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Abstract

When interest rate dynamics are described by the Libor Market Model as in Brace, Gatarek & Musiela
(1997), we show how some essential risk-management results can be obtained from the dual of the calibra-
tion program. In particular, if the objetive is to maximize another swaption’s price, we show that the optimal
dual variables describe a hedging portfolio in the sense of Avellaneda & Paras (1996). In the general case,
the local sensitivity of the covariance matrix to all market movement scenarios can be directly computed
from the optimal dual solution. We also show how semidefinite programming can be used to manage the
Gamma exposure of a portfolio.

Keywords: Libor Market Model, Inverse problems, Semidefinite Programming, Calibration.

1 Introduction

A recent stream of works on the Libor Market Model have showed how the swap can be approximated by a
basket of lognormal processes under an appropriate choice of forward measure. This, coupled with analytic
European basket call pricing approximations, allows to cast the problem of calibrating the Libor Market
Model to a set of European caps and swaptions as a semidefinite program, i.e. a linear program on the cone
of positive semidefinite matrices (see Nesterov & Nemirovskii (1994) and Vandenberghe & Boyd (1996)).
This work exploits the related duality theory to provide explicit sensitivity and hedging results based on the
optimal solution to the calibration program.

The lognormal approximation for basket pricing has its origin in electrical engineering as the addition of
noise in decibels (see for example Schwartz & Yeh (1981)). Its application to basket option pricing dates
back to Huynh (1994) or Musiela & Rutkowski (1997). Brace, Dun & Barton (1999) tested it’s empirical
validity for swaption pricing and Brace & Womersley (2000) used it to study Bermudan swaptions. More re-
cently, d’Aspremont (2002), Kawai (2002) and Kurbanmuradov, Sabelfeld & Schoenmakers (2002) obtained
additional terms in the expansion and further evidence on the lognormal approximation’s performance. On
the calibration front, Rebonato (1998) and Rebonato (1999) highlight the importance of jointly calibrating
volatilities and correlations. These works, together with Longstaff, Santa-Clara & Schwartz (2000) also detail
some of the most common non-convex calibration techniques based on parametrizations of the forward rates
covariance factors. The mixed static-dynamic hedging formulation of the pricing problem has its source in
the works by El Karoui, Jeanblanc-Picqué & Shreve (1998), Avellaneda, Levy & Paras (1995) and Avellaneda
& Paras (1996). Romagnoli & Vargiolu (2000) provide some closed-form results in the multivariate case.

Here, we show how the dual solution to the calibration program provides a complete description of the
sensitivity to changes in market condition. In fact, because the algorithms used to solve the calibration
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problem jointly solve the problem and its dual, the sensitivity of the calibrated covariance matrix is readily
available from the dual solution to the calibration program. When the objective in the calibration program
is another swaption’s price, the dual solution also describes an approximate solution to the optimal hedging
problem in Avellaneda & Paras (1996), which computes the price of a derivative product as the sum of
static hedging portfolio and a dynamic strategy hedging the worst-case residual risk. We also show how
semidefinite programming can be used to efficiently solve the problem of optimally managing the Gamma
exposure of a portfolio using vanilla options, as posed by Douady (1995).

The results we obtain here underline the key advantages of applying semidefinite programming meth-
ods to the calibration problem: besides their radical numerical performance, they naturally provide some
central results on sensitivity and risk-management. They also eliminate the numerical errors in sensitivity
computations that were caused by the inherent instability of the classical non-convex calibration solutions.

The paper is organized as follows: In the next section, we quickly recall the approximate calibration
program construction for the Libor Market Model. Section three shows how to compute key sensitivities
from the dual solution to the calibration problem. A fourth section details how these results can be used to
form hedging portfolios and finally, in the last section, we present some numerical results.

2 Model Calibration

In this section, we begin by briefly recalling the Libor Market Model construction along the lines of Brace
et al. (1997) (see also Jamshidian (1997), Sandmann & Sondermann (1997) and Miltersen, Sandmann &
Sondermann (1997)). We then describe how to form the calibration program.

2.1 Zero coupon dynamics

We use the Musiela parametrization of the Heath, Jarrow & Morton (1992) setup. r(t, θ) is the continuously
compounded instantaneous forward rate at time t, with duration θ. To avoid any confusion, Roman letters
will be used for maturity dates and Greek ones for durations. The zero-coupon is here computed as

B(t, T ) = exp

(
−

∫ T−t

0

r(t, θ)dθ

)
(1)

All dynamics are described in a probability space (Ω, {Ft; t ≥ 0}, P) where the filtration {Ft; t ≥ 0} is
the P-augmentation of the natural filtration generated by a d dimensional Brownian motion W = {Wt, t ≥
0}. The savings account is defined by:

βt = exp
(∫ t

0

r(s, 0)ds

)
and represents the amount generated at time t ≥ 0 by continuously reinvesting 1 euro in the spot rate r(s, 0)
during the period 0 ≤ s ≤ t. As in Heath et al. (1992), the absence of arbitrage between all zero-coupons and
the savings account states that:

B(t, T )
βt

= B(0, T ) exp
(
−

∫ t

0

σ(s, T − s)dWs − 1
2

∫ t

0

|σ(s, T − s)|2 ds

)
(2)

is a martingale under P for all T > 0, where for all θ ≥ 0 the zero-coupon bond volatility process
{σ(t, θ); θ ≥ 0} is Ft-adapted with values in R

d. We assume that the function θ �−→ σ(t, θ) is absolutely
continuous and the derivative τ(t, θ) = ∂/∂θ(σ(t, θ)) is bounded on R

2 × Ω.

2.2 Libor diffusion process

All Heath et al. (1992) based arbitrage models are fully specified by their volatility structure and the forward
rates curve today. The central assumption in the Libor Market Model is that for a given maturity δ (for ex. 3
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months) the associated Libor rate process {L(t, θ); t ≥ 0} defined by

1 + δL(t, θ) = exp

(∫ θ+δ

θ

r(t, ν)dν

)
has a log-normal volatility structure:

dL(t, θ) = (...)dt + L(t, θ)γ(t, θ)dWt (3)

where the deterministic volatility function γ : R
2
+ �−→ R

d is bounded and piecewise continuous. Using the
Ito formula combined with the dynamics detailed above, we get as in Brace et al. (1997):

dL(t, θ) =
(

∂L(t, θ)
∂θ

+ γ(t, θ)σ(t, θ)L(t, θ) +
δL(t, θ)2

1 + δL(t, θ)
|γ(t, θ)|2

)
dt

+ L(t, θ)γ(t, θ)dWt

and the FRA dynamics are given by:

dK(t, T ) = γ(t, T − t)K(t, T ) [σ(t, T − t + δ)dt + dWt] with K(t, T ) = L(t, T − t)

where σ(t, T ) is defined as:

σ(t, Ti) =
i−1∑
j=1

δK(t, Tj)
1 + δK(t, Tj)

γ(t, Tj − t) (4)

and Tj is a calendar with period δ. As in Brace et al. (1997) we set σ(t, θ) = 0 for 0 ≤ θ < δ.

2.3 Swaps

A swap rate is the rate that zeroes the present value of a set of periodical exchanges of fixed against floating
coupons on a Libor rate of given maturity. In a representation that is central in swaption pricing approxima-
tions, we can write swaps as baskets of forwards (see for ex. Rebonato (1998)):

swap(t, T, TN ) =
n∑

i=iT

ωi(t)K(t, Ti) (5)

If we define iT such that TiT
= T, and:

ωi(t) =
cvg(Ti, Ti+1)B(t, Ti+1)

Level(t, T, TN )
(6)

Where cvg(Ti−1, Ti) is the coverage (time interval) between Ti−1 and Ti. Level(t, T, TN ) is the level pay-
ment, i.e. the sum of the discount factors for the fixed calendar of the swap weighted by their associated
coverage:

Level(t, T, TN ) =
N∑

i=iT

cvg(Ti, Ti+1)B(t, Ti+1)

2.4 Swaption price approximation

As in Brace & Womersley (2000), d’Aspremont (2002) and Kurbanmuradov et al. (2002), we approximate
the swap dynamics by a one-dimensional lognormal process:

dswap(s, T, Tn)
swap(s, T, Tn)

=
n∑

i=1

ω̂iγ(s, Ti − s)dWLV L
t (7)

where

ω̂i = ωi(0)
K(0, Ti)

swap(0, T, Ti)
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is computed from the market data today and WLV L
t is a d dimensional Brownian motion under the swap

martingale measure defined in Jamshidian (1997), which takes the level payment as a numéraire. We can
use the order zero basket pricing approximation in Huynh (1994) and compute the price of a payer swaption
starting with maturity T, written on swap(s, T, TN ), with strike κ using the Black (1976) pricing formula:

Level(0, T, TN )
(
swap(0, T, TN )N(h) − κN

(
h −

√
VT

))
(8)

where

h =

(
ln

(
swap(0,T,TN )

κ

)
+ 1

2VT

)
√

VT

and swap(0, T, TN ) is the value of the forward swap today with

VT =
∫ T

0

∥∥∥∥∥
N∑

i=1

ω̂iγ(s, Ti − s)

∥∥∥∥∥
2

ds =
∫ T

t

 N∑
i,j=1

ω̂iω̂j 〈γ(s, Ti − s), γ(s, Tj − s)〉
 ds

=
∫ T

0

Tr (ΩtΓs) ds (9)

This cumulative variance is a linear form on the forward rates covariance. Having constructed Ωt and Γs ∈
SN−iT such that:

Ωt = ω̂ω̂T = (ω̂iω̂j)i,j∈[iT ,N ] 
 0 and Γs = (〈γ(s, Ti − s), γ(s, Tj − s)〉)i,j∈[iT ,N ] 
 0

where Γs is the covariance matrix of the forward rates (or the Gram matrix of the γ(s, Ti − s) volatility
function defined above). Here swaptions are priced as basket options with constant coefficients. As detailed
in Brace & Womersley (2000) or d’Aspremont (2002), this simple approximation is accurate to within 1-2%.
Finally, caplets are priced as one period swaptions.

