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Ranking & pairwise comparisons

Given n items, and pairwise comparisons

itemi � itemj, for (i, j) ∈ S,

find a global ranking π(i) of these items

itemπ(1) � itemπ(2) � . . . � itemπ(n)
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Ranking & pairwise comparisons

Pairwise comparisons?

� Some data sets naturally produce pairwise comparisons, e.g. tournaments,
ecommerce transactions, etc.

� Comparing items is often more intuitive than ranking them directly.

Hot or Not? Rank images by ”hotness”. . .
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Ranking & pairwise comparisons

[Jamieson and Nowak, 2011]
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Ranking & pairwise comparisons

Classical problem, many algorithms (roughly sorted by increasing complexity)

� Scores. Borda, Elo rating system (chess), TrueSkill [Herbrich et al., 2006], etc.

� Spectral methods. [Dwork et al., 2001, Negahban et al., 2012]

� MLE based algorithms. [Bradley and Terry, 1952, Luce, 1959, Herbrich
et al., 2006]

� Learning to rank. Learn scoring functions.

See forthcoming book by Milan Vojnovic on the subject. . .
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Ranking & pairwise comparisons

Various data settings. . .

� A partial subset of preferences is observed.

� Preferences are measured actively [Ailon, 2011, Jamieson and Nowak, 2011].

� Preferences are fully observed but arbitrarily corrupted.

� Repeated noisy observations.

Various performance metrics. . .

� Minimize the number of disagreements i.e. # edges inconsistent with the
global ordering, e.g. PTAS for min. Feedback Arc Set (FAS) [Kenyon-Mathieu
and Schudy, 2007]

� Maximize likelihood given a model on pairwise observations, e.g. [Bradley
and Terry, 1952, Luce, 1959]

� Convex loss in ranking SVMs

� . . .
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Scores

� Borda count. Dates back at least to 18th century. Players are ranked
according to the number of wins divided by the total number of comparisons
[Ammar and Shah., 2011, Wauthier et al., 2013].

� Also fair-bets, invariant scores, Masey, Maas, Colley, etc.

� Elo rating system. (Chess, ∼1970)

◦ Players have skill levels µi.

◦ Probability of player i beating j given by H(µi − µj) (e.g. Gaussian CDF).

◦ After each game, skills updated to

µi := µi + c(wij −H(µi − µj))

wij ∈ {0, 1}, H(·) e.g. Gaussian CDF. Sum of all skills remains constant,
skills are transferred from losing players to winning ones.

� TrueSkill rating system. [Herbrich et al., 2006] Similar in spirit to Elo, but
player skills are represented by a Gaussian distribution.

Very low numerical cost.
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Spectral algorithms

Spectral algorithms: Markov chain on a graph.

Similar to HITS [Kleinberg, 1999] or Pagerank [Page et al., 1998]. . .

� A random walk goes through a graph where each node corresponds to an item
or player to rank.

� Likelihood of going from i to j depends on how often i lost to j, so neighbors
with more wins will be visited more frequently.

� Ranking is based on asymptotic frequency of visits, i.e. on the stationary
distribution.

Simple extremal eigenvalue computation, low complexity (roughly O(n2 log n) in
the dense case). See Dwork et al. [2001], Negahban et al. [2012] for more details.
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Maximum Likelihood Estimation

Model pairwise comparisons. [Bradley and Terry, 1952, Luce, 1959, Herbrich
et al., 2006]

� Comparisons are generated according to a generalized linear model (GLM).

� Repeated observations, independent. Item i is preferred over item j with
probability

Pi,j = H(νi − νj)
where

◦ ν ∈ Rn is a vector of skills.

◦ H : R→ [0, 1] is an increasing function.

◦ H(−x) = 1−H(x), and limx→−∞H(x) = 0 and limx→∞H(x) = 1.

H(·) is a CDF. Logistic in the Bradley-Terry-Luce model: H(x) = 1/(1 + e−x).
Also: Gaussian (Thurstone), Laplace, etc.

Estimate ν by maximizing likelihood. (using e.g. fixed point algo)
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Today

Current tradeoffs.

� Scoring methods are exact in the noiseless case, but not very robust.

� Spectral methods are more robust, but no exact recovery guarantee (error
bounds in BTL by [Negahban et al., 2012]).

� Learning to rank methods are very expensive.

Today

� Connect ranking from pairwise preferences to ranking based on similarity.

� Solution also given by spectral algorithm, but completely different from the
“Markov chain on a graph” argument.
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Outline

� Introduction

� Seriation

� From ranking to seriation

� Robustness

� Numerical results
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Seriation

The Seriation Problem.

� Pairwise similarity information Aij on n variables.

