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Abstract

We use convex relaxation techniques to produce lower bounds on the optimal value of subset
selection problems and generate good approximate solutions. We then explicitly bound the
quality of these relaxations by studying the approximation ratio of sparse eigenvalue relaxations.
Our results are used to improve the performance of branch-and-bound algorithms to produce
exact solutions to subset selection problems.

1 Introduction

We focus here on the subset selection problem., i.e., solving least squares regressions while con-
straining the number of nonzero regression variables to be less than a certain target. This problem
is often called feature selection or sparse least-squares. Its combinatorial nature makes subset se-
lection intractable. Several techniques have been derived to produce good approximate solutions
however, using for example greedy algorithms or sparsity inducing penalties.

Given a design matrix X ∈ Rn×p and a response vector y ∈ Rn, we consider the following
subset selection problem

minimize ‖y −Xw‖2
2

subject to Card(w) ≤ k,
(1)

in the variable w ∈ Rp, where k is a parameter controlling sparsity. It was shown in Natarajan
(1995) that while (1) is NP-Hard, simple greedy algorithms can efficiently produce good approx-
imate solutions. Subset selection can also be understood as ℓ0 norm constrained regression (or
approximation) and a very large body of works focused on replacing the combinatorial ℓ0 norm
with a convex ℓ1 norm constraint, with ℓ1 norm regression usually known as LASSO Tibshirani
(1996). Explicit variable selection consistency results have been derived in certain regimes (see
e.g. Meinshausen et al. (2007)), and recent results Donoho and Tanner (2005); Candes and Tao
(2007) have shown that under certain conditions on the design matrix X, the solutions of the
ℓ1 problem coincided with that of the ℓ0 problem. Several authors have attacked the ℓ0 prob-
lem directly, with Narendra and Fukunaga (1977); Hand (1981); Furnival and Wilson Jr (2000);
Moghaddam et al. (2008) using branch-and-bound techniques to produce exact solutions to prob-
lem (1), with Moghaddam et al. (2008) in particular using interlacing properties of eigenvalues to
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speedup branch-and-bound methods. Solving the ℓ0 problem in (1) even for small values of p has
direct applications in image denoising Elad and Aharon (2006); Mairal et al. (2008).

All the algorithms listed above produce good approximate solutions, hence upper bounds on the
optimal value of the subset selection problem (1). Our first contribution here is to use convex re-
laxation techniques to produce lower bounds on the optimal value of (1). In particular, this result
allows us to bound the suboptimality of approximate solutions and improve the performance of
branch-and-bound algorithms for subset selection. We also use randomization techniques to gener-
ate good solutions to (1), often improving on solutions produced by greedy or LASSO algorithms.
Our next main contribution is to derive approximation bounds on the performance of the sparse
eigenvalue relaxation/randomization algorithm. Finally, we test our algorithms on various subset
selection problems and show that the lower bound derived here considerably reduces the number
of branches required to produce an optimal solution to (1).

The paper is organized as follows. In Section 2 we show how to produce lower bounds on
the optimal value of problem (1) using relaxation bounds on sparse eigenvalues. In Section 3, we
describe greedy, randomization and branch-and-bound algorithms to generate good approximate
solutions w to (1) using the product of the relaxation. In Section 4 we produce a bound on the
approximation ratio of sparse eigenvalues, thus bounding the quality of the approximation of the
subset selection bounds derived in Section 2. Section 5 shows how to efficiently solve our semidefinite
relaxation using first-order methods. Finally, Section 6 presents some numerical experiments.

Notations

Given matrices X,Y ∈ Rn×p, we write X ◦Y their Schur (componentwise) product, while λmax(X)
is the leading eigenvalue of X, ‖X‖1 the sum of absolute values of the coefficients in X and Xi

is the ith column of X. We let Sp be the set of symmetric matrices, and for Y ∈ Sp, we write
diag(Y ) ∈ Rp its diagonal. When y ∈ Rp, diag(y) ∈ Sp denotes de diagonal matrix with diagonal
coefficients equal to the coefficients of y, while Card(y) is the number of nonzero coefficients in y.

