Smooth Optimization for Sparse Semidefinite Programs

Alexandre d’Aspremont
ORFE, Princeton University

Support from EUROCONTROL, NSF and Google.
Introduction

Smooth Optimization:

- Produces smooth (Lipschitz-continuous gradient) approximation of structured semidefinite optimization problems.
- Total complexity in $O(1/\epsilon)$ instead of $O(1/\epsilon^2)$.

Smooth semidefinite optimization:

- Difference with I.P. methods: large number of simpler iterations.
- Key step is a matrix exponential: can be computed efficiently.
Smoothing technique

Example: **maximum eigenvalue minimization** problem:

\[
\min f(x) := \lambda_{\text{max}}(Ax - b)
\]

in the variable \(x \in \mathbb{R}^n\) with parameters \(A \in \mathbb{R}^{m \times n}\) and \(b \in \mathbb{R}^m\).

Solve **smooth approximation** with:

\[
\min f_\mu(x) := \mu \log \left(\text{Tr} \exp \left(\frac{Ax - b}{\mu} \right) \right)
\]

where \(\log\) and \(\exp\) are the matrix (not componentwise) logarithm and exponential, respectively.
Smoothing technique

\(f_\mu(Ax - b) \) is a \(\mu \log n \)-uniform approximation of \(\lambda^{\text{max}}(Ax - b) \):

\[
\lambda^{\text{max}}(Ax - b) \leq f_\mu(x) \leq \lambda^{\text{max}}(Ax - b) + \mu \log n
\]

and the gradient of \(f_\mu(x) \), given by:

\[
\nabla f_\mu(x) := \left(\text{Tr} \exp \left(\frac{Ax - b}{\mu} \right) \right)^{-1} \exp \left(\frac{Ax - b}{\mu} \right)
\]

is Lipschitz continuous with constant given by:

\[
L = \frac{\|A\|^2}{\mu}
\]
Smoothing technique

• If we set:

\[\mu = \frac{\epsilon}{2 \log n}, \]

• solving

\[\min f_\mu(x) \]

produces an \(\epsilon \)-approximation of the solution to the original problem.

• Because \(\nabla f_m u \) is Lipschitz continuous, Nesterov (1983) shows that the complexity of solving this problem is given by:

\[\frac{4\|A\|}{\epsilon} \sqrt{\frac{\log n\|x^*\|^2}{2}} \]
Nesterov’s method

- Nesterov (2005) shows that this result holds for all problems with a \textbf{min-max} format:

\[f(x) = \hat{f}(x) + \max_u \{ \langle Tx, u \rangle - \hat{\phi}(u) : u \in Q_2 \} \]

- assuming that:

 - \(f \) is defined over a compact convex set \(Q_1 \subset \mathbb{R}^n \)

 - \(\hat{f}(x) \) is convex, differentiable and has a Lipschitz continuous gradient
 with constant \(M \geq 0 \)

 - \(T \) is a linear operator: \(T \in \mathbb{R}^{n \times n} \)

 - \(\hat{\phi}(u) \) is a continuous convex function over some compact set \(Q_2 \subset \mathbb{R}^n \).
To summarize: if a problem can be written according to this min-max model, the algorithm works as follows. . .

- **Regularization.** Add strongly convex penalty inside the min-max representation to produce an ϵ-approximation of f with Lipschitz continuous gradient (generalized Moreau-Yosida regularization step, see Lemaréchal & Sagastizábal (1997) for example).

- **Optimal first order minimization.** Use optimal first order scheme for Lipschitz continuous functions detailed in Nesterov (1983) to the solve the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be solved explicitly or very efficiently. . .
Nesterov’s method

- The min-max model makes this an ideal candidate for robust optimization

- For fixed problem size, the number of iterations required to get an \(\epsilon \) solution is given by

 \[
 O\left(\frac{1}{\epsilon}\right)
 \]

 compared to \(O\left(\frac{1}{\epsilon^2}\right) \) for generic first-order methods.

- Each iteration has low memory requirements.

- Change in granularity of the solver: larger number of cheaper iterations.
Matrix exponential

- The key step at each iteration is computing the gradient:

\[\nabla f_\mu(x) := \left(\text{Tr} \exp \left(\frac{Ax - b}{\mu} \right) \right)^{-1} \exp \left(\frac{Ax - b}{\mu} \right) \]

- This amounts to a **matrix exponential** computation.

- In general, Padé approximation techniques are the classic solution. We can do better here because of the matrix structure.
Main Result

When minimizing a function with Lipschitz-continuous gradient using the method in Nesterov (1983), an approximate gradient is sufficient to get the $O(1/\epsilon)$ convergence rate:

If the function and gradient approximations satisfy:

$$|f(x) - \tilde{f}(x)| \leq \delta \quad \text{and} \quad |\langle \tilde{\nabla} f(x) - \nabla f(x), y \rangle| \leq \delta \quad x, y \in Q_1,$$

we have:

$$f(x_k) - f(x^*) \leq \frac{Ld(x^*)}{(k + 1)(k + 2)\sigma} + 10\delta$$

where L, $d(x^*)$ and σ are problem constants.
Benefits

• Because the eigenvalues of the gradient matrix decrease exponentially fast, only a few eigenvalues are necessary to compute the gradient with the required precision.

• How few? Pick $X \in S_n$ with coefs $\mathcal{N}(0, \sigma^2/n)$. Wigner’s semicircle law: eigenvalues of X are asy. dist. according to:

\[
p(x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - x^2},
\]

in the limit, the proportion of eigenvalues required is given by:

\[
P_\lambda \triangleq P \left(\frac{\lambda_i(X) - \lambda_{\text{max}}(X)}{\mu} \leq \gamma \right) = \int_{-2\sigma}^{2\sigma + \frac{\epsilon\log \gamma}{\log n}} \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - x^2} \, dx.
\]

• With $n = 5000$, $\delta = 10^{-6}$ and $\epsilon = 10^{-2}$, we get $nP_\lambda = 2.3$ eigs.
Numerical performance

Figure 1: Percentage of eigenvalues required versus duality gap on random max. eigenvalue minimization problems.
Numerical performance

- Consider the following sparse PCA relaxation, from d’Aspremont, El Ghaoui, Jordan & Lanckriet (2005):

\[
\begin{align*}
\text{minimize} & \quad \lambda_{\max}(C + U) \\
\text{subject to} & \quad |U_{ij}| \leq \rho, \quad i, j = 1, \ldots, n,
\end{align*}
\]

- Use ARPACK to compute eigenvalues (sparse eig. package).

- Generate a 100×100 matrix U with uniformly distributed coefficients.

- Let $e \in \mathbb{R}^{100}$ be a sparse vector with:

\[
e = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, \ldots)
\]

and form a test matrix $A = U^T U + vee^T$, where v is a signal-to-noise ratio.
Numerical performance

Left: Duality gap versus CPU time for various values of the signal to noise ratio v. Right: Percentage of eigenvalues required versus duality gap for various values of the signal to noise ratio v.
Conclusion

• Smooth first-order minimization with approximate gradient.

• An order of magnitude faster on semidefinite optimization problems.

• Link between problem structure and number of eigs required hard to establish...

Journal on Optimization 7(2), 367–385.

Moler, C. & Van Loan, C. (2003), ‘Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later’, SIAM
Review 45(1), 3–49.

Doklady 27(2), 372–376.