Subsampling Algorithms
for Semidefinite Programming

Alexandre d’Aspremont
Princeton University

Support from NSF, DHS and Google.
Focus on the following problem:

\[
\begin{align*}
\text{minimize} & \quad \lambda_{\text{max}}(A^T y + c) - b^T y \\
\text{subject to} & \quad y \in Q
\end{align*}
\]

Sampling techniques

- Approximate leading eigenvalues and spectral radius with complexity $O(n)$.
- Smooth $\lambda_{\text{max}}(X)$ by sampling gradients.

Stochastic Optimization

- Stochastic gradient algorithm using subsampling.
- Smooth optimization with approximate gradient.
First order algorithm

Complexity options...

<table>
<thead>
<tr>
<th></th>
<th>Memory</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$O(1/\epsilon^2)$</td>
<td>$O(1/\epsilon)$</td>
<td>$O(\log(1/\epsilon))$</td>
</tr>
<tr>
<td>First-order</td>
<td>Smooth</td>
<td>Newton IP</td>
</tr>
</tbody>
</table>
Simple illustrative example from Achlioptas & Mcsherry (2007).

Given $p \in [0, 1]$ and a symmetric matrix $A \in S_n$, define:

$$\tilde{A}_{ij} = \begin{cases} A_{ij}/p & \text{with probability } p \\ 0 & \text{otherwise} \end{cases}$$

- By construction, \tilde{A} has mean A with independent coefficients.
- Sparse: \tilde{A} has $O(pn^2)$ nonzero entries on average.

Because of independence, the impact of subsampling on the spectrum is both small and isotropic.
Introduction
Ratio of average CPU time for computing the leading eigenvalue of a (sparse) subsampled matrix using ARPACK over average CPU time for computing the leading eigenvalue of the original (dense) matrix, for various values of the sampling rate p on a covariance matrix of dimension 2000.
Outline

- Introduction
- **Sampling techniques**
 - Subsampling
 - Smoothing
- Stochastic Optimization
 - Stochastic gradient
 - Smooth Optimization with Approximate Gradient.
- Numerical Experiments
Elementwise subsampling

Given $X \in S_n$ and $\epsilon > 0$, define:

$$ \tilde{X}_{ij} = \begin{cases}
X_{ij}/p & \text{with probability } p, \\
0 & \text{otherwise.}
\end{cases} $$

Suppose we set

$$ p_\epsilon = \min \left\{ 1, \frac{16n\|X\|_\infty^2}{\epsilon^2} \right\} \tag{1} $$

then $\lambda_{\max}(X) \leq \mathbb{E}[\lambda_{\max}(\tilde{X})]$ and we have

$$ \|X - \tilde{X}\|_2 \leq \epsilon \quad \text{and} \quad \lambda_{\max}(\tilde{X}) - \lambda_{\max}(X) \leq \epsilon, $$

with probability at least $1 - \exp(-19(\log n)^4)$. The average number of nonzero coefficients in \tilde{X} is bounded by:

$$ \frac{16n\|X\|_F^2}{\alpha \epsilon^2} \text{ mean } \left(\left\{ \frac{\|X\|_\infty^2}{X^2[i]} \right\}_{i=1,\ldots,\lceil \alpha n^2 \rceil} \right) $$

for any $\alpha \in [0, 1]$.
Columnwise subsampling

Another procedure from Drineas, Kannan & Mahoney (2006).

Let $X \in \mathbb{S}_n$ and $0 < k \leq s < n$. Define $p_i = \|X_i\|^2/\|X\|_F^2$, for $i = 1, \ldots, n$. Pick $i_t \in [1, n]$ with $P(i_t = u) = p_u$ for $t = 1, \ldots, s$ and define a matrix $C \in \mathbb{R}^{m \times s}$ with

$$ C_t = \frac{X_{i_t}}{\sqrt{sp_{i_t}}} $$

Form the singular value decomposition of $C^T C = Y \Sigma Y^T$ and let

$$ H_k = CY_{[1,k]} \Sigma_{[1,k]}^{-1/2} $$

then for a given precision target $\epsilon > 0$ and if $s \geq 4/\epsilon^2$ we have