2 Relaxation & Lower Bounds

Following d’Aspremont et al. (2008) for example, we first recall how solving problem (1) is equivalent
to computing sparse eigenvalues of a matrix formed using X and y. We let ψ(k) be the optimal
value of the subset selection problem (1), with

ψ(k) = min. ‖y −Xw‖2
2

s.t. Card(w) ≤ k,
(2)

in the variable w ∈ Rp, where k is again a parameter controlling sparsity. We can rewrite this

ψ(k) = min
1

T u≤k
u∈{0,1}p

min
Card(w)≤k

w∈R
p

‖y −X diag(u)w‖2
2

= min
1

T u≤k
u∈{0,1}p

min
w∈R

p
‖y −X diag(u)w‖2

2

= min
1

T u≤k
u∈{0,1}p

min
‖w‖2=1

min
ν∈R

‖y −X diag(u)νw‖2
2,
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which, after minimizing explicitly over ν, becomes

min
1T u≤k

u∈{0,1}p

min
‖w‖2=1

yT y − (yTX diag(u)w)2

wT diag(u)XTX diag(u)w
.

This means that ψ(k) ≤ yT y − ρ if and only if

max
1T u≤k

u∈{0,1}p

max
‖w‖2=1

(yTX diag(u)w)2

wT diag(u)XTX diag(u)w
≤ ρ.

We can rewrite this condition

wXT (yyT − ρI)Xw ≤ 0, when ‖w‖2 ≤ 1, Card(w) ≤ k

which is equivalent to
λk

max(X
T (yyT − ρI)X) ≤ 0. (3)

Here, λk
max(A) is the k sparse maximum eigenvalue of a matrix A ∈ Sp, defined as

λk
max(A) = max. xTAx

s. t. ‖x‖ = 1, Card(x) ≤ k
(4)

in the variable x ∈ Rp. Relaxation bounds for sparse eigenvalues λk
max(A) were derived in

d’Aspremont et al. (2007, 2008), with the bound in d’Aspremont et al. (2007) written

λk
max(A) ≤ maximize TrAZ

subject to ‖Z‖1 ≤ k
Tr(Z) = 1, Z � 0

(5)

in the variable Z ∈ Sp. We can summarize the above derivation in the following proposition.

Proposition 1 Given a design matrix X ∈ Rn×p and a response vector y ∈ Rn, consider the

following subset selection problem

ψ(k) = min. ‖y −Xw‖2
2

s.t. Card(w) ≤ k,

then

ψ(k) ≥ yT y − ρ if and only if λk
max(X

T (yyT − ρI)X) ≤ 0,

where λk
max(·) is the sparse maximum eigenvalue function defined in (4).

3 Approximate Solutions

The relaxation detailed in (5) produces a lower bound on the objective value of problem (1). In
this section, we describe how to use the solution of this relaxation to produce good approximate
solution vectors w to problem (1), hence produce upper bounds on the solution value. We first
describe greedy algorithms which can be used to solve problem (1) independently, or to improve
solutions extracted from convex relaxations.
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3.1 Greedy methods

To simplify notations here, we first define the following function, which computes the solution value
of problem (1) given the support of the solution vector w ∈ Rp. Let I ⊂ [1, p] be a index subset
such that wi = 0 if i /∈ I, we write Ic its complement in [1, p] and let

µ(I) = min
wIc=0

‖y −Xw‖2
2 (6)

in the variable w ∈ Rp. Note that while computing the optimal value of problem (1) is NP-Hard,
computing µ(I) in (6) is equivalent to forming a QR decomposition of the matrix XI ∈ Rn×k

where k is the cardinality of the support set I.
We can greedily construct approximate solutions to (6) by scanning variables at each iteration

to increase (or decrease) the size of the support as in the forward greedy algorithm is detailed in
Algorithm 1. The backward greedy algorithm is similar but starts from the full support [1, p] and
progressively removes points.

Algorithm 1 Forward Greedy Algorithm.

