Phase Retrieval,
New Results on an Old Problem.

Alex d’Aspremont, CNRS & École Normale Supérieure, Paris,

with Fajwel Fogel, Irène Waldspurger and Stéphane Mallat, ENS.

Support from ERC (project SIPA).
Sensors only record the **magnitude** of diffracted rays, and lose the **phase**.

The phase is required to invert the 2D Fourier transform and reconstruct the sample density.
Focus on the **phase retrieval** problem, i.e. solve

\[
\begin{align*}
\text{find} & \quad x \\
\text{such that} & \quad |\langle a_i, x \rangle|^2 = b_i^2, \quad i = 1, \ldots, n \\
\end{align*}
\]

in the variable \(x \in \mathbb{C}^p\).

- Reconstruct a signal \(x\) from the **amplitude** of \(n\) linear measurements \(A\).
- Easy to write, very **hard to solve** in general.
- We seek a **tractable** procedure, i.e. a polynomial time algorithm with explicit approximation and complexity guarantees.
We want more than uniqueness of the solution.

- A tractable algorithm to solve the phasing problem in polynomial-time.
- A solution that is stable and robust to noise.

For certain measurement matrices A, this is indeed possible...
Greedy algorithm [Gerchberg and Saxton, 1972], find $y = Ax$ given $b = |Ax|$

Input: An initial $y^1 \in \mathbb{C}^n$, i.e. such that $|y^1| = b$.

1: for $k = 1, \ldots, N - 1$ do

2: Set $w = AA^\dagger y^k$, \hspace{1cm} (project y on $\mathcal{R}(A)$.)

3: Set $y_{k+1}^i = b_i \frac{w}{|w|}$, \hspace{1cm} (match $|y|$ with b.)

4: end for

Output: $y_N \in \mathbb{C}^n$.

Similar to alternating projections. Sometimes it works, sometimes it doesn’t...
Given user ratings

Make personalized recommendations for other movies. . .
Introduction: collaborative prediction

- A linear prediction model
 \[\text{rating}_{ij} = u_i^T v_j \]
 where \(u_i \) represents user characteristics and \(v_j \) movie features.

- Collaborative prediction is a matrix factorization problem
 \[M = U^T V \]
 \(U \in \mathbb{R}^{n \times k} \) user types, \(V \in \mathbb{R}^{k \times m} \) movie features, \(M \in \mathbb{R}^{n \times m} \) ratings.

- Assume \(M \) is low rank.
Introduction: matrix completion

Matrix completion. [Recht et al., 2007, Candes and Recht, 2008, Candes and Tao, 2010].

- The NETFLIX problem can be written as

\[
\begin{align*}
\text{Minimize} & \quad \text{Rank}(X) \\
\text{subject to} & \quad \text{Tr}(A_i X) = b_i, \quad i = 1, \ldots, n \\
& \quad X \succeq 0
\end{align*}
\]

- For certain matrices \(A_i \), it suffices to solve

\[
\begin{align*}
\text{Minimize} & \quad \text{Tr}(X) \\
\text{subject to} & \quad \text{Tr}(A_i X) = b_i, \quad i = 1, \ldots, n \\
& \quad X \succeq 0
\end{align*}
\]

which is a convex problem in \(X \in S_n \).
Introduction: phase retrieval as a SDP

- [Chai et al., 2011, Candes et al., 2013a], lifting technique from [Shor, 1987]

\[|\langle a_i, x \rangle|^2 = b_i^2 \iff \text{Tr}(a_i a_i^* x x^*) = b_i^2 \]

to formulate phase recovery as a matrix completion problem

\[
\begin{align*}
\text{Minimize} & \quad \text{Rank}(X) \\
\text{such that} & \quad \text{Tr}(a_i a_i^* X) = b_i^2, \quad i = 1, \ldots, n \\
& \quad X \succeq 0
\end{align*}
\]

- [Candes, Strohmer, and Voroninski, 2013a] show that under certain conditions on \(A \) and \(x_0 \), it suffices to solve

\[
\begin{align*}
\text{Minimize} & \quad \text{Tr}(X) \\
\text{such that} & \quad \text{Tr}(a_i a_i^* X) = b_i^2, \quad i = 1, \ldots, n \\
& \quad X \succeq 0
\end{align*}
\]

which is a (convex) semidefinite program in \(X \in H_p \).
Introduction

A very sparse (and incomplete) list of references...