$$ \mathbb{E}\left[\|X - H_k H_k^T X\|_2^2\right] \leq \|X - X_k\|_2^2 + \epsilon \|X\|_F^2 $$

where X_k is the best rank k approximation of X.
Distribution of the scalar product $|\tilde{v}^T v|$ where v is the leading eigenvector of a structured covariance matrix and \tilde{v} is the leading eigenvector of the subsampled matrix, using the elementwise subsampling procedure (dotted line) and the columnwise procedure (continuous line), with a subsampling rate of 20% in both cases. Maximum eigenvalue and spectral radius coincide on this covariance matrix.
Smoothing by gradient sampling

Let \(U \in S_n \), with \(U_{ij} \sim \mathcal{N}(0, \sigma/\sqrt{2}) \) for \(i \neq j \) and \(U_{ii} \sim \mathcal{N}(0, \sigma) \).

\[
f(X) = \mathbb{E}[\lambda_{\max}(X + U)]
\]

with \(X \in Q \), satisfies

\[
\lambda_{\max}(X) \leq f(X) \leq \lambda_{\max}(X) + 2\sigma n^{1/2+\nu}
\]

for any \(\nu > 0 \). Its gradient is Lipschitz continuous on \(Q \) with Lipschitz constant:

\[
L = \frac{2(M_Q + D_{F,Q})}{\sigma^2} + \frac{3(e^{\gamma}n(n + 1))^{1/2}}{\sigma}
\]

with \(\gamma = 0.577... \) the Euler-Mascheroni constant,

\[
M_Q = \max_{X \in Q} \|X\|_F \quad \text{and} \quad D_{F,Q} = \max_{X,Y \in Q} \|X - Y\|_F,
\]

with \(D_{F,Q} \) the Euclidean diameter of \(Q \).
Outline

- Introduction
- Sampling techniques
 - Subsampling
 - Smoothing
- **Stochastic Optimization**
 - Stochastic gradient
 - Smooth Optimization with Approximate Gradient.
- Numerical Experiments
Complexity

<table>
<thead>
<tr>
<th></th>
<th>Iterations</th>
<th>Cost per Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsampled Stochastic Grad.</td>
<td>$O\left(\frac{1}{\epsilon^2}\right)$</td>
<td>$O\left(\frac{n}{\epsilon^2}\right)$</td>
</tr>
<tr>
<td>Stochastic Gradient</td>
<td>$O\left(\frac{1}{\epsilon^2}\right)$</td>
<td>$O\left(n^2\right)$</td>
</tr>
<tr>
<td>Smooth Opt. with Grad. Sampling</td>
<td>$O\left(\frac{1}{\epsilon^{3/2}}\right)$</td>
<td>$O\left(\frac{n^2}{\epsilon^2}\right)$</td>
</tr>
<tr>
<td>Smooth Optimization</td>
<td>$O\left(\frac{1}{\epsilon}\right)$</td>
<td>$O\left(n^3\right)$</td>
</tr>
</tbody>
</table>
Stochastic Gradient Algorithm

Stochastic gradient algorithm.

Starting from \(y_0 \in Q \). For \(k = 0, \ldots, N - 1 \),

1. Set \(y_{k+1} = \pi_{Q, \omega}^{Q, \omega}(\gamma_k g_k) \), where \(g_k \in \partial \lambda^{\max}(\tilde{A}^T y + \tilde{c}) - b \).