Input: X ∈ Rn×p, y ∈ Rn, target cardinality ktarget.
1: Initialization: I0 = ∅.
2: for i = 1 to ktarget do

3: Compute ik = argmaxi/∈Ik−1
µ(Ik−1 ∪ {i})

4: Set Ik = Ik−1 ∪ {ik} and compute wk as the minimizer of µ(Ik) in (6).
5: end for

Output: Support sets Ik for w in problem (1), with k = 1, . . . , ktarget.

3.2 Randomization

As in the MAXCUT relaxation by Goemans and Williamson (1995) for example, we can use the
matrix solution to the relaxation in (5) to generate good approximate solutions to problem (1).
The solution matrix Z in (5) can be understood as a covariance matrix, and we use it to generate
Gaussian vectors z ∼ N (0, Z). The k indices corresponding to the k largest magnitude coefficients
of the sample vectors z then provide support sets I corresponding to nonzero coefficients in w.
Given these support sets, one then solves for µ(I) in (6) to get upper bounds on the optimal value
of (1) and approximate solution vectors w.

In the next section, we will also consider another much simpler randomization procedure whose
performance can be completely characterized. This second procedure does not require solving
relaxation (5), but simply computing a leading eigenvector x of the matrix A in (4). Good approx-
imate solutions z ∈ Rp to problem (4) are then randomly sampled with zi = 1/

√
k with probability

pi = k|xi|/‖x‖1 and zi = 0 otherwise. We then prune z using a few backward greedy step, whenever
Card(z) > k. While the complexity of this procedure is much lower than that of the full greedy
algorithm, we will see in the next section that it produces solutions of comparable quality.

3.3 Branch-and-bound algorithm

As in Furnival and Wilson Jr (2000); Moghaddam et al. (2008), we can develop a branch-and-bound
algorithm for finding optimal solutions to (1). Suppose we are looking for a vector in Rp with at

4



most k non-zero components, we need to enumerate at most
(p
k

)

subsets to find the best one. We
start by dividing all possible subsets into two branches, one containing the first variable and one
which does not. We further branch each of these branches into two, one containing the second
variable and one not, etc. At each node of the search tree, we have a subproblem that excludes
certain variables (depending on branching decisions made so far). For each subproblem, we generate
lower bounds using Proposition 1 by solving relaxation (5), and upper bounds when there are exactly
k variables left on the branch. We also generate upper bounds by applying a combination of the
greedy algorithms and randomization techniques described above to the solutions of the relaxed
problems. Obviously, we fathom a node whose lower bound exceeds the best upper bound since the
branches diverging from this node cannot contain a better solution than the best solution found so
far.

4 Tightness

The sparse eigenvalue problem in (4) is closely connected to the k-Dense-Subgraph problem de-
scribed in Kortsarz and Peleg (1993); Feige et al. (2001); Feige and Langberg (2001) for example.
The k-Dense-Subgraph problem seeks to find a principal submatrix of A of dimension k with largest
coefficient sum. This is written

max
1T u≤k

uTAu

in the variable u ∈ {0, 1}p. On the other hand, the problem of computing a sparse maximum
eigenvalue can be written

λk
max(A) = max

1T u≤k
max
‖x‖=1

uT (A ◦ xxT )u

in the variables x ∈ Rp, u ∈ {0, 1}p. We thus observe that computing sparse eigenvalues means
solving a k-Dense-Subgraph problem over the result of an inner eigenvalue problem in x. Below, we
first recall an approximation result on the backward greedy algorithm used in Moghaddam et al.
(2008), which applies to positive semidefinite matrices A.

Proposition 2 Let A ∈ Sp, with A � 0 and k > 0 and suppose diag(A) ≥ 0. We have

k

p
λmax(A) ≤ λk

max(A) ≤ λmax(A) (7)

where λk
max(A) is the optimal value of problem (4).

