves (13), one can construct some VPL = V

�
PC close to VPC , which is an approximate solution of (14).

It is natural to wonder whether, conversely, from a solution VPL of (14), one can construct an approx-
imate solution VPC of (13). It does not seem to be the case. One could for example imagine setting
VPC = diag(R)VPL diag(R), where Ri = bi/

√
VPL ii. Then VPC would not necessarily minimize (13)

but at least belong to Hb. But ‖VPC − VPL‖2 might be quite large: (14) implies that ‖diag(VPL) − b2‖s
is small but, if some coefficients of b are very small, some Ri may still be huge, so diag(R) 6≈ I. This does
happen in practice (see § 5.5).

To conclude this section, we relate this definition of stability to the one introduced in [Candes and Li,
2012]. Suppose that A is a matrix of random gaussian independant measurements such that E[|Ai,j |2] = 1
for all i, j. We also suppose that n ≥ c0p (for some c0 independent of n and p). In the noisy setting, Candes
and Li [2012] showed that the minimizerX of a modified version of PhaseLift satisfies with high probability

||X − x0x∗0||2 ≤ C0
|| |Ax0|2 − b2 ||1

n
(17)
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for some C0 independent of all variables. Assuming that the Weak PhaseLift solution in (14) behaves
as PhaseLift in a noisy setting and that (17) also holds for Weak PhaseLift, then

||AXA∗ − (Ax0)(Ax0)
∗||2 ≤ ||A||2∞||X − x0x∗0||2

≤ C0
||A||2∞
n
|| |Ax0|2 − b2 ||1

≤ C0
||A||2∞
n

(2||Ax0||2 + ||bnoise||2)||bnoise||2

Consequently, for anyC > 2C0
||A||2∞
n , Weak PhaseLift isC-stable in all x0. With high probability, ||A||2∞ ≤

(1 + 1/8)n (it is a corollary of [Candes and Li, 2012, Lemma 2.1]) so Weak PhaseLift (and thus also
PhaseCut) is C-stable with high probability for some C independent of all parameters of the problem.

4.5. Perturbation Results. We recall here sensitivity analysis results for semidefinite programming from
Todd and Yildirim [2001]; Yildirim [2003], which produce explicit bounds on the impact of small pertur-
bations in the observation vector b2 on the solution V of the semidefinite program (11). Roughly speaking,
these results show that if b2 + bnoise remains in an explicit ellipsoid (called Dikin’s ellipsoid), then interior
point methods converge back to the solution in one full Newton step, hence the impact on V is linear, equal
to the Newton step. These results are more numerical in nature than the stability bounds detailed in the
previous section, but they precisely quantify both the size and, perhaps more importantly, the geometry of
the stability region.

4.6. Complexity Comparisons. Both the relaxation in PhaseLift and that in PhaseCut are semidefinite
programs and we highlight below the relative complexity of solving these problems depending on algorith-
mic choices and precision targets. Note that, in their numerical experiments, [Candes et al., 2011b] solve a
penalized formulation of problem PhaseLift, written

min
X�0

n∑
i=1

(Tr(aia
∗
iX)− b2i )2 + λTr(X) (18)

in the variable X ∈ Hp, for various values of the penalty parameter λ > 0.
The trace norm promotes a low rank solution, and solving a sequence of weighted trace-norm problems

has been shown to further reduce the rank in [Fazel et al., 2003; Candes et al., 2011b]. This method replaces
Tr(X) by Tr(WkX) whereW0 is initialized to the identity I . Given a solutionXk of the resulting semidef-
inite program, the weighted matrix is updated to Wk+1 = (Xk + ηI)−1 (see Fazel et al. [2003] for details).
We denote by K the total number of such iterations, typically of the order of 10. Trace minimization is
not needed for the semidefinite program (PhaseCut), where the trace is fixed because we optimize over a
normalized phase vector. However, weighted trace-norm iterations could potentially improve performance
in PhaseCut as well.