2. Set \(\bar{y}_N = \sum_{k=0}^{N-1} \gamma_k y_k / \sum_{k=0}^{N-1} \gamma_k \).
Stochastic Gradient Algorithm

Given $\epsilon > 0$, and a sampling rate $p \in [0, 1]$. Suppose that p satisfies:

$$p \geq \frac{16\|X\|_F^2}{n\alpha\epsilon^2} \text{ mean } \left(\left\{ \frac{\|X\|_\infty^2}{X[i]} \right\}_{i=1,\ldots,\lceil \alpha n^2 \rceil} \right)$$

for $X = A^T y^* - c$ and some $\alpha \in [0, 1]$, then after

$$N = \frac{4M_*^2 D_{\omega,Q}^2}{\alpha \epsilon^2 (1 - \beta)^2}$$

iterations, the stochastic gradient algorithm with constant step size $\gamma = \alpha \epsilon / \sqrt{2M_*^2}$ will produce an iterate in problem satisfying:

$$\mathbb{P}[f(\bar{y}_N) - f(y^*) \geq \epsilon] \leq (1 - \beta) + \exp(-19(\log n)^4).$$

The average number of nonzero coefficients in \tilde{X} is pn^2.
Smooth minimization with approximate gradient.

Starting from x_0, the prox center of the set Q, we iterate:

1. compute $\tilde{\nabla}f(x_k)$,

2. compute $y_k = \arg\min_{y \in Q} \{ \langle \tilde{\nabla}f(x), y - x \rangle + \frac{1}{2}L\|y - x\|^2 \}$,

3. compute $z_k = \arg\min_{x \in Q} \{ \frac{L}{\eta}d(x) + \sum_{i=0}^{k} \alpha_i[f(x_i) + \langle \tilde{\nabla}f(x_i), x - x_i \rangle] \}$,

4. update x using $x_{k+1} = \tau_k z_k + (1 - \tau_k)y_k$,
Consider the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \lambda^{\max}(A^T y + c) - b^T y \\
\text{subject to} & \quad y \in Q,
\end{align*}
\]

in the variable \(y \in \mathbb{R}^m \), with parameters \(A \in \mathbb{R}^{m \times n^2} \), \(b \in \mathbb{R}^m \) and \(c \in \mathbb{R}^{n^2} \).

Let \(U \in \mathbb{S}_n \) be a random symmetric matrix with Gaussian coefficients \(U_{ij} \sim \mathcal{N}(0, \sigma/\sqrt{2}) \) for \(i \neq j \) and \(U_{ii} \sim \mathcal{N}(0, \sigma) \). Let

\[
f(y) = \mathbb{E}[\lambda^{\max}(\text{mat}(A^T y + c) + U)]
\]

and suppose we sample \(k \) matrices \(U_i \) as above to define:

\[
\tilde{\nabla} f(y) = \frac{1}{k} \sum_{i=1}^{k} \nabla \lambda^{\max}(\text{mat}(A^T y + c) + U_i)
\]

where \(\epsilon > 0 \) is the target precision.
Smooth Optimization

Then, with probability $1 - \beta$, the smooth optimization algorithm will produce a 2ϵ solution in at most:

$$N(n, \epsilon) = \frac{4\|A\|_{2,2}d(y^*)^{1/2}}{\epsilon} \left(\frac{8n(M_Q + D_{F,Q})n^{2\nu}}{\tau \epsilon} + \frac{6\epsilon^\gamma(n + 1)n^{1+\nu}}{\tau} \right)^{1/2}$$

iterations, having defined:

$$M_Q = \max_{X \in Q} \|X\|_F \quad \text{and} \quad D_{F,Q} = \max_{X,Y \in Q} \|X - Y\|_F,$$

where $D_{F,Q}$ is the Euclidean diameter of Q, provided that:

$$k \geq \frac{m\|A\|_F^2}{\epsilon^2} \log \left(\frac{mN(n, \epsilon)}{\beta} \right)$$

with each iteration requiring k maximum eigenvalue computations.
Outline

- Introduction
- Sampling techniques
 - Subsampling
 - Smoothing
- Stochastic Optimization
 - Stochastic gradient
 - Smooth Optimization with Approximate Gradient.
- Numerical Experiments
Stochastic Gradient

Left: Current distance to optimality for the averaged iterates of the stochastic gradient algorithm with exact gradients (squares) and elementwise subsampled gradients (circles) with a $p = .2$ sampling rate on a maximum eigenvalue minimization problem of dimension 2000.

Right: Same plot on a spectral radius minimization problem, using exact gradients (squares) and columnwise subsampled gradients (circles) with a 20% sampling rate.
References

