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Introduction

Smooth Optimization:

• Produces smooth (Lipschitz-continuous gradient) approximation of
structured semidefinite optimization problems.

• Smooth problem solved using first-order technique in Nesterov (1983).

• Total complexity in O(1/ǫ) instead of O(1/ǫ2).

Smooth semidefinite optimization:

• Difference with I.P. methods: large number of simpler iterations.

• Key step is a matrix exponential: can be computed efficiently.
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Smoothing technique

Example: maximum eigenvalue minimization problem:

min f(x) := λmax(Ax − b)

in the variable x ∈ Rn with parameters A ∈ Rm×n and b ∈ Rm.

Solve smooth approximation with:

min fµ(x) := µ log

(

Tr exp

(

Ax − b

µ

))

where log and exp are the matrix (not componentwise) logarithm and
exponential, respectively.
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Smoothing technique

fµ(Ax − b) is a µ log n-uniform approximation of λmax(Ax − b):

λmax(Ax − b) ≤ fµ(x) ≤ λmax(Ax − b) + µ log n

and the gradient of fµ(x), given by:

∇fµ(x) :=

(

Tr exp

(

Ax − b

µ

))

−1

exp

(

Ax − b

µ

)

is Lipschitz continuous with constant given by:

L =
‖A‖2

µ
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Smoothing technique

• If we set:
µ =

ǫ

2 log n
,

• solving
min fµ(x)

produces an ǫ-approximation of the solution to the original problem.

• Because ∇fmu is Lipschitz continuous, Nesterov (1983) shows that the
complexity of solving this problem is given by:

4‖A‖

ǫ

√

log n‖x⋆‖2

2
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Nesterov’s method

• Nesterov (2005) shows that this result holds for all problems with a
min-max format:

f(x) = f̂(x) + max
u

{〈Tx, u〉 − φ̂(u) : u ∈ Q2}

• assuming that:

◦ f is defined over a compact convex set Q1 ⊂ Rn

◦ f̂(x) is convex, differentiable and has a Lipschitz continuous gradient
with constant M ≥ 0

◦ T is a linear operator: T ∈ Rn×n

◦ φ̂(u) is a continuous convex function over some compact set Q2 ⊂ Rn.
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Nesterov’s method

To summarize: if a problem can be written according to this min-max model,
the algorithm works as follows. . .

• Regularization. Add strongly convex penalty inside the min-max
representation to produce an ǫ-approximation of f with Lipschitz
continuous gradient (generalized Moreau-Yosida regularization step, see
Lemaréchal & Sagastizábal (1997) for example).

• Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve
the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be
solved explicitly or very efficiently. . .
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Nesterov’s method

• The min-max model makes this an ideal candidate for robust

optimization

• For fixed problem size, the number of iterations required to get an ǫ
solution is given by

O

(

1

ǫ

)

compared to O
(

1
ǫ2

)

for generic first-order methods.

• Each iteration has low memory requirements.

• Change in granularity of the solver: larger number of cheaper iterations.
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Matrix exponential

• The key step at each iteration is computing the gradient:

∇fµ(x) :=

(

Tr exp

(

Ax − b

µ

))

−1

exp

(

Ax − b

µ

)

• This amounts to a matrix exponential computation.

• Classic problem. See “Nineteen dubious ways to compute the exponential
of a matrix” by Moler & Van Loan (2003).

• In general, Padé approximation techniques are the classic solution. We
can do better here because of the matrix structure.
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Main Result

When minimizing a function with Lipschitz-continuous gradient using the
method in Nesterov (1983), an approximate gradient is sufficient to get the
O(1/ǫ) convergence rate:

If the function and gradient approximations satisfy:

|f(x) − f̃(x)| ≤ δ and |〈∇̃f(x) −∇f(x), y〉| ≤ δ x, y ∈ Q1,

we have:

f(xk) − f(x⋆) ≤
Ld(x⋆)

(k + 1)(k + 2)σ
+ 10δ

where L, d(x⋆) and σ are problem constants.
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Benefits

• Because the eigenvalues of the gradient matrix decrease exponentially
fast, only a few eigenvalues are necessary to compute the gradient with
the required precision.

• How few? Pick X ∈ Sn with coefs N (0, σ2/n). Wigner’s semicircle law:
eigenvalues of X are asy. dist. according to:

p(x) =
1

2πσ2

√

4σ2 − x2,

in the limit, the proportion of eigenvalues required is given by:

Pλ , P

(

e
λi(X)−λmax(X)

µ ≤ γ

)

=

∫ 2σ+ǫ log γ
log n

−2σ

1

2πσ2

√

4σ2 − x2dx.

• With n = 5000, δ = 10−6 and ǫ = 10−2, we get nPλ = 2.3 eigs.
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Numerical performance
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Figure 1: Percentage of eigenvalues required versus
duality gap on random max. eigenvalue minimization
problems.
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Numerical performance

• Consider the following sparse PCA relaxation, from d’Aspremont,
El Ghaoui, Jordan & Lanckriet (2005):

minimize λmax(C + U)
subject to |Uij| ≤ ρ, i, j = 1, . . . , n,

• Use ARPACK to compute eigenvalues (sparse eig. package).

• Generate a 100 × 100 matrix U with uniformly distributed coefficients.

• Let e ∈ R100 be a sparse vector with:

e = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, . . .)

and form a test matrix A = UTU + veeT , where v is a signal-to-noise
ratio.
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Numerical performance

0 2 4 6 8 10 12 14 16
10

−2

10
−1

10
0

10
1

10
2

 

 
v=10
v=50
v=100

CPU time (in sec.)

D
u
al

it
y

g
ap

10
−2

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

 

 
v=10
v=50
v=100

%
ei

g
.

Duality gap

Left: Duality gap versus CPU time for various values of the signal to noise
ratio v. Right: Percentage of eigenvalues required versus duality gap for
various values of the signal to noise ratio v.
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Conclusion

• Smooth first-order minimization with approximate gradient.

• An order of magnitude faster on semidefinite optimization problems.

• Link between problem structure and number of eigs required hard to
establish. . .
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