Recall that p is the size of the signal and n is the number of measured samples with n = Jp in the
examples reviewed in Section 5. In the numerical experiments in [Candes et al., 2011b] as well as in this
paper, J = 3, 4, 5. The complexity of solving the PhaseCut and PhaseLift relaxations in PhaseLift using
generic semidefinite programming solvers such as SDPT3 [Toh et al., 1999], without exploiting structure, is
given by

O

(
J4.5 p4.5 log

1

ε

)
and O

(
K J2 p4.5 log

1

ε

)
for PhaseCut and PhaseLift respectively [Ben-Tal and Nemirovski, 2001, § 6.6.3]. The fact that the constraint
matrices have only one nonzero coefficient in PhaseCut can be exploited (the fact that the constraints aia∗i
are rank one in PhaseLift helps, but it does not modify the principal complexity term) so we get

O

(
J3.5 p3.5 log

1

ε

)
and O

(
K J2p4.5 log

1

ε

)
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for PhaseCut and PhaseLift respectively using the algorithm in Helmberg et al. [1996] for example. If we
use first-order solvers such as TFOCS [Becker et al., 2012], based on the optimal algorithm in [Nesterov,
1983], the dependence on the dimension can be further reduced, to become

O

(
J3 p3

ε

)
and O

(
KJ p3

ε

)
for solving a penalized version of the PhaseCut relaxation and the penalized formulation of PhaseLift in (18).
While the dependence on the signal dimensions p is somewhat reduced, the dependence on the target pre-
cision grows from log(1/ε) to 1/ε. Finally, the iteration complexity of the block coordinate descent Al-
gorithm 3 is substantially lower and its convergence is linear, but no fully explicit bounds on the number
of iterations are known in our case. The complexity of the method is then bounded by O

(
log 1

ε

)
but the

constant in this bound depends on n here, and the dependence cannot be quantified explicitly.
Algorithmic choices are ultimately guided by precision targets. If ε is large enough so that a first-order

solver or a block coordinate descent can be used, the complexity of PhaseCut is not significantly better
than that of PhaseLift. On the contrary, when ε is small, we must use an interior point solver, for which
PhaseCut’s complexity is an order of magnitude lower than that of PhaseLift because its constraint matrices
are singletons. In practice, the target value for ε strongly depends on the sampling matrix A. For example,
when A corresponds to the convolution by 6 Gaussian random filters (§5.2), to reconstruct a Gaussian white
noise of size 64 with a relative precision of η, we typically need ε ∼ 2.10−1η. For 4 Cauchy wavelets (§5.3),
it is twenty times less, with ε ∼ 10−2η. For other types of signals than Gaussian white noise, we may even
need ε ∼ 10−3η.

4.7. Greedy Refinement. If the PhaseCut or PhaseLift algorithms do not return a rank one matrix then
an approximate solution of the phase recovery problem is obtained by extracting a leading eigenvector v.
For PhaseCut and PhaseLift, x̃ = A† diag(b)v and x̃ = v are respectively approximate solutions of the
phase recovery problem with |Ax̃| 6= b = |Ax|. This solution is then refined by applying the Gerchberg-
Saxton algorithm initialized with x̃. If x̃ is sufficiently close to x then, according to numerical experiments
of Section 5, this greedy algorithm converges to λx with |λ| = 1. These greedy iterations require much
less operations than PhaseCut and PhaseLift algorithms, and thus have no significant contribution to the
computational complexity.

4.8. Sparsity. Minimizing Tr(X) in the PhaseLift problem means looking for signals which match the
modulus constraints and have minimum `2 norm. In some cases, we have a priori knowledge that the signal
we are trying to reconstruct is sparse, i.e. Card(x) is small. The effect of imposing sparsity was studied in
e.g. [Moravec et al., 2007; Osherovich et al., 2012; Li and Voroninski, 2012].

Assuming n ≤ p, the set of solutions to ‖Ax − diag(b)u‖2 is written x = A† diag(b)u + Fv where
F is a basis for the nullspace of A. In this case, when the rows of A are independent, AA† = I and the
reconstruction problem with a `1 penalty promoting sparsity is then written

minimize ‖A† diag(b)u+ Fv‖21
subject to |ui| = 1,

in the variables u ∈ Cp and y ∈ Cp−n. Using the fact that ‖y‖21 = ‖yy∗‖`1 , this can be relaxed as

minimize ‖V UV ∗‖`1
subject to U � 0, |Uii| = 1, i = 1, . . . , n,

which is a semidefinite program in the (larger) matrix variable U ∈ Hp and V = (A† diag(b), F ).
On the other hand, when n > p and A is injective, the matrix F disappears, taking sparsity into account

simply amounts to adding an l1 penalization to PhaseCut. As noted in [Voroninski, 2012] however, the effect
of an `1 penalty on least-squares solutions is not completely clear.
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FIGURE 2. Real parts of sample test signals. (a) Gaussian white noise. (b) Sum of 6
sinuoids of random frequency and random amplitudes. (c) Scan-line of an image.