Proof. From (Horn and Johnson, 1985, §4.3.14), when A � 0, we have

λi
max(A) ≥ i

i+ 1
λi+1

max(A)

for any i ∈ [1, p − 1]. A simple recursion then gives the desired result.
When A is not positive semidefinite, we can adapt results from Feige and Seltser (1997) to show

k(k − 1)

p(p − 1)
λmax(A) ≤ λk

max(A) ≤ λmax(A). (8)
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When the coefficients of A are nonnegative, we can obtain approximation bounds for basic
randomization techniques similar to those developed in Feige and Seltser (1997) for the k-Dense-
Subgraph problem. The approximation ratio in this case also decreases as k/p, which shows that the
randomization algorithm has a performance comparable to that of the backward greedy method,
while being significantly cheaper on large scale problems.

Proposition 3 Let A ∈ Sp such that Aij ≥ 0, i, j = 1, . . . , p and k > 1. The sparse eigenvalue

problem defined in (4) was written

λk
max(A) = max. xTAx

s. t. ‖x‖2 ≤ 1, Card(x) ≤ k

in the variable x ∈ Rp. We then have

k

p
µ(k, p)λmax(A) ≤ λk

max(A) ≤ SDPk(A) ≤ λmax(A) (9)

where

µ(k, p) =

(

1 − 2

k1/3

)(

1 − p2

k2
e−p1/9/3

)

−−−→
p→∞

1 (10)

whenever k ≥ p1/3, for p sufficiently large, where SDPk(A) is the optimal value of (5).

Proof. To maintain the parallel with Feige and Seltser (1997), we write Z = xxT , where x is a
leading eigenvector of A. The matrix Z then satisfies TrZ = 1 and Z � 0. The upper bound
in (9) follows directly from d’Aspremont et al. (2007) and we focus here on the lower bound. We
randomly sample vectors z ∈ Rp such that

zi =

{

1/
√
k with probability pi = k

√
Zii/S,

0 otherwise.

where S =
∑p

i=1

√
Zii. We then have

E[zTAz] = Tr(AE[zzT ])

=

p
∑

i,j=1

kAij

√

ZiiZjj/S
2

≥
p

∑

i,j=1

kAij

√

ZiiZjj/p

≥ k

p
Tr(AZ)

where the first inequality uses TrZ = 1 and the last (Cauchy) inequality follows from the fact that
Z � 0 and A ≥ 0. Now, let q = Prob[zTAz ≤ E[zTAz]/β] for some β ≥ 1, we have

E[zTAz] ≤ q
E[zTAz]

β
+ (1 − q)

1TA1

k

which means

q ≤ 1 − β − 1

β1TA1/kE[zTAz] − 1
.
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because 1TA1/k ≥ E[zTAz]. Now, using Chernoff’s inequality as in (Feige and Seltser, 1997, Lem.
4.1) produces

Prob
[

Card(z) − 1T p ≥ t1T p
]

≤ e−
t21

T p
3 ,

so, as in (Feige and Seltser, 1997, Th. 4.1), when k ≥ p1/3

Prob
[

Card(z) ≥ k
(

1 + k−1/3
)]

≤ e−p1/9/3.

We have
1TA1

kE[zTAz]
≤ p1TA1

k2 TrAZ
≤ p2λmax(A)

k2 TrAZ
=
p2

k2

which follows from A ≥ 0, TrAZ = λmax(A), TrZ = 1 with Z � 0. When k ≥ p1/3 and p is large

enough so that p2e−p1/9/3/k2 < 1, we can enforce

β >
1

1 − p2e−p1/9/3/k2

and thus get

β >
ep

1/9/3 − 1

ep
1/9/3 − 1TA1/kE[zTAz]

,

which means, using the bound on q derived above,

1 − q ≥ β − 1

β1TA1/kE[zTAz] − 1
> e−

t21
T p

3 ,

which, combined with the deviation bounds detailed above, yields

Prob[zTAz ≥ E[zTAz]/β] = 1 − q > e−p1/9/3 ≥ Prob
[

Card(z) ≥ k
(

1 + k−1/3
)]

.

