Subsampling Algorithms
for Semidefinite Programming

Alexandre d’Aspremont
Princeton University

Support from NSF, DHS and Google.
Introduction

Focus on the following problem:

\[
\begin{align*}
\text{minimize} & \quad \lambda_{\max}(A^T y + c) - b^T y \\
\text{subject to} & \quad y \in Q
\end{align*}
\]

Sampling techniques

- Approximate leading eigenvalues and spectral radius with complexity $O(n)$.
- Smooth $\lambda_{\max}(X)$ by sampling gradients.

Stochastic Optimization

- Stochastic gradient algorithm using subsampling.
- Smooth optimization with approximate gradient.
First order algorithm

Complexity options.

\[
\begin{array}{ccc}
O(n) & O(n) & O(n^2) \\
O(1/\epsilon^2) & O(1/\epsilon) & O(\log(1/\epsilon)) \\
\text{First-order} & \text{Smooth} & \text{Newton IP}
\end{array}
\]
Introduction

Simple illustrative example from Achlioptas & Mcsherry (2007) . . .

Given $p \in [0, 1]$ and a symmetric matrix $A \in S_n$, define:

$$\tilde{A}_{ij} = \begin{cases} A_{ij}/p & \text{with probability } p \\ 0 & \text{otherwise} \end{cases}$$

- By construction, \tilde{A} has mean A with independent coefficients.
- Sparse: \tilde{A} has $O(pn^2)$ nonzero entries on average.

Because of independence, the impact of subsampling on the spectrum is both small and isotropic . . .
Introduction

Left: Distribution of $|\tilde{v}^T v|$, with v the leading eigenvector of a structured covariance matrix and \tilde{v} that of the randomly subsampled matrix, with $p = .25$ (solid line) and $p = .15$ (dashed line).

Right: Distribution of $|\tilde{v}^T v|$ where \tilde{v} is computed on a subsampled matrix with $p = .15$, using a structured matrix (dashed line) or a Wishart matrix (solid line).
Introduction
Outline

• Introduction

• Sampling techniques
 ◦ Subsampling
 ◦ Smoothing

• Stochastic Optimization
 ◦ Stochastic gradient
 ◦ Smooth Optimization with Approximate Gradient.

• Numerical Experiments
Elementwise subsampling

Given $X \in S_n$ and $\epsilon > 0$, define:

$$
\tilde{X}_{ij} = \begin{cases}
X_{ij}/p & \text{with probability } p, \\
0 & \text{otherwise}.
\end{cases}
$$

Suppose we set

$$
p_{\epsilon} = \min \left\{ 1, \frac{16n\|X\|_2^2}{\epsilon^2} \right\}
$$

then $\lambda_{\text{max}}(X) \leq \mathbb{E}[\lambda_{\text{max}}(\tilde{X})]$ and we have

$$
\|X - \tilde{X}\|_2 \leq \epsilon \quad \text{and} \quad \lambda_{\text{max}}(\tilde{X}) - \lambda_{\text{max}}(X) \leq \epsilon,
$$

with probability at least $1 - \exp(-19(\log n)^4)$. The average number of nonzero coefficients in \tilde{X} is bounded by:

$$
\frac{16n\|X\|_F^2}{\alpha\epsilon^2} \text{ mean } \left(\left\{ \frac{\|X\|_\infty^2}{X^2[i]} \right\}_{i=1,\ldots,\lceil \alpha n^2 \rceil} \right)
$$

for any $\alpha \in [0, 1]$.
Columnwise subsampling

Another procedure from Drineas, Kannan & Mahoney (2006).