5. NUMERICAL RESULTS

In this section, we compare the numerical performance of the Gerchberg-Saxton (greedy), PhaseCut
and PhaseLift algorithms on various phase recovery problems. As in [Candes et al., 2011b], the PhaseLift
problem is solved using the package in [Becker et al., 2012], with reweighting, usingK = 10 outer iterations
and 1000 iterations of the first order algorithm. The PhaseCut and Gerchberg-Saxton algorithms described
here are implemented in a public software package available at

http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip

These phase recovery algorithms computes an approximate solution x̃ from |Ax| and the reconstruction
error is measured by the relative Euclidean distance up to a complex phase given by

ε(x, x̃) , min
c∈C,|c|=1

‖x− c x̃‖
‖x‖

. (19)

We also record the error over measured amplitudes, written

ε(|Ax|, |Ax̃|) , ‖|Ax| − |Ax̃|‖
‖Ax‖

. (20)

Note that when the phase recovery problem either does not admit a unique solution or is unstable, we usu-
ally have ε(|Ax|, |Ax̃|) � ε(x, x̃). In the next three subsections, we study these reconstruction errors for
three different phase recovery problems, where A is defined as an oversampled Fourier transform, as mul-
tiple filterings with random filters, or as a wavelet transform. Numerical results are computed on three
different types of test signals x: realizations of a complex Gaussian white noise, sums of complex exponen-
tials aω eiωm with random frequencies ω and random amplitudes aω (the number of exponentials is random,
around 6), and signals whose real and imaginary parts are scan-lines of natural images. Each signal has
p = 128 coefficients. Figure 2 shows the real part of sample signals, for each signal type.

5.1. Oversampled Fourier Transform. The discrete Fourier transform ŷ of a signal y of q coefficients is
written

ŷk =

q−1∑
m=0

ym exp(
−i2πkm

q
) .

In X-ray crystallography or diffraction imaging experiments, compactly supported signals are estimated
from the amplitude of Fourier transforms oversampled by a factor J ≥ 2. The corresponding operator A
computes an oversampled discrete Fourier transform evaluated over n = Jp coefficients. The signal x of
size p is extended into xJ by adding (J − 1)p zeros and

(Ax)k = x̂Jk =

p∑
m=1

xm exp(− i2πkm
n

).
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Fourier Random Filters Wavelets
Gerchberg-Saxton 5% 49% 0%

PhaseLift with reweighting 3% 100% 62%
PhaseCut 4% 100% 100%

TABLE 1. Percentage of perfect reconstruction from |Ax|, over 300 test signals, for the
three different operators A (columns) and the three algorithms (rows).

Fourier Random Filters Wavelets
Gerchberg-Saxton 0.9 1.2 1.3

PhaseLift with reweighting 0.8 exact 0.5
PhaseCut 0.8 exact exact

TABLE 2. Average relative signal reconstruction error ε(x̃, x) over all test signals that are
not perfectly reconstructed, for each operator A and each algorithm.

Fourier Random Filters Wavelets
Gerchberg-Saxton 9.10−4 0.2 0.3

PhaseLift with reweighting 5.10−4 exact 8.10−2

PhaseCut 6.10−4 exact exact

TABLE 3. Average relative error ε(|Ax̃|, |Ax|) of coefficient amplitudes, over all test sig-
nals that are not perfectly reconstructed, for each operator A and each algorithm.

For this oversampled Fourier transform, the phase recovery problem does not have a unique solution [Aku-
towicz, 1956]. In fact, one can show [Sanz, 1985] that there are as many as 2p−1 solutions x̃ ∈ Cp such
that |Ax̃| = |Ax|. Moreover, increasing the oversampling factor J beyond 2 does not reduce the number of
solutions.