2.5 The calibration program

Here, we describe the practical implementation of the calibration program using the swaption pricing ap-
proximation detailed above. This is done by discretizing in s the covariance matrix Γs. We note Sn the set
of symmetric matrixes of size n × n. We suppose that the calibration data set is made of m swaptions with
option maturity TSk

written on swaps of maturity TNk
− TSk

for k = 1, ...,m, with market volatility given
by σk.

2.5.1 A simple example

Let M be the maximum number of periods covered by all the input instruments and S = maxk=1,...,m Sk. In
the simple case where the volatility of the forwards is of the form γ(s, T − s) = γ(T − s) with γ piecewise
constant over intervals of length δ, the calibration problem becomes:

find X
s.t. Tr(ΩkX) = σ2

kTSk
for k = 1, ...,m

X 
 0
(10)

which is a semidefinite feasibility problem in the covariance matrix X ∈ SM (X 
 0 meaning X p.s.d.).
Again, σ2

kTk ∈ R+ is the Black (1976) cumulative variance of swaption k written on swap(0, TSk
, TNk

)
and Ωk =

∑Sk

j=1 δϕk,j with ϕk,j ∈ SM the rank one matrix with submatrix ω̂kω̂T
k starting at element (j, j)

and all other blocks equal to zero. Note that ω̂k is here the vector of weights associated to swaption k with
ω̂k = (ω̂i,k)i=Sk,...,Nk

.
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2.5.2 The general case

Here we show that for general volatilities γ(s, T − s), the format of the calibration problem remains similar
to that of the simple example above, except that X becomes block-diagonal. In the general non-stationary
case where γ is of the form γ(s, T − s) and piecewise constant on intervals of size δ, the expression of the
market cumulative variance becomes

σ2
kTSk

=
TSk∑
i=0

δTr (Ωk,iXi)

where Ωk,i ∈ SM−i is a block-matrix with submatrix ω̂kω̂T
k starting at element (Sk − i, Sk − i) and all

other blocks equal to zero if Sk − i ≥ 0, and is zero otherwise. Here Xi is the Gram matrix of the vectors
γ(Ti, Tj − Ti). Calibrating the model to the swaptions k = (1, ...,m) can then be written as the following
semidefinite feasibility problem.:

find Xi i = i, ..., TM

s.t.
∑TSk

i=0 δiTr (Ωi,kXi) = σ2
kTk for k = 1, ...,m

Xi 
 0 for i = 0, ..., TS

and the variables here are the matrixes Xi ∈ SM−i. We can write this general problem in the same format
used in the simple stationary case. Let X be the block matrix

X =


X1 0 . 0
0 . . .
. . . 0
0 . 0 XTM


the calibration program can be written as in (10):

find X
s.t. Tr(Ω̄kX) = σ2

kTk for k = 1, ...,m
X 
 0, X band-diagonal

(11)

except that Ω̄k and X ∈ SM−i are here ”block-diagonal”. We can also replace the equality constraints in (10)
with Bid-Ask spreads. The new calibration problem is then written as the L.M.I.:

find X
s.t. σ2

Bid,kTSk
≤ Tr(ΩkX) ≤ σ2

Ask,kTSk
for k = 1, ...,m

X 
 0

in the variable X ∈ SM , with parameters Ωk, σ2
Bid,k, σ2

Ask,k, TSk
. Again, we can rewrite this program as a

standard form L.M.I.:

find X

s.t. Tr

 Ωk 0 0
0 I 0
0 0 0

 X 0 0
0 U1 0
0 0 U2

 = σ2
Ask,kTSk

Tr

 Ωk 0 0
0 0 0
0 0 −I

 X 0 0
0 U1 0
0 0 U2

 = σ2
Bid,kTSk

for k = 1, ...,m

X,U1, U2 
 0

which can be summarized as

find X̃

s.t. Tr(Ω̃Ask,kX̃) = σ2
Ask,kTSk

Tr(Ω̃Bid,kX̃) = σ2
Bid,kTSk

for k = 1, ...,m

X̃ 
 0, X̃ block-diagonal

(12)
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with X̃, Ω̃k ∈ S3M . Because of these transformations and to simplify the analysis, we will always handle
the stationary case with equality constraints in the following section, knowing that all results can be directly
extended to the general case (non-stationary covariance with Bid-Ask constraints) by embedding them