Let $X \in \mathbb{S}_n$ and $0 < k \leq s < n$. Define $p_i = \|X_i\|^2/\|X\|_F^2$, for $i = 1, \ldots, n$. Pick $i_t \in [1, n]$ with $\mathbf{P}(i_t = u) = p_u$ for $t = 1, \ldots, s$ and define a matrix $C \in \mathbb{R}^{m \times s}$ with

$$C_t = \frac{X_{i_t}}{\sqrt{sp_{i_t}}}$$

Form the singular value decomposition of $C^T C = Y \Sigma Y^T$ and let

$$H_k = CY_{[1,k]} \Sigma_{[1,k]}^{-1/2}$$

then for a given precision target $\epsilon > 0$ and if $s \geq 4/\epsilon^2$ we have

$$\mathbf{E}[\|X - H_k H_k^T X\|_2^2] \leq \|X - X_k\|_2^2 + \epsilon \|X\|_F^2$$

where X_k is the best rank k approximation of X.

A. d'Aspremont

Distribution of the scalar product $|\tilde{v}^T v|$ where v is the leading eigenvector of a structured covariance matrix and \tilde{v} is the leading eigenvector of the subsampled matrix, using the elementwise subsampling procedure (dotted line) and the columnwise procedure (continuous line), with a subsampling rate of 20% in both cases. Maximum eigenvalue and spectral radius coincide on this covariance matrix.
Smoothing by gradient sampling

Let $U \in S_n$, with $U_{ij} \sim \mathcal{N}(0, \sigma/\sqrt{2})$ for $i \neq j$ and $U_{ii} \sim \mathcal{N}(0, \sigma)$.

$$f(X) = \mathbb{E}[\lambda_{\text{max}}(X + U)]$$ (2)

with $X \in Q$, satisfies

$$\lambda_{\text{max}}(X) \leq f(X) \leq \lambda_{\text{max}}(X) + 2\sigma n^{1/2+\nu}$$

for any $\nu > 0$. Its gradient is Lipschitz continuous on Q with Lipschitz constant:

$$L = \frac{2(M_Q + D_{F,Q})}{\sigma^2} + \frac{3(e^\gamma n(n + 1))^{1/2}}{\sigma}$$

with $\gamma = 0.577...$ the Euler-Mascheroni constant,

$$M_Q = \max_{X \in Q} \|X\|_F \quad \text{and} \quad D_{F,Q} = \max_{X,Y \in Q} \|X - Y\|_F,$$

with $D_{F,Q}$ the Euclidean diameter of Q.
Outline

- Introduction
- Sampling techniques
 - Subsampling
 - Smoothing
- **Stochastic Optimization**
 - Stochastic gradient
 - Smooth Optimization with Approximate Gradient.
- Numerical Experiments

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Cost per Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsampled Stochastic Grad.</td>
<td>$O \left(\frac{1}{\epsilon^2} \right)$</td>
</tr>
<tr>
<td>Stochastic Gradient</td>
<td>$O \left(\frac{1}{\epsilon^2} \right)$</td>
</tr>
<tr>
<td>Smooth Opt. with Grad. Sampling</td>
<td>$O \left(\frac{1}{\epsilon^{3/2}} \right)$</td>
</tr>
<tr>
<td>Smooth Optimization</td>
<td>$O \left(\frac{1}{\epsilon} \right)$</td>
</tr>
</tbody>
</table>
Stochastic Gradient Algorithm

Stochastic gradient algorithm.

Starting from $y_0 \in Q$. For $k = 0, \ldots, N - 1$,

1. Set $y_{k+1} = \pi_{y_k}^Q(\gamma_k g_k)$, where $g_k \in \partial \lambda^\max(\tilde{A}^T y + \tilde{c}) - b$.

2. Set $\bar{y}_N = \sum_{k=0}^{N-1} \gamma_k y_k / \sum_{k=0}^{N-1} \gamma_k$.
Stochastic Gradient Algorithm

Given $\epsilon > 0$, and a sampling rate $p \in [0, 1]$. Suppose that p satisfies:

$$p \geq \frac{16\|X\|_F^2}{n\alpha\epsilon^2 \text{ mean} \left(\left\{ \frac{\|X\|_2^2}{X^2[i]} \right\}_{i=1,\ldots,[\alpha n^2]} \right)}$$

for $X = A^T y^* - c$ and some $\alpha \in [0, 1]$, then after

$$N = \frac{4M_*^2D^2_{\omega,Q}}{\alpha\epsilon^2(1 - \beta)^2}$$

iterations, the stochastic gradient algorithm with constant step size $\gamma = \alpha\epsilon/\sqrt{2}M_*^2$ will produce an iterate in problem satisfying:

$$\mathbb{P}[f(\bar{y}_N) - f(y^*) \geq \epsilon] \leq (1 - \beta) + \exp(-19(\log n)^4).$$

The average number of nonzero coefficients in \tilde{X} is pn^2.