Because of this intrinsic instability, we will observe that all algorithms perform similarly on this type
of reconstruction problems and Table 1 shows that the percentage of perfect reconstruction is below 5%
for all methods. The signals which are perfectly recovered are sums of few sinusoids. Because these test
signals are very sparse in the Fourier domain, the number of signals having identical Fourier coefficient
amplitudes is considerably smaller than in typical sample signals. As a consequence, there is a small prob-
ability (about 5%) of exactly reconstructing the original signal given an arbitrary initialization. None of
the Gaussian random noises and image scan lines are exactly recovered. Note that we say that an exact
reconstruction is reached when ε(x, x̃) < 10−2 because a few iterations of the Gerchberg-Saxton algorithm
from such an approximate solution x̃ will typically converges to x. Numerical results are computed with
100 sample signals in each of the 3 signal classes.

Table 2 gives the average relative error ε(x, x̃) over signals that are not perfectly reconstructed, which
is of order one here. Despite this large error, Table 3 shows that the relative error ε(|Ax|, |Ax̃|) over the
Fourier modulus coefficients is below 10−3 for all algorithms. This is due to the non-uniqueness of the
phase recovery from Fourier modulus coefficients. Recovering a solution x̃ with identical or nearly identical
oversampled Fourier modulus coefficients as x does not guarantee that x̃ is proportional to x. Overall, in this
set of ill-posed Fourier experiments, recovery performance is very poor for all methods and the PhaseCut
and PhaseLift relaxations do not improve much on the results of the faster Gerchberg-Saxton algorithm.

5.2. Multiple Random Illumination Filters. To guarantee uniqueness of the phase recovery problem, one
can add independent measurements by “illuminating” the object through J filters hj in the context of X-ray
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imaging or crystallography [Candes et al., 2011a]. The resulting operatorA is the discrete Fourier transform
of x multiplied by each filter hj of size p

(Ax)k+pj = (̂xhj)k = (x̂ ? ĥj)k for 1 ≤ j ≤ J and 0 ≤ k < p,

where x̂ ? ĥj is the circular convolution between x̂ and ĥj . Candes et al. [2011a] proved that, for some
constantC > 0 large enough, CpGaussian independent measurements are sufficient to perfectly reconstruct
a signal of size p, with high probability. Similarly, we would expect that, picking the filters hj as realizations
of independent Gaussian random variables, perfect reconstruction will be guaranteed with high probability
if J is large enough (and independent of p). This result has not yet been proven because Gaussian filters do
not give independent measurements but Candes et al. [2011b] observed that, empirically, for signals of size
p = 128, with J = 4 filters, perfect recovery is achieved in 100% of experiments.

Table 1 confirms this behavior and shows that the PhaseCut algorithm achieves perfect recovery in all
our experiments. As predicted by the equivalence results presented in the previous section, we observe that
PhaseCut and PhaseLift have identical performance in these experiments. With 4 filters, the solutions of
these two SDP relaxations are not of rank one but are “almost” of rank one, in the sense that their first
eigenvector v has an eigenvalue much larger than the others, by a factor of about 5 to 10. Numerically, we
observe that the corresponding approximate solutions, x̃ = diag(v)b, yield a relative error ε(|Ax|, |Ax̃|)
which, for scan-lines of images and especially for Gaussian signals, is of the order of the ratio between the
largest and the second largest eigenvalue of the matrix U . The resulting solutions x̃ are then sufficiently
close to x so that a few iterations of the Gerchberg-Saxton algorithm started at x̃ will converge to x.

Table 1 shows however that directly applying the Gerchberg-Saxton algorithm starting from a random
initialization point yields perfect recovery in only about 50% of our experiments. This percentage decreases
as the signal size p increases. The average error ε(x, x̃) on non-recovered signals in Table 2 is 1.3 whereas
on the average error on the modulus ε(|Ax|, |Ax̃|) is 0.2.

5.3. Wavelet Transform. Phase recovery problems from the modulus of wavelet coefficients appear in
audio signal processing where this modulus is used by many audio and speech recognition systems. These
moduli also provide physiological models of cochlear signals in the ear [Chi et al., 2005] and recovering
audio signals from wavelet modulus coefficients is an important problem in this context.

To simplify experiments, we consider wavelets dilated by dyadic factors 2j which have a lower frequency
resolution than audio wavelets. A discrete wavelet transform is computed by circular convolutions with
discrete wavelet filters, i.e.