Algorithms

- Greedy algorithm [Gerchberg and Saxton, 1972]
- Classical survey of early algorithms by [Fienup, 1982].
- NP-complete [Sahinoglu and Cabrera, 1991].
- Matrix completion formulation [Chai, Moscoso, and Papanicolaou, 2011] and [Candes, Strohmer, and Voroninski, 2013a]

Applications

- X-ray and crystallography imaging [Harrison, 1993], diffraction imaging [Bunk et al., 2007] or microscopy [Miao et al., 2008].
- Audio signal processing [Griffin and Lim, 1984].
Outline

- Introduction
- Algorithms
- Exploiting structure
- Numerical results
- Experimental setup?
A linear program (LP) is written

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

where \(x \geq 0 \) means that the coefficients of the vector \(x \) are nonnegative.

A semidefinite program (SDP) is written

\[
\begin{align*}
\text{minimize} & \quad \text{Tr}(CX) \\
\text{subject to} & \quad \text{Tr}(A_i X) = b_i, \quad i = 1, \ldots, m \\
& \quad X \succeq 0
\end{align*}
\]

where \(X \succeq 0 \) means that the matrix variable \(X \in S_n \) is positive semidefinite.

- Nesterov and Nemirovskii [1994] showed that the interior point algorithms used for linear programs could be extended to semidefinite programs.
- Efficient solvers, many (unexpected) applications.
Phase problem in phase

We can **decouple** the phase and magnitude reconstruction problems.

- \(Ax = \text{diag}(b)u \) where \(u \in \mathbb{C}^n \) is a phase vector with \(|u_i| = 1 \).

- The phase recovery problem can be written

\[
\min_{u \in \mathbb{C}^n, |u_i| = 1, x \in \mathbb{C}^p} \| Ax - \text{diag}(b)u \|_2^2,
\]

- The inner minimization problem in \(x \) is a standard least squares, with solution \(x = A^\dagger \text{diag}(b)u \), so phase recovery becomes

\[
\text{minimize } u^*Mu \\
\text{subject to } |u_i| = 1, \ i = 1, \ldots, n,
\]

in \(u \in \mathbb{C}^n \), where \(M = \text{diag}(b)(I - AA^\dagger) \text{diag}(b) \succeq 0 \).
Tightness

Exact phase reconstruction in polynomial-time.

- [Candes et al., 2013a,b] show exact recovery w.h.p. for the PhaseLift relaxation
 \[
 \text{Minimize } \text{Tr}(X) \\
 \text{such that } \text{Tr}(a_i a_i^* X) = b_i^2, \quad i = 1, \ldots, n \\
 X \succeq 0
 \]
 when \(n = O(p) \) observations \(a_i \) picked randomly (sphere or coded Fourier).

 \[
 \text{Minimize } \text{Tr}(MU) \\
 \text{such that } \text{diag}(U) = 1, \quad U \succeq 0
 \]
 similar to MAXCUT relaxation.

- [Waldspurger et al., 2012] show PhaseCut is tight when PhaseLift is.
Which observations A?

[Candes et al., 2013b]: The observations A are constructed from multiple coded diffraction patterns.

More on this later...
Block Coordinate Method. PhaseCut & MAXCUT

Input: An initial $U^0 = I_n$ and $\nu > 0$ (typically small). An integer $N > 1$.

1: for $k = 1, \ldots, N$ do
2: Pick $i \in [1, n]$.
3: Compute \[u = U^k_{i^c, i} M_{i^c, i} \quad \text{and} \quad \gamma = u^* M_{i^c, i} \]
4: If $\gamma > 0$, set \[U^k_{i^c, i} = U^{k+1*}_{i, i^c} = -\sqrt{1 - \frac{\gamma}{\nu}} x \]
 else \[U^k_{i^c, i} = U^{k+1*}_{i, i^c} = 0. \]
5: end for
Output: A matrix $U \succeq 0$ with $\text{diag}(U) = 1$.

