A Spectral Algorithm for Ranking using Seriation

Alex d’Aspremont, CNRS & ENS, Paris.

with Fajwel Fogel, Milan Vojnovic,
Ecole Polytechnique, Microsoft Research.
Given \(n \) items, and \textbf{pairwise comparisons} \(\text{item}_i \succ \text{item}_j \), for \((i, j) \in S\),

find a global \textbf{ranking} \(\pi(i) \) of these items

\[
\text{item}_{\pi(1)} \succ \text{item}_{\pi(2)} \succ \ldots \succ \text{item}_{\pi(n)}
\]
Pairwise comparisons?

- Some data sets naturally produce pairwise comparisons, e.g. tournaments, ecommerce transactions, etc.
- Comparing items is often more intuitive than ranking them directly.

Hot or Not? Rank images by "hotness"...
Ranking & pairwise comparisons

[Jamieson and Nowak, 2011]
Classical problem, many algorithms \textit{(roughly sorted by increasing complexity)}

- **Scores.** Borda, Elo rating system (chess), TrueSkill [Herbrich et al., 2006], etc.
- **Spectral methods.** [Dwork et al., 2001, Negahban et al., 2012]
- **MLE based algorithms.** [Bradley and Terry, 1952, Luce, 1959, Herbrich et al., 2006]
- **Learning to rank.** Learn scoring functions.

See forthcoming book by Milan Vojnovic on the subject...
Ranking & pairwise comparisons

Various data settings.

- A partial subset of preferences is observed.
- Preferences are measured actively [Ailon, 2011, Jamieson and Nowak, 2011].
- Preferences are fully observed but arbitrarily corrupted.
- Repeated noisy observations.

Various performance metrics.

- Minimize the number of disagreements i.e. $\#$ edges inconsistent with the global ordering, e.g. PTAS for min. Feedback Arc Set (FAS) [Kenyon-Mathieu and Schudy, 2007]
- Maximize likelihood given a model on pairwise observations, e.g. [Bradley and Terry, 1952, Luce, 1959]
- Convex loss in ranking SVMs
- ...
Scores

- **Borda count.** Dates back at least to 18th century. Players are ranked according to the number of wins divided by the total number of comparisons [Ammar and Shah., 2011, Wauthier et al., 2013].

- Also **fair-bets, invariant scores, Masey, Maas, Colley**, etc.

- **Elo rating system.** (Chess, \(\sim 1970\))

 - Players have skill levels \(\mu_i\).
 - Probability of player \(i\) beating \(j\) given by \(H(\mu_i - \mu_j)\) (e.g. Gaussian CDF).
 - After each game, skills updated to

\[
\mu_i := \mu_i + c(w_{ij} - H(\mu_i - \mu_j))
\]

\(w_{ij} \in \{0, 1\}\), \(H(\cdot)\) e.g. Gaussian CDF. Sum of all skills remains constant, skills are transferred from losing players to winning ones.

- **TrueSkill rating system.** [Herbrich et al., 2006] Similar in spirit to Elo, but player skills are represented by a Gaussian distribution.

Very low numerical cost.
Spectral algorithms

Spectral algorithms: Markov chain on a graph.

Similar to HITS [Kleinberg, 1999] or Pagerank [Page et al., 1998]. . .

- A **random walk** goes through a graph where each node corresponds to an item or player to rank.
- Likelihood of going from i to j depends on how often i lost to j, so neighbors with more wins will be visited more frequently.
- Ranking is based on asymptotic frequency of visits, i.e. on the **stationary distribution**.

Simple extremal eigenvalue computation, low complexity (roughly $O(n^2 \log n)$ in the dense case). See Dwork et al. [2001], Negahban et al. [2012] for more details.
Model pairwise comparisons. [Bradley and Terry, 1952, Luce, 1959, Herbrich et al., 2006]

- Comparisons are generated according to a generalized linear model (GLM).
- Repeated observations, independent. Item \(i \) is preferred over item \(j \) with probability
 \[
 P_{i,j} = H(\nu_i - \nu_j)
 \]
 where
 - \(\nu \in \mathbb{R}^n \) is a vector of skills.
 - \(H: \mathbb{R} \to [0, 1] \) is an increasing function.
 - \(H(-x) = 1 - H(x) \), and \(\lim_{x \to -\infty} H(x) = 0 \) and \(\lim_{x \to \infty} H(x) = 1 \).

\(H(\cdot) \) is a CDF. Logistic in the Bradley-Terry-Luce model: \(H(x) = 1/(1 + e^{-x}) \).
Also: Gaussian (Thurstone), Laplace, etc.