(Ax)k+jp = (x ? ψj)k =

p∑
m=1

xmψ
j
k−m for 1 ≤ j ≤ J − 1 and 1 ≤ k ≤ p

where ψjm is a p periodic wavelet filter. It is defined by dilating, sampling and periodizing a complex wavelet
ψ ∈ L2(C), with

ψjm =
∞∑

k=−∞
ψ(2j(m/p− k)) for 1 ≤ m ≤ p.

Numerical computations are performed with a Cauchy wavelet whose Fourier transform is

ψ̂(ω) = ωd e−ω 1ω>0,

up to a scaling factor, with d = 5. To guarantee thatA is an invertible operator, the lowest signal frequencies
are carried by a suitable low-pass filter φ and

(Ax)k+Jp = (x ? φ)k for 1 ≤ k ≤ p.

One can prove that x is always uniquely determined by |Ax|, up to a multiplication factor. When x is real,
the reconstruction appears to be numerically stable. Recall that the results of §3.6.4 allow us to explicitly
impose the condition that x is real in the PhaseCut recovery algorithm. For PhaseLift in Candes et al.
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[2011b], this condition is enforced by imposing that X = xx∗ is real. For the Gerchberg-Saxton algorithm,
when x is real, we simply project at each iteration on the image of Rp by A, instead of projecting on the
image of Cp by A.

Numerical experiments are performed on the real part of the complex test signals. Table 1 shows that
Gerchberg-Saxton does not reconstruct exactly any real test signal from the modulus of its wavelet coeffi-
cients. The average relative error ε(x̃, x) in Table 2 is 1.2 where the coefficient amplitudes have an average
error ε(|Ax̃|, |Ax|) of 0.3 in Table 3.

PhaseLift reconstructs 62% of test signals, but the reconstruction rate varies with signal type. The pro-
portions of exactly reconstructed signals among random noises, sums of sinusoids and image scan-lines are
27%, 60% and 99% respectively. Indeed, image scan-lines have a large proportion of wavelet coefficients
whose amplitudes are negligible. The proportion of phase coefficients having a strong impact on the recon-
struction of x is thus much smaller for scan-line images than for random noises, which reduces the number
of significant variables to recover. Sums of sinuoids of random frequency have wavelet coefficients whose
sparsity is intermediate between image scan-lines and Gaussian white noises, which explains the interme-
diate performance of PhaseLift on these signals. The overall average error ε(x̃, x) on non-reconstructed
signals is 0.5. Despite this relatively important error, x̃ and x are usually almost equal on most of their
support, up to a sign switch, and the importance of the error is precisely due to the local phase inversions
(which change signs).

The PhaseCut algorithm reconstructs exactly all test signals. Moreover, the recovered matrix U is always
of rank one and it is therefore not necessary to refine the solution with Gerchberg-Saxton iterations. At first
sight, this difference in performance between PhaseCut and PhaseLift may seem to contradict the equiva-
lence results of §4.3 (which are valid when x is real and when x is complex). It can be explained however
by the fact that 10 steps of reweighing and 1000 inner iterations per step are not enough to let PhaseLift
fully converge. In these experiments, the precision required to get perfect reconstruction is very high and,
consequently, the number of first-order iterations required to achieve it is too large (see §4.6). With an
interior-point-solver, this number would be much smaller but the time required per iteration would become
prohibitively large. The much simpler structure of the PhaseCut relaxation allows us to solve these larger
problems more efficiently.

5.4. Impact of Trace Minimization. We saw in §4.1 that, in the absence of noise, PhaseCut was very
similar to a simplified version of PhaseLift, Weak PhaseLift, in which no trace minimization is performed.
Here, we confirm empirically that Weak PhaseLift and PhaseLift are essentially equivalent. Minimizing the
trace is usually used as rank minimization heuristic, with recovery guarantees in certain settings [Fazel et al.,
2003; Candes and Recht, 2008; Chandrasekaran et al., 2012] but it does not seem to make much difference
here. In fact, Demanet and Hand [2012] recently showed that in the independent experiments setting, Weak
PhaseLift has a unique (rank one) solution with high probability, i.e. the feasible set of PhaseLift is a
singleton and trace minimization has no impact. Of course, from a numerical point of view, solving the
feasibility problem Weak PhaseLift is about as hard as solving the trace minimization problem PhaseLift, so
the result [Demanet and Hand, 2012] simplifies analysis but does not really affect numerical performance.