This shows that by sampling enough points z, we can generate a vector z0 ∈ Rp such that

zT
0 Az0 ≥ k

βp
Tr(AZ) and Card(z0) ≤ k

(

1 + k−1/3
)

If we remove at most k2/3 variables from z0 using the backward greedy algorithm described in the
previous section, (8) shows that we loose at most a factor

k(k − 1)

(k + k2/3)(k + k2/3 − 1)
= 1 − 2

k1/3
+

3

k2/3
+ o

(

1

k2/3

)

and, when p is large enough, we obtain a point zk such that

zT
k Azk ≥ k

p

(

1 − 2

k1/3

)

Tr(AZ)

β
, ‖zk‖2 ≤ 1 and Card(zk) ≤ k,

which means that zk is a feasible point of problem (4), and yields the desired result.
Note that the randomization procedure detailed in the proof above is simpler than the one we

used in Section 3.2, producing bounds on the performance of the later one is unfortunately much
harder. We can directly extend this last proposition to problems where A has negative coefficients,
but the bound is not proportional in this case.
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Proposition 4 Let A ∈ Sp and k > 1. We have

min

{

0, min
i,j=1,...,p

Aij

}

k +
k

p
µ(k, p)λmax(A) ≤ λk

max(A) ≤ SDPk(A) ≤ λmax(A), (11)

where SDPk(A) is the optimal value of (5) and µ(k, p) is defined in (10), whenever k ≥ p1/3 and

p is sufficiently large.

Proof. The function λk
max(·) defined in (4) is convex as a pointwise maximum of affine functions.

This implies
λk

max(A) ≥ λk
max(A− min

ij
Aij 11T ) + min

ij
Aij(1

Tx)2

for some vector x satisfying ‖x‖2 = 1 and Card(x) ≤ k. The matrix A − minij Aij 11T is
nonnegative and Proposition 3 shows that

λk
max(A− min

ij
Aij 11T ) ≥ k

p
µ(k, p)λmax(A− min

ij
Aij 11T ).

We then get

k

p
µ(k, p)λmax(A− min

ij
Aij 11T ) + min

ij
Aij(1

Tx)2

≥ k

p
µ(k, p)(λmax(A) − min

ij
Aij (1T y)2) + min

ij
Aij(1

Tx)2

≥ k

p
µ(k, p)λmax(A) + min

ij
Aij(1

Tx)2

when minij Aij < 0, which follows from the convexity of λmax(·), where y is a leading eigenvector
of A− minij Aij 11T . We conclude using (1Tx)2 ≤ ‖x‖2

1 ≤ Card(x)‖x‖2
2 = k.

5 Convex Minimization Algorithm

The relaxation in Section 2 meant solving

maximize TrMZ
subject to ‖Z‖1 ≤ k

Tr(Z) = 1, Z � 0

in the variable Z ∈ Sp, where M ∈ Sp was formed as M = XT (yyT − ρI)X. We compute the dual
of this problem by first writing it in a saddle-point format.

min
λ≥0

max
Tr(Z)=1

Z�0

TrMZ + λ(k − ‖Z‖1)

which is also
min
λ≥0

max
Tr(Z)=1

Z�0

min
‖Y ‖∞≤1

TrZ(M + λY ) + kλ
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in the variables Z, Y ∈ Sp. We can rewrite this as

min
Y ∈Sp

max
Tr(X)=1

X�0

TrX(M + Y ) + k‖Y ‖∞

which is equivalent to
min λmax(M + Y ) + k‖Y ‖∞ (12)

in the variable Y ∈ Sp. This is a maximum eigenvalue minimization problem and can be solved
efficiently using for example smooth first-order algorithms as in Nesterov (2003). Given an a priori
bound on suboptimality, the total complexity of obtaining a solution up to accuracy ǫ then grows
as

O

(

kn3
√

log n

ǫ

)

.

Given an approximate solution Y ∈ Sp to the dual, we can reconstruct a corresponding primal
solution Z by first solving

Z = argmax
Tr(Z)=1

Z�0

TrZ(M + Y )

and checking if ‖Z‖1 ≤ k (this last condition will always be satisfied if Y is optimal).