Estimate \(\nu \) by maximizing likelihood. (using e.g. fixed point algo)
Current tradeoffs.

- Scoring methods are exact in the noiseless case, but not very robust.
- Spectral methods are more robust, but no exact recovery guarantee (error bounds in BTL by [Negahban et al., 2012]).
- Learning to rank methods are very expensive.

Today

- Connect ranking from **pairwise preferences** to ranking based on **similarity**.
- Solution also given by spectral algorithm, but completely different from the “Markov chain on a graph” argument.
Outline

- Introduction
- **Seriation**
 - From ranking to seriation
 - Robustness
- Numerical results
Seriation

The Seriation Problem.

- Pairwise similarity information A_{ij} on n variables.
- Suppose the data has a serial structure, i.e. there is an order π such that

$$A_{\pi(i)\pi(j)} \text{ decreases with } |i - j| \quad (R\text{-matrix})$$

Recover π?

![Similarity matrix](image1)
![Input](image2)
![Reconstructed](image3)

Alex d’Aspremont

Simons Institute, Berkeley, September 2014, 12/35
A Spectral Solution

Spectral Clustering. Define the Laplacian of A as $L_A = \text{diag}(A1) - A$, the Fiedler vector of A is written

$$f = \arg\min_{1^T x = 0, \|x\|_2 = 1} x^T L_A x.$$

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose $A \in \mathbb{S}_n$ is a pre-R matrix, with a simple Fiedler value whose Fiedler vector f has no repeated values. Suppose that $\Pi \in \mathcal{P}$ is such that the permuted Fiedler vector Πv is monotonic, then $\Pi A \Pi^T$ is an R-matrix.
C1P has direct applications in shotgun gene sequencing.

- Genomes are cloned multiple times and randomly cut into shorter reads (∼ 400bp), which are fully sequenced.
- Reorder the reads to recover the genome.

(from Wikipedia. . .)
Outline

- Introduction
- Seriation
- From ranking to seriation
- Robustness
- Numerical results
From Ranking to Seriation

Similarity matrices from pairwise comparisons.

- Given pairwise comparisons \(C \in \{-1, 0, 1\}^{n \times n} \) with

 \[
 C_{i,j} = \begin{cases}
 1 & \text{if } i \text{ is ranked higher than } j \\
 0 & \text{if } i \text{ and } j \text{ are not compared or in a draw} \\
 -1 & \text{if } j \text{ is ranked higher than } i
 \end{cases}
 \]

- Define the pairwise similarity matrix \(S_{\text{match}} \) as

 \[
 S_{i,j}^{\text{match}} = \sum_{k=1}^{n} \left(\frac{1 + C_{i,k}C_{j,k}}{2} \right).
 \]

 \(S_{i,j}^{\text{match}} \) counts the number of matching comparisons between \(i \) and \(j \) with other reference items \(k \).

In a tournament setting: players that beat the same players and are beaten by the same players should have a similar ranking....
Similarity from preferences. Given all comparisons $C_{i,j} \in \{-1, 0, 1\}$ between items ranked linearly, the similarity matrix S^{match} is a strict R-matrix and

$$S_{ij}^{\text{match}} = n - |i - j|$$

for all $i, j = 1, \ldots, n$.

This means that, given all pairwise comparisons, spectral clustering on S^{match} will recover the true ranking.
Similarity matrices in the generalized linear model.

- Observations are independent, and item i is preferred over item j with probability
 $$P_{i,j} = H(\nu_i - \nu_j)$$
 with $H(\cdot)$ CDF.
- We estimate the matrix
 $$S_{i,j}^{\text{glm}} \to \sum_{k=1}^{n} \left(1 - \frac{|P_{i,k} - P_{j,k}|}{2} \right).$$
 based on (repeated) preference observations.
From Ranking to Seriation

[Fogel et al., 2014]

Similarity from preferences in the GLM. *If the items are ordered by decreasing values of the skill parameters, the similarity matrix S^{glm} is a strict R matrix.*

This means that, given enough samples on pairwise comparisons, spectral clustering on S^{glm} will recover the true ranking.
Outline

- Introduction
- Seriation
- From ranking to seriation
- Robustness
- Numerical results
Robustness to corrupted entries.

- Given all comparisons $C_{s,t} \in \{-1, 1\}$ between items ordered $1, \ldots, n$.
- Suppose the sign of one comparison $C_{i,j}$ is switched, with $i < j$.

If $j - i > 2$ then S_{match} remains a strict-R matrix.

In this case, the score vector w has ties between items i and $i + 1$ and items j and $j - 1$.
Robustness

A graphical argument...

The matrix of pairwise comparisons C (far left).

The corresponding similarity matrix S^{match} is a strict R-matrix (center left).