Figure 3 compares the performances of PhaseLift and Weak PhaseLift as a function of n (the number
of measurements). We plot the percentage of successful reconstructions (left) and the percentage of cases
where the relaxation was exact, i.e. the reconstructed matrix X was rank one (right). The plot shows a
clear phase transitions when the number of measurements increases. For PhaseLift, these transitions happen
respectively at n = 155 ≈ 2.5p and n = 285 ≈ 4.5p, while for Weak PhaseLift, the values become
n = 170 ≈ 2.7p and n = 295 ≈ 4.6p, so the transition thresholds are very similar. Note that, in the absence
of noise, Weak PhaseLift and PhaseCut have the same solutions, up to a linear transformation (see §4.2), so
we can expect the same behavior in the comparison PhaseCut versus PhaseCutMod.
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FIGURE 3. Comparison of PhaseLift and Weak PhaseLift performance, for 64-sized sig-
nals, as a function of the number of measurements. Reconstruction rate, after Gerchberg-
Saxton iterations (left) and proportion of rank one solutions (right).

5.5. Reconstruction in the Presence of Noise. Numerical stability is crucial for practical applications. In
this last subsection, we suppose that the vector b of measurements is of the form

b = |Ax|+ bnoise

with ‖bnoise‖2 = o(‖Ax‖2). In our experiments, bnoise is always a Gaussian white noise. Two reasons can
explain numerical instabilities in the solution x̃. First, the reconstruction problem itself can be unstable,
with ‖x̃ − cx‖ � ‖|Ax̃| − |Ax|‖ for all c ∈ C. Second, the algorithm may fail to reconstruct x̃ such
that ‖|Ax̃| − b‖ ≈ ‖bnoise‖. No algorithm can overcome the first cause but good reconstruction methods
will overcome the second one. In the following paragraphs, to complement the results in §4.4, we will
demonstrate empirically that PhaseCut is stable, and compare its performances with PhaseLift. We will
observe in particular that PhaseCut appears to be more stable than PhaseLift when b is sparse.

5.5.1. Wavelet transform. Figure 4 displays the performance of PhaseCut in the wavelet transform case. It
shows that PhaseCut is stable up to around 5 − 10% of noise. Indeed, the reconstructed x̃ usually satisfies
ε(|Ax|, |Ax̃|) = ‖ |Ax|−|Ax̃| ‖2 ≤ ‖bnoise‖2, which is the best we can hope for. Wavelet transform is a case
where the underlying phase retrieval problem may present instabilities, therefore the reconstruction error
ε(x, x̃) is sometimes much larger than ε(|Ax|, |Ax̃|). This remark applies especially to sums of sinusoids,
which represent the most unstable case.

When all coefficients of Ax have approximately the same amplitude, PhaseLift and PhaseCut produce
similar results, but when Ax is sparse, PhaseLift appears less stable. We gave a qualitative explanation of
this behavior at the end of §4.4 which seems to be confirmed by the results in Figure 4. This boils down to
the fact that the values of the phase variables in PhaseCut corresponding to zeros in b can be set to zero so
the problem becomes much smaller. Indeed, the performance of PhaseLift and PhaseCut are equivalent in
the case of Gaussian random filters (where measurements are never sparse), they are a bit worse in the case
of sinusoids (where measurements are sometimes sparse) and quite unsatisfactory for scan-lines of images
(where measurements are always sparse).

5.5.2. Multiple random illumination filters. Candes and Li [2012] proved that, if A was a Gaussian matrix,
the reconstruction problem was stable with high probability, and PhaseLift reconstructed a x̃ such that

ε(x̃, x) ≤ O
(
‖bnoise‖2
‖Ax‖2

)
.
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FIGURE 4. Mean reconstruction errors versus amount of noise for PhaseLift and PhaseCut,
both in decimal logarithmic scale, for three types of signals: Gaussian white noises, sums
of sinusoids and scan-lines of images. Both algorithms were followed by a few hundred
Gerchberg-Saxton iterations.