A. d'Aspremont

SIAM Optimization conference, May 2008. 15
Smooth Optimization

Smooth minimization with approximate gradient.

Starting from x_0, the prox center of the set Q, we iterate:

1. compute $\tilde{\nabla} f(x_k)$,

2. compute $y_k = \arg\min_{y \in Q} \{ \langle \tilde{\nabla} f(x), y - x \rangle + \frac{1}{2} L \| y - x \|^2 \}$,

3. compute $z_k = \arg\min_{x \in Q} \{ \frac{L}{\eta} d(x) + \sum_{i=0}^{k} \alpha_i [f(x_i) + \langle \tilde{\nabla} f(x_i), x - x_i \rangle] \}$,

4. update x using $x_{k+1} = \tau_k z_k + (1 - \tau_k) y_k$,
Smooth Optimization

Consider the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \lambda_{\max}(A^Ty + c) - b^Ty \\
\text{subject to} & \quad y \in Q,
\end{align*}
\]

in the variable \(y \in \mathbb{R}^m \), with parameters \(A \in \mathbb{R}^{m \times n^2} \), \(b \in \mathbb{R}^m \) and \(c \in \mathbb{R}^{n^2} \).

Let \(U \in \mathbb{S}_n \) be a random symmetric matrix with Gaussian coefficients \(U_{ij} \sim \mathcal{N}(0, \sigma/\sqrt{2}) \) for \(i \neq j \) and \(U_{ii} \sim \mathcal{N}(0, \sigma) \). Let

\[
f(y) = \mathbb{E}[\lambda_{\max}(\text{mat}(A^Ty + c) + U)]
\]

and suppose we sample \(k \) matrices \(U_i \) as above to define:

\[
\tilde{\nabla}f(y) = \frac{1}{k} \sum_{i=1}^{k} \nabla \lambda_{\max}(\text{mat}(A^Ty + c) + U_i)
\]

where \(\epsilon > 0 \) is the target precision.
Then, with probability $1 - \beta$, the smooth optimization algorithm will produce a 2ϵ solution in at most:

$$N(n, \epsilon) = \frac{4\|A\|_2,2d(y^*)^{1/2}}{\epsilon} \left(\frac{8n(M_Q + D_{F,Q})n^{2\nu}}{\tau \epsilon} + \frac{6e^\gamma(n + 1)n^{1+\nu}}{\tau} \right)^{1/2}$$

iterations, having defined:

$$M_Q = \max_{X \in Q} \|X\|_F \quad \text{and} \quad D_{F,Q} = \max_{X,Y \in Q} \|X - Y\|_F,$$

where $D_{F,Q}$ is the Euclidean diameter of Q, provided that:

$$k \geq \frac{m\|A\|_F^2}{\epsilon^2} \log \left(\frac{m N(n, \epsilon)}{\beta} \right)$$

with each iteration requiring k maximum eigenvalue computations.
Outline

• Introduction

• Sampling techniques
 ○ Subsampling
 ○ Smoothing

• Stochastic Optimization
 ○ Stochastic gradient
 ○ Smooth Optimization with Approximate Gradient.

• Numerical Experiments
Stochastic Gradient

Left: Current distance to optimality for the averaged iterates of the stochastic gradient algorithm with exact gradients (squares) and elementwise subsampled gradients (circles) with a $p = .2$ sampling rate on a maximum eigenvalue minimization problem of dimension 2000.

Right: Same plot on a spectral radius minimization problem, using exact gradients (squares) and columnwise subsampled gradients (circles) with a 20% sampling rate.
References