The same S^{match} similarity matrix with comparison (3,8) corrupted (center right). With one corrupted comparison, S^{match} keeps enough strict R-constraints to recover the right permutation. (far right).
Robustness

Generalizes to several errors. . .

[Fogel et al., 2014]

Robustness to corrupted entries. Given a comparison matrix for a set of \(n \) items with \(m \) corrupted comparisons selected uniformly at random from the set of all possible item pairs. The probability of recovery \(p(n, m) \) using seriation on \(S_{\text{match}} \) satisfies \(p(n, m) \geq 1 - \delta \), provided that \(m = O(\sqrt{\delta n}) \).

- One corrupted comparison is enough to create ambiguity in scoring arguments.
- Need \(\Omega(n^2) \) comparisons for exact recovery [Jamieson and Nowak, 2011].
- No exact recovery results for Markov Chain type spectral methods.
Robustness

We can go bit further. . . .

Form S^{match} from consistent, ordered comparisons.

Much simpler to analyze than MC methods: using results from [Von Luxburg et al., 2008], we can compute its Fiedler vector asymptotically.

The Fiedler vector of the nonsymmetric normalized Laplacian is also given by $x_i = c i$, $i = 1, \ldots, n$ where $c > 0$, for finite n.

The spectral gap between the first three eigenvalues can be controlled.
Robustness

- Asymptotically: $S_{\text{match}} / n \to k(x, y) = 1 - |x - y|$ for $x, y \in [0, 1]$.
- The degree function is then $d(x) = \int_0^1 k(x, y) dy = -x^2 + x + 1/2$.
- The range of $d(x)$ is $[0.5, 0.75]$ and the bulk of the spectrum is contained in this interval.
- The Fiedler vector f with eigenvalue λ satisfies
 \[
 f''(x)(1/2 - \lambda + x - x^2) + 2f'(x)(1 - 2x) = 0.
 \]
- We can also show that the second smallest eigenvalues of the unnormalized Laplacian satisfies $\lambda_2 < 2/5$, which is outside of this range.

Von Luxburg et al. [2008] then show that the unnormalized Laplacian converges and that its second eigenvalue is simple. Idem for the normalized Laplacian.

This spectral gap means we can use **perturbation analysis** to study recovery.
Robustness

- **Perturbation analysis** shows that

\[\|f - \hat{f}\|_2 \leq \sqrt{2} \frac{\|L - \hat{L}\|_2}{\min\{\lambda_2 - \lambda_1, \lambda_3 - \lambda_2\}} \]

where \(L, f\) are the true Laplacian (resp. Fiedler vector) and \(\hat{L}, \hat{f}\) the perturbed ones.

- In fact, we have

\[\hat{f} = f - R_2Ef + o(\|E\|_2), \quad \text{with } E = (L - \hat{L}) \]

where \(R_2\) is the resolvent

\[R_2 = \sum_{j \neq 2} \frac{1}{\lambda_j - \lambda_2} u_j u_j^T, \]

- If \(\|f - \hat{f}\|_\infty\) is **smaller than the gap between coefficients** in the leading eigenvector, ranking recovery remains exact.
Robustness

With missing observations, C is **subsampled**, which means that the error E can be controlled as in Achlioptas and McSherry [2007].

- Take a symmetric matrix $M \in \mathbb{S}_n$ whose entries M are independently sampled as

 \[
 S_{ij} = \begin{cases}
 M_{ij}/p & \text{with probability } p \\
 0 & \text{otherwise},
 \end{cases}
 \]

 where $p \in [0, 1]$.

- Theorem 1.4 in Achlioptas and McSherry [2007] shows that when n is large enough

 \[
 \|M - S\|_2 \leq 4\|M\|_\infty \sqrt{n/p},
 \]

 holds with high probability.
Comparing the asymptotic Fiedler vector, and the true one for $n = 100$.
Outline