Writing i^c the index set $\{1, \ldots, i - 1, i + 1, \ldots, n\}$.
Complexity.

- Each iteration only requires matrix vector products $O(n^2)$.
- Cost per iteration similar to greedy algorithm [Gerchberg and Saxton, 1972].
- Signal applications: matrix vector product computed efficiently using the FFT, cost per iteration reduced to $O(n \log n)$.
Outline

- Introduction
- Algorithms
- Exploiting structure
- Numerical results
- Experimental setup?
Sparsity: known support in 2D

Electronic density: caffeine (left), 2D FFT transform (diffraction pattern, center), reconstructed using 3% of the coefficients at the core of the FFT (right).

- Molecular imaging: data is **sparse with known support**.
- Most coefficients in b close to zero, so most coefficients in u can be set to zero in

\[
\begin{align*}
\text{minimize} & \quad u^* M u \\
\text{subject to} & \quad |u_i| = 1, \quad i = 1, \ldots n,
\end{align*}
\]

which means significant computational savings.
Positivity

- We observe the magnitude of the Fourier transform of a discrete signal \(x \in \mathbb{R}^p \)

\[|\mathcal{F}x| = b \]

- We seek to reconstruct positive signals \(x \geq 0 \).

A function \(f : \mathbb{R}^s \mapsto \mathbb{C} \) is positive semidefinite if and only if the matrix \(B \) with

\[B_{ij} = f(x_i - x_j) \]

is Hermitian positive semidefinite for any sequence \(x_i \in \mathbb{R}^s \).

Theorem (Bochner)

Fourier on positive signals. A function \(f : \mathbb{R}^s \mapsto \mathbb{C} \) is positive semidefinite if and only if it is the Fourier transform of a (finite) nonnegative Borel measure.
Reconstruct a phase vector $u \in \mathbb{C}^n$ such that $|u| = 1$ and

$$\mathcal{F}x = \text{diag}(b)u.$$

We define the Toeplitz matrix $B_{ij}(y) = y|i-j|+1$, $i,j = 1, \ldots, p$, so that

$$B(y) = \begin{pmatrix} y_1 & y_2^* & \cdots & y_n^* \\ y_2 & y_1 & y_2^* & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ y_n & \cdots & y_2 & y_1 \end{pmatrix}.$$

Bochner’s theorem.

$$x \geq 0 \iff B(\text{diag}(b)u) \succeq 0,$$

which is a (convex) linear matrix inequality in u.

A. d’Aspremont

Stanford SLAC, March 2014. 21/39
Real valued signal. Phase problem on real valued signal is

\[
\begin{align*}
\text{minimize} \quad & \left\| \mathcal{T}(A) \begin{pmatrix} x \\ 0 \end{pmatrix} - \text{diag} \begin{pmatrix} b \\ b \end{pmatrix} \begin{pmatrix} \Re(u) \\ \Im(u) \end{pmatrix} \right\|_2^2 \\
\text{subject to} \quad & u \in \mathbb{C}^n, \quad |u_i| = 1 \\
& x \in \mathbb{R}^p.
\end{align*}
\]

Here \(x = A_2^\dagger B_2 v \), where

\[
A_2 = \begin{pmatrix} \Re(A) \\ \Im(A) \end{pmatrix}, \quad B_2 = \text{diag} \begin{pmatrix} b \\ b \end{pmatrix}, \quad \text{and} \quad v = \begin{pmatrix} \Re(u) \\ \Im(u) \end{pmatrix}
\]

the phase problem is equivalent to

\[
\begin{align*}
\text{minimize} \quad & \left\| (A_2 A_2^\dagger B_2 - B_2) v \right\|_2^2 \\
\text{subject to} \quad & v_i^2 + v_{n+i}^2 = 1, \quad i = 1, \ldots, n,
\end{align*}
\]