� Suppose the data has a serial structure, i.e. there is an order π such that

Aπ(i)π(j) decreases with |i− j| (R-matrix)

Recover π?
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A Spectral Solution

Spectral Clustering. Define the Laplacian of A as LA = diag(A1)−A, the
Fiedler vector of A is written

f = argmin
1Tx=0,
‖x‖2=1

xTLAx.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose A ∈ Sn is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that Π ∈ P is such that
the permuted Fielder vector Πv is monotonic, then ΠAΠT is an R-matrix.
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Shotgun Gene Sequencing

C1P has direct applications in shotgun gene sequencing.

� Genomes are cloned multiple times and randomly cut into shorter reads
(∼ 400bp), which are fully sequenced.

� Reorder the reads to recover the genome.

(from Wikipedia. . . )
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From Ranking to Seriation

Similarity matrices from pairwise comparisons.

� Given pairwise comparisons C ∈ {−1, 0, 1}n×n with

Ci,j =

 1 if i is ranked higher than j
0 if i and j are not compared or in a draw
−1 if j is ranked higher than i

� Define the pairwise similarity matrix Smatch as

Smatch
i,j =

n∑
k=1

(
1 + Ci,kCj,k

2

)
.

� Smatch
i,j counts the number of matching comparisons between i and j with

other reference items k.

In a tournament setting: players that beat the same players and are beaten by the
same players should have a similar ranking. . .
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From Ranking to Seriation

[Fogel et al., 2014]

Similarity from preferences. Given all comparisons Ci,j ∈ {−1, 0, 1} between
items ranked linearly, the similarity matrix Smatch is a strict R-matrix and

Smatch
ij = n− |i− j|

for all i, j = 1, . . . , n.

This means that, given all pairwise pairwise comparions, spectral clustering on
Smatch will recover the true ranking.
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From Ranking to Seriation

Similarity matrices in the generalized linear model.

� Observations are independent, and item i is preferred over item j with
probability

Pi,j = H(νi − νj)
with H(·) CDF.

� We estimate the matrix

Sglm
i,j →

n∑
k=1

(
1− |Pi,k − Pj,k|

2

)
.

based on (repeated) preference observations.
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From Ranking to Seriation

[Fogel et al., 2014]

Similarity from preferences in the GLM. If the items are ordered by decreasing
values of the skill parameters, the similarity matrix Sglm is a strict R matrix.

This means that, given enough samples on pairwise comparions, spectral
clustering on Sglm will recover the true ranking.

Alex d’Aspremont Simons Institute, Berkeley, September 2014, 19/35



Outline

� Introduction

� Seriation

� From ranking to seriation

� Robustness

� Numerical results

Alex d’Aspremont Simons Institute, Berkeley, September 2014, 20/35



Robustness

[Fogel et al., 2014]

Robustness to corrupted entries.

� Given all comparisons Cs,t ∈ {−1, 1} between items ordered 1, . . . , n.

� Suppose the sign of one comparison Ci,j is switched, with i < j.

If j − i > 2 then Smatch remains a strict-R matrix.

In this case, the score vector w has ties between items i and i+ 1 and items j
and j − 1.
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Robustness

A graphical argument. . .

Shift by +1 

Shift by -1 

i i+1 jj-1

i

i+1

j
j-1

Strict R-constraints 

The matrix of pairwise comparisons C (far left).

The corresponding similarity matrix Smatch is a strict R-matrix (center left).

The same Smatch similarity matrix with comparison (3,8) corrupted (center right).
With one corrupted comparison, Smatch keeps enough strict R-constraints to
recover the right permutation. (far right).
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Robustness

Generalizes to several errors. . .

[Fogel et al., 2014]

Robustness to corrupted entries. Given a comparison matrix for a set of n items
with m corrupted comparisons selected uniformly at random from the set of all
possible item pairs. The probability of recovery p(n,m) using seriation on Smatch

satisfies p(n,m) ≥ 1− δ, provided that m = O(
√
δn).

� One corrupted comparison is enough to create ambiguity in scoring arguments.

� Need Ω(n2) comparisons for exact recovery [Jamieson and Nowak, 2011].

� No exact recovery results for Markov Chain type spectral methods.
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Robustness

We can go bit further. . . .

C Smatch

� Form Smatch from consistent, ordered comparisons.

� Much simpler to analyze than MC methods: using results from [Von Luxburg
et al., 2008], we can compute its Fiedler vector asymptotically.

� The Fiedler vector of the nonsymmetric normalized Laplacian is also given
by xi = c i, i = 1, . . . , n where c > 0, for finite n.

� The spectral gap between the first three eigenvalues can be controlled.
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Robustness

� Asymptotically: Smatch/n→ k(x, y) = 1− |x− y| for x, y ∈ [0, 1].