- Introduction
- Seriation
- From ranking to seriation
- Robustness
- Numerical results
Uniform noise/corruption. Kendall τ (higher is better) for **SerialRank** (SR, full red line), **row-sum** (PS, [Wauthier et al., 2013] dashed blue line), **rank centrality** (RC [Negahban et al., 2012] dashed green line), and **maximum likelihood** (BTL [Bradley and Terry, 1952], dashed magenta line).
Percentage of upsets (i.e. disagreeing comparisons, lower is better), for various values of k and ranking methods, on TopCoder (left) and football data (right).
Percentage of upsets (i.e. disagreeing comparisons, lower is better), for various values of k and ranking methods, on England Premier League 2011-2012 season (left) and 2012-2013 season (right).
<table>
<thead>
<tr>
<th>Official</th>
<th>Row-sum</th>
<th>RC</th>
<th>BTL</th>
<th>SerialRank</th>
<th>Semi-Supervised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man City (86)</td>
<td>Man City</td>
<td>Liverpool</td>
<td>Man City</td>
<td>Man City</td>
<td>Man City</td>
</tr>
<tr>
<td>Liverpool (84)</td>
<td>Liverpool</td>
<td>Arsenal</td>
<td>Liverpool</td>
<td>Liverpool</td>
<td>Chelsea</td>
</tr>
<tr>
<td>Chelsea (82)</td>
<td>Chelsea</td>
<td>Man City</td>
<td>Chelsea</td>
<td>Chelsea</td>
<td>Liverpool</td>
</tr>
<tr>
<td>Arsenal (79)</td>
<td>Arsenal</td>
<td>Chelsea</td>
<td>Arsenal</td>
<td>Arsenal</td>
<td>Liverpool</td>
</tr>
<tr>
<td>Everton (72)</td>
<td>Everton</td>
<td>Everton</td>
<td>Everton</td>
<td>Everton</td>
<td>Everton</td>
</tr>
<tr>
<td>Tottenham (69)</td>
<td>Tottenham</td>
<td>Tottenham</td>
<td>Tottenham</td>
<td>Tottenham</td>
<td>Everton</td>
</tr>
<tr>
<td>Man United (64)</td>
<td>Man United</td>
<td>Man United</td>
<td>Man United</td>
<td>Man United</td>
<td>Everton</td>
</tr>
<tr>
<td>Southampton (56)</td>
<td>Southampton</td>
<td>Southampton</td>
<td>Southampton</td>
<td>Southampton</td>
<td>Man United</td>
</tr>
<tr>
<td>Stoke (50)</td>
<td>Stoke</td>
<td>Stoke</td>
<td>Stoke</td>
<td>Stoke</td>
<td>Southmton</td>
</tr>
<tr>
<td>Newcastle (49)</td>
<td>Newcastle</td>
<td>Newcastle</td>
<td>Newcastle</td>
<td>Newcastle</td>
<td>Newcastle</td>
</tr>
<tr>
<td>Crystal Palace (45)</td>
<td>Crystal Palace</td>
<td>Crystal Palace</td>
<td>Crystal Palace</td>
<td>Crystal Palace</td>
<td>Crystal Palace</td>
</tr>
<tr>
<td>Swansea (42)</td>
<td>Swansea</td>
<td>West Ham</td>
<td>West Brom</td>
<td>West Brom</td>
<td>West Brom</td>
</tr>
<tr>
<td>West Ham (40)</td>
<td>West Ham</td>
<td>Aston Villa</td>
<td>Aston Villa</td>
<td>Aston Villa</td>
<td>West Ham</td>
</tr>
<tr>
<td>Aston Villa (38)</td>
<td>Aston Villa</td>
<td>Sunderland</td>
<td>Sunderland</td>
<td>Sunderland</td>
<td>Cardiff</td>
</tr>
<tr>
<td>Sunderland (38)</td>
<td>Sunderland</td>
<td>West Brom</td>
<td>West Brom</td>
<td>West Brom</td>
<td>Crystal Palace</td>
</tr>
<tr>
<td>Hull (37)</td>
<td>Hull</td>
<td>Hull</td>
<td>Sunderland</td>
<td>Hull</td>
<td>Hull</td>
</tr>
<tr>
<td>West Brom (36)</td>
<td>Norwich</td>
<td>Norwich</td>
<td>Fulham</td>
<td>Norwich</td>
<td>Fulham</td>
</tr>
<tr>
<td>Norwich (33)</td>
<td>Fulham</td>
<td>Norwich</td>
<td>Fulham</td>
<td>Norwich</td>
<td>Norich</td>
</tr>
<tr>
<td>Fulham (32)</td>
<td>Cardiff</td>
<td>Cardiff</td>
<td>Cardiff</td>
<td>Cardiff</td>
<td>Sunderland</td>
</tr>
<tr>
<td>Cardiff (30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cardiff</td>
</tr>
</tbody>
</table>

Jobs

Recruiting postdocs (one or two years) at Ecole Normale Superieure in Paris.

Send your resume to aspremon@di.ens.fr.
Conclusion

Very diverse set of algorithmic solutions.

- Here: new class of spectral methods based on seriation results.
- Exact recovery results are easy to derive.
- Almost completely explicit perturbation analysis.
- More robust in certain settings.

Coming soon.

- Kendall τ type bounds on approximate recovery.
- Better characterize errors with close to $O(n \log n)$ observations.

References