6 Numerical Results

Table 1 presents numerical experiments using branch-and-bound on a set of small artificial problems.
We generate normally distributed matrices X ∈ Rn×p, a random sparse vector w whose cardinality
is at most k, and a righthand side vector y, which is equal to Xw + ǫ, where ǫ ∈ Rn is noise. The
last four columns are related to the performance of the B&B algorithm: the first gives the smallest
number of nodes visited by the algorithm, the second provides the average number of nodes visited
over all instances, the third shows the number of nodes in the complete enumeration tree while
the fourth lists the average speedup. These results suggest that the lower bound obtained in this
paper is effective in fathoming a significant number of nodes in the search tree. Out of these 160
small test instances, the forward greedy algorithm found the optimal solution for 105 problems,
whereas the randomization algorithm followed by a greedy improvement step (which will be referred
as the enhanced randomization algorithm from now on) was able to find the optimal solution for
113 problems. Unfortunately, the authors of Moghaddam et al. (2008) did not release a software
package and the “leaps and bounds” package released by the authors of Furnival and Wilson Jr
(2000) does not output the number of nodes it visits so direct comparisons were not possible.

Table 1: Number of nodes visited by the branch-and-bound algorithm.

p n k No. instances B&B (Best) B&B (Average)
(

p

k

)

Speedup (Avg.)
20 10 2 100 35 194 380 2
30 15 3 50 330 4 799 24 360 5
40 20 4 10 42 236 98 236 2 193 360 22
50 25 4 2 71 552 96 734 5 527 200 57
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On larger instances where p = 100 and n = 50, the cardinality of w was set to 2 and 4. Figure 1
plots lower bounds (Low. Bnd.) on (1) generated by solving relaxation (5), the coarse solution
points (Primal) extracted from the matrix Z solving (5), the solutions (Greedy) obtained by the
forward greedy algorithm, the LARS algorithm Efron et al. (2004), and the enhanced solutions
(Rand) obtained by applying the randomization algorithm detailed in Section 3.2 to the matrix
Z solving (5). We observe that around the true cardinality of w used in generating the problem
instances, the enhanced relaxation sometimes outperforms both the forward greedy algorithm and
LARS and always performs at least as good as the best of these two methods.

1 2 3 4 5 6 7
0

0.5

1

1.5

2

 

 

Low. Bnd.
Primal
Greedy
Lars
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Cardinality k

ψ
(k

)
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Figure 1: Lower bounds and objective values in (1) for various algorithms, versus target cardinality.
The true cardinality is 2 (left) and 4 (right).

More realistic data sets were generated with an image compression setting in mind. X ∈ Rn×p

is now an overcomplete dictionary of Gabor wavelets, and y is an image patch of size r×r obtained
from an actual image. We set r = 10 for all the experiments. We first solve this batch of problems
(for p = 24 and n = 16) with the B&B algorithm where the target cardinality is either 2, 3, or 4. We
then compare the performance of the forward greedy algorithm and the enhanced randomization
algorithm of Section 3.2. Table 2 shows that the modified randomization algorithm finds the optimal
solution in most cases.

Table 2: Number of instanced solved by greedy and randomization algorithms on image data.

Dimensions Greedy Randomization
p n k No. instances No. solved Max. Rel. Gap No. Solved Max. Rel. Gap
24 16 2 10 9 0.22 9 0.90
24 16 3 10 8 0.70 9 0.16
24 16 4 10 8 0.94 9 0.31
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Most of our experiments so far were focused on finding exact solutions to small instances of
problem (1). We also tested the numerical complexity of our methods on larger problems for which
we only sought good upper and lower bounds. Computing times for solving relaxation (5) on
increasingly large Gaussian random problems (generated as above) are reported in Table 3.

Table 3: CPU time versus problem size.

Problem size p CPU time
100 0 h 00 m 07 s
250 0 h 01 m 32 s
500 0 h 10 m 19 s

1000 1 h 22 m 59 s
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