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Introduction

Smooth Optimization:

e Produces smooth (Lipschitz-continuous gradient) approximation of
structured semidefinite optimization problems.

e Smooth problem solved using first-order technique in Nesterov (1983).

e Total complexity in O(1/¢) instead of O(1/€?).

Smooth semidefinite optimization:

e Difference with |.P. methods: large number of simpler iterations.

e Key step is a matrix exponential: can be computed efficiently.



Smoothing technique

Example: maximum eigenvalue minimization problem:
min f(z) := \"**(Az — b)

in the variable x € R™ with parameters A € R™*™ and b € R™.

Solve smooth approximation with:

Ax —
min f,(z) := plog (Tr exp ( xM b))

where log and exp are the matrix (not componentwise) logarithm and
exponential, respectively.



Smoothing technique

fu(Ax — D) is a plog n-uniform approximation of \™#*(Ax — b):
AP (Ar —b) < fu(z) < AN (Az —b) + plogn

and the gradient of f,,(x), given by:

o= (e (52) oo (5

is Lipschitz continuous with constant given by:
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Smoothing technique

o |f we set: )
H= 2logn’
e solving
min f,(x)

produces an e-approximation of the solution to the original problem.

e Because V f,,u is Lipschitz continuous, Nesterov (1983) shows that the
complexity of solving this problem is given by:

4[| A \/lognHw*llz
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Nesterov’'s method

e Nesterov (2005) shows that this result holds for all problems with a
min-max format:

f(z) = f(z) + max{(Tz,u) — d(u) : u€ Qo)

e assuming that:

o f is defined over a compact convex set (); C R"

o f(z) is convex, differentiable and has a Lipschitz continuous gradient
with constant M > 0

o T is a linear operator: T' € R"*"

o ¢(u) is a continuous convex function over some compact set Q)3 C R".



Nesterov’'s method

To summarize: if a problem can be written according to this min-max model,
the algorithm works as follows. . .

e Regularization. Add strongly convex penalty inside the min-max
representation to produce an e-approximation of f with Lipschitz
continuous gradient (generalized Moreau-Yosida regularization step, see
Lemaréchal & Sagastizabal (1997) for example).

e Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve
the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be
solved explicitly or very efficiently. . .



Nesterov’'s method

The min-max model makes this an ideal candidate for robust
optimization

For fixed problem size, the number of iterations required to get an ¢
solution is given by
1
€
compared to O (}2) for generic first-order methods.
Each iteration has low memory requirements.

Change in granularity of the solver: larger number of cheaper iterations.



Matrix exponential

The key step at each iteration is computing the gradient:

i (men (52) (25

This amounts to a matrix exponential computation.

Classic problem. See “Nineteen dubious ways to compute the exponential
of a matrix” by Moler & Van Loan (2003).

In general, Padé approximation techniques are the classic solution. We
can do better here because of the matrix structure.



Main Result

When minimizing a function with Lipschitz-continuous gradient using the
method in Nesterov (1983), an approximate gradient is sufficient to get the
O(1/e€) convergence rate:

If the function and gradient approximations satisfy:

(@) = f@)| <6 and [(Vf(zx) = Vf(z),y)] < z,y€Q,
we have: Ld(x*)
. x
flan) = 16" < G
where L, d(z*) and o are problem constants.
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Benefits

Because the eigenvalues of the gradient matrix decrease exponentially
fast, only a few eigenvalues are necessary to compute the gradient with
the required precision.

How few? Pick X € S,, with coefs A/(0,0°/n). Wigner's semicircle law:
eigenvalues of X are asy. dist. according to:

1

p(ZC) — 2\/40-2 _ZC27

in the limit, the proportion of eigenvalues required is given by:

2 (X)—AAX (x) 2"+€£§ZL 1
P =Ple z <~|= V4o? — z2dz.
5 2102
—z0

With n = 5000, § = 107° and € = 1072, we get nPy = 2.3 eigs.
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Numerical performance
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Figure 1: Percentage of eigenvalues required versus
duality gap on random max. eigenvalue minimization
problems.
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Numerical performance

Consider the following sparse PCA relaxation, from d'Aspremont,
El Ghaoui, Jordan & Lanckriet (2005):

minimize  A™**(C' + U)
subject to  |U;;| <p, 4,7=1,...,n,

Use ARPACK to compute eigenvalues (sparse eig. package).

Generate a 100 x 100 matrix U with uniformly distributed coefficients.

Let e € R'%Y be a sparse vector with:
e=(1,0,1,0,1,0,1,0,1,0,0,0,...)

and form a test matrix A = UTU + vee!, where v is a signal-to-noise
ratio.
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Duality gap

Numerical performance
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Left: Duality gap versus CPU time for various values of the signal to noise
ratio v. Right: Percentage of eigenvalues required versus duality gap for
various values of the signal to noise ratio v.
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Conclusion

e Smooth first-order minimization with approximate gradient.
e An order of magnitude faster on semidefinite optimization problems.

e Link between problem structure and number of eigs required hard to
establish. . .
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