� The degree function is then d(x) =
∫ 1

0
k(x, y)dy = −x2 + x+ 1/2.

� The range of d(x) is [0.5, 0.75] and the bulk of the spectrum is contained in
this interval.

� The Fiedler vector f with eigenvalue λ satisfies

f ′′(x)(1/2− λ+ x− x2) + 2f ′(x)(1− 2x) = 0.

� We can also show that the second smallest eigenvalues of the unnormalized
Laplacian satisfies λ2 < 2/5, which is outside of this range.

Von Luxburg et al. [2008] then show that the unnormalized Laplacian converges
and that its second eigenvalue is simple. Idem for the normalized Laplacian.

This spectral gap means we can use perturbation analysis to study recovery.
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Robustness

� Perturbation analysis shows that

‖f − f̂‖2 ≤
√

2
‖L− L̂‖2

min{λ2 − λ1, λ3 − λ2}

where L, f are the true Laplacian (resp. Fiedler vector) and L̂, f̂ the perturbed
ones.

� In fact, we have

f̂ = f −R2Ef + o(‖E‖2), with E = (L− L̂)

where R2 is the resolvent

R2 =
∑
j 6=2

1

λj − λ2
uju

T
j ,

� If ‖f − f̂‖∞ is smaller than the gap between coefficients in the leading
eigenvector, ranking recovery remains exact.
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Robustness

With missing observations, C is subsampled, which means that the error E can
be controlled as in Achlioptas and McSherry [2007].

� Take a symmetric matrix M ∈ Sn whose entries M are independently sampled
as

Sij =

{
Mij/p with probability p

0 otherwise,

where p ∈ [0, 1].

� Theorem 1.4 in Achlioptas and McSherry [2007] shows that when n is large
enough

‖M − S‖2 ≤ 4‖M‖∞
√
n/p,

holds with high probability.
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Robustness
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Numerical results
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Uniform noise/corruption. Kendall τ (higher is better) for SerialRank (SR, full
red line), row-sum (PS, [Wauthier et al., 2013] dashed blue line), rank
centrality (RC [Negahban et al., 2012] dashed green line), and maximum
likelihood (BTL [Bradley and Terry, 1952], dashed magenta line).
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Numerical results
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Percentage of upsets (i.e. disagreeing comparisons, lower is better), for various
values of k and ranking methods, on TopCoder (left) and football data (right).
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Numerical results
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values of k and ranking methods, on England Premier League 2011-2012 season
(left) and 2012-2013 season (right).
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Football teams

Official Row-sum RC BTL SerialRank Semi-Supervised

Man City (86) Man City Liverpool Man City Man City Man City
Liverpool (84) Liverpool Arsenal Liverpool Chelsea Chelsea
Chelsea (82) Chelsea Man City Chelsea Liverpool Liverpool
Arsenal (79) Arsenal Chelsea Arsenal Arsenal Everton
Everton (72) Everton Everton Everton Everton Arsenal
Tottenham (69) Tottenham Tottenham Tottenham Tottenham Tottenham
Man United (64) Man United Man United Man United Southampton Man United
Southampton (56) Southampton Southampton Southampton Man United Southampton
Stoke (50) Stoke Stoke Stoke Stoke Newcastle
Newcastle (49) Newcastle Newcastle Newcastle Swansea Stoke
Crystal Palace (45) Crystal Palace Swansea Crystal Palace Newcastle West Brom
Swansea (42) Swansea Crystal Palace Swansea West Brom Swansea
West Ham (40) West Brom West Ham West Brom Hull Crystal Palace
Aston Villa (38) West Ham Hull West Ham West Ham Hull
Sunderland (38) Aston Villa Aston Villa Aston Villa Cardiff West Ham
Hull (37) Sunderland West Brom Sunderland Crystal Palace Fulham
West Brom (36) Hull Sunderland Hull Fulham Norwich
Norwich (33) Norwich Fulham Norwich Norwich Sunderland
Fulham (32) Fulham Norwich Fulham Sunderland Aston Villa
Cardiff (30) Cardiff Cardiff Cardiff Aston Villa Cardiff

Ranking of teams in the England premier league season 2013-2014.
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Jobs

Recruiting postdocs (one or two years) at Ecole Normale Superieure in Paris.

Send your resume to aspremon@di.ens.fr.
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Conclusion

Very diverse set of algorithmic solutions. . .

� Here: new class of spectral methods based on seriation results.

� Exact recovery results are easy to derive.

� Almost completely explicit perturbation analysis.

� More robust in certain settings.

Coming soon. . .

� Kendall τ type bounds on approximate recovery.

� Better characterize errors with close to O(n log n) observations.

NIPS 2014, ArXiv. . .
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