The same result seems to hold forA corresponding to Gaussian random illumination filters (cf. §5.2). More-
over, PhaseCut is as stable as PhaseLift. Actually, up to 20% of noise, when followed by some Gerchberg-
Saxton iterations, PhaseCut and PhaseLift almost always reconstruct the same function. Figure 5 displays
the corresponding empirical performance, confirming that both algorithms are stable. The relative recon-
struction errors are approximately linear in the amount of noise, with

ε(|Ax̃|, |Ax|) ≈ 0.8× ‖bnoise‖2
‖Ax‖2

and ε(x̃, x) ≈ 2× ‖bnoise‖2
‖Ax‖2

in our experiments.
The impact of the sparsity of b discussed in the last paragraph may seem irrelevant here: if A and x are

independently chosen, Ax is never sparse. However, if we do not choose A and x independently, we may
achieve partial sparsity. We performed tests for the case of five Gaussian random filters, where we chose
x ∈ C64 such that (Ax)k = 0 for k ≤ 60. This choice has no particular physical interpretation but it allows
us to check that the influence of sparsity in |Ax| over PhaseLift is not specific to the wavelet transform.
Figure 5 displays the relative error over the reconstructed matrix in the sparse and non-sparse cases. If we
denote by Xpl ∈ Cp×p (resp. Xpc ∈ Cn×n) the matrix reconstructed by PhaseLift (resp. PhaseCut), this
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FIGURE 5. Left: Mean performances of PhaseLift and PhaseCut, followed by Gerchberg-
Saxton iterations, for four Gaussian random illumination filters. The x-axis represents the
relative noise level, ‖bnoise‖2/‖Ax‖2 and the y-axis the relative error on the result, which
is either ε(x̃, x) or ε(|Ax̃|, |Ax|). Right: Loglog plot of the relative error over the matrix
reconstructed by PhaseLift (resp. PhaseCut) when A represents the convolution by five
Gaussian filters. Black curves correspond to Ax non-sparse, red ones to sparse Ax.

relative error is defined by

ε =
‖AXplA

∗ − (Ax)(Ax)∗‖2
‖(Ax)(Ax)∗‖2

(for PhaseLift)

ε =
‖diag(b)Xpc diag(b)− (Ax)(Ax)∗‖2

‖(Ax)(Ax)∗‖2
(for PhaseCut)

In the non-sparse case, both algorithms yield very similar error ε ≈ 7‖bnoise‖2/‖Ax‖2 (the difference
for a relative noise of 10−4 may come from a computational artifact). In the sparse case, there are less
phases to reconstruct, because we do not need to reconstruct the phase of null measurements. Consequently,
the problem is better constrained and we expect the algorithms to be more stable. Indeed, the relative
errors over the reconstructed matrices are smaller. However, in this case, the performance of PhaseLift
and PhaseCut do not match anymore: ε ≈ 3‖bnoise‖2/‖Ax‖2 for PhaseLift and ε ≈ 1.2‖bnoise‖2/‖Ax‖2
for PhaseCut. This remark has no practical impact in our particular example here because taking a few
Gerchberg-Saxton iterations would likely make both methods converge towards the same solution, but it
confirms the importance of accounting for the sparsity of |Ax|.
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APPENDIX A. TECHNICAL LEMMAS

We now prove two technical lemmas used in the proof of Theorem 4.7.

Lemma A.1. Under the assumptions and notations of Theorem 4.7, we have

‖V �
PC − (Ax0)(Ax0)

∗‖2 > 2C‖Ax0‖2‖bn,PC‖2
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Proof. We first give an upper bound of ‖VPC − V �
PC‖2. We use the Cauchy-Schwarz inequality : for

every positive matrix X and all x, y, |x∗Xy| ≤
√
x∗Xx

√
y∗Xy. Let {fi} be an hermitian base of range(A)

diagonalizing V �
PC and {gi} an hermitian base of range(A)⊥ diagonalizing V ⊥PC . As {fi} ∩ {gi} is an

hermitian base of Cn, we have

‖VPC − V �
PC‖

2
2 =

∑
i,i′

|f∗i (VPC − V �
PC)fi′ |2 +

∑
i,j

|f∗i (VPC − V �
PC)gj |2

+
∑
i,j

|g∗j (VPC − V
�
PC)fi|2 +

∑
j,j′

|g∗j (VPC − V
�
PC)gj′ |2

= 2
∑
i,j

|f∗i (VPC)gj |2 +
∑
i

|g∗i (V ⊥PC)gi|2

≤ 2
∑
i,j

|f∗i (VPC)fi‖g∗j (VPC)gj |+ (
∑
i

g∗i (V
⊥
PC)gi)