in the variable \(v \in \mathbb{R}^{2n} \).
Real signals

Real valued signal. The last problem can be relaxed as

\[
\begin{align*}
\text{minimize} \quad & \operatorname{Tr}(VM_2) \\
\text{subject to} \quad & V_{ii} + V_{n+i,n+i} = 1, \quad i = 1, \ldots, n, \\
& V \succeq 0,
\end{align*}
\]

which is a semidefinite program in the variable \(V \in S_{2n} \), where

\[
M_2 = (A_2A_2^\dagger B_2 - B_2)^T(A_2A_2^\dagger B_2 - B_2) = B_2^T(I - A_2A_2^\dagger)B_2.
\]

- Explicitly constrains the solution \(x \) to be real valued.
- Small increase in complexity.
Outline

- Introduction
- Algorithms
- Exploiting structure
- Numerical results
- Experimental setup?
Numerical Experiments: PDB molecules

Two molecules, two resolutions: 16x16 and 128x128.

Caffeine

Cocaine
Numerical Experiments: PDB molecules

Solution of the greedy algorithm on caffeine molecule, for various values of the number of masks and noise level α.

A. d’Aspremont
Solution of the PhaseCut SDP followed by greedy refinements, for various values of the number of masks and noise level α.
MSE between reconstructed image and true image for 2 random illuminations without noise, using SDP then Fienup (blue), and Fienup only (red).
Numerical Experiments: comparing algorithms

16x16 caffeine image. No oversampling.

Left: MSE (relative to b) vs. number of random masks.
Right: Probability of recovering molecular density ($MSE < 10^{-4}$) vs. number of random masks.
Numerical Experiments: comparing algorithms

16x16 cocaine image. No oversampling.

Left: MSE (relative to b) vs. number of random masks.
Right: Probability of recovering molecular density ($MSE < 10^{-4}$) vs. number of random masks.
Numerical Experiments: comparing algorithms

16x16 caffeine image. 2x oversampling.

Left: MSE vs. number of random masks.
Right: Probability of recovering molecular density ($MSE < 10^{-4}$) vs. number of random masks.
Numerical Experiments: comparing algorithms

16x16 caffeine image. Mask resolution (1x1 to 8x8 pixels).

![Graphs showing MSE vs. mask resolution and probability of exact recovery.](image)

Left: MSE vs. mask resolution. (2x oversampling, no noise, 3 masks).

Right: Probability of recovering molecular density ($MSE < 10^{-4}$) vs. number of random masks.
Numerical Experiments: comparing algorithms

16x16 cocaine image. Mask resolution (1x1 to 8x8 pixels).

Left: MSE vs. mask resolution. (2x oversampling, no noise, 3 masks).
Right: Probability of recovering molecular density ($MSE < 10^{-4}$) vs. number of random masks.
Numerical Experiments: comparing algorithms

16x16 cocaine image. Mask resolution (1x1 to 8x8 pixels).

Left: MSE vs. mask resolution. (2x oversampling, no noise, 2 masks).
Right: Probability of recovering molecular density ($MSE < 10^{-4}$) vs. number of random masks.

A. d’Aspremont

Stanford SLAC, March 2014. 34/39
Numerical Experiments: comparing algorithms

16x16 caffeine image. Noise.

Left: MSE vs. noise level (2x oversampling, 2 masks).
Right: Probability of recovering molecular density ($MSE < 10^{-4}$) vs. number of random masks.

A. d’Aspremont
Numerical Experiments: comparing algorithms

16x16 cocaine image. Noise.

Left: MSE vs. noise level (2x oversampling, 2 masks).
Right: Probability of recovering molecular density ($MSE < 10^{-4}$) vs. number of random masks.
Outline

- Introduction
- Algorithms
- Exploiting structure
- Numerical results
- Experimental setup?
Observations A: implementation

Construct observations A from \textbf{multiple} coded diffraction patterns

- Split the beam?
- Mask before/after the sample?
Conclusion

- Tractable algorithms for phase recovery
- Exact recovery results
- Exploit structure

Open questions...

- Is the SDP relaxation optimal?
- Experimental setup?
References