2

= 2TrV
�
PC TrV ⊥PC + (TrV ⊥PC)2

≤
(√

2

√
TrV

�
PC

√
TrV ⊥PC + TrV ⊥PC

)2

(21)

Let us now bound TrV ⊥PC . We first note that TrV ⊥PC = Tr((I−AA†)VPC(I−AA†)) = Tr(VPC(I−
AA†)) = d1(VPC ,F) (according to lemma 4.1). Let u ∈ Cn be such that, for all i, |ui| = 1 and (Ax0)i =
ui|Ax0|i. We set b = |Ax0|+ bn,PC and V = (b× u)(b× u)∗. As V ∈ H+

n ∩Hb and VPC minimizes (13),

TrV ⊥PC = d1(VPC ,F) ≤ d1(V,F) = d1((Ax0 + bn,PCu)(Ax0 + bn,PCu)∗,F)

= d1((bn,PCu)(bn,PCu)∗,F)

≤ ‖(bn,PCu)(bn,PCu)∗‖1 = Tr(bn,PCu)(bn,PCu)∗ = ‖bn,PC‖22

We also have TrV
�
PC = TrVPC −TrV ⊥PC . This equality comes from the fact that, if {fi} is an hermitian

base of range(A) and {gi} an hermitian base of range(A)⊥, then

TrVPC =
∑
i

fiVPCf
∗
i +

∑
i

giVPCg
∗
i =

∑
i

fiV
�
PCf

∗
i +

∑
i

giV
⊥
PCg

∗
i = TrV

�
PC + TrV ⊥PC

As V ⊥PC � 0, TrV �
PC ≤ TrVPC = ‖|Ax0|+ bn,PC‖22 and, by combining this with relations (21) and (22),

we get

‖VPC − V �
PC‖2 ≤

√
2‖|Ax0|+ bn,PC‖2‖bn,PC‖2 + ‖bn,PC‖22

≤
√

2‖Ax0‖2‖bn,PC‖2 + (1 +
√

2)‖bn,PC‖22

And, by reminding that we assumed ‖bn,PC‖2 ≤ ‖Ax0‖2,

‖V �
PC − (Ax0)(Ax0)

∗‖2 ≥ ‖VPC − (Ax0)(Ax0)
∗‖2 − ‖V �

PC − VPC‖2
> D‖Ax0‖2‖bn,PC‖2 −

√
2‖Ax0‖2‖bn,PC‖2 − (1 +

√
2)‖bn,PC‖22

≥ (D − 2
√

2− 1)‖Ax0‖2‖bn,PC‖2 = 2C‖Ax0‖2‖bn,PC‖2

which concludes the proof.

Lemma A.2. Under the assumptions and notations of Theorem 4.7, we have ‖bn,PL‖2 ≤ 2‖bn,PC‖.
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Proof. Let ei be the i-th vector of Cn’s canonical base. We set ei = fi + gi where fi ∈ range(A) and
gi ∈ range(A)⊥.

VPC ii = e∗iVPCei

= f∗i V
�
PCfi + 2 Re(f∗i VPCgi) + g∗i V

⊥
PCgi

= V
�
PC ii + 2 Re(f∗i VPCgi) + V ⊥PC ii

Because |f∗i VPCgi| ≤
√
f∗i VPCfi

√
g∗i VPCgi =

√
V

�
PC ii

√
V ⊥PC ii,

(

√
V

�
PC ii −

√
V ⊥PC ii)

2 ≤ VPC ii ≤ (

√
V

�
PC ii +

√
V ⊥PC ii)

2

⇒
√
V

�
PC ii −

√
V ⊥PC ii ≤

√
VPC ii ≤

√
V

�
PC ii +

√
V ⊥PC ii

So

|bn,PL,i| = |
√
V

�
PC ii − |Ax0|i|

≤ |
√
V

�
PC ii −

√
VPC ii|+ |

√
VPC ii − |Ax0|i|

≤
√
V ⊥PC ii + bn,PC,i

and, by (22),

‖bn,PL‖2 ≤ ‖
{√

V ⊥PC ii

}
i

‖2 + ‖bn,PC‖2

=
√
TrV ⊥PC + ‖bn,PC‖2 ≤ 2‖bn,PC‖2

which concludes the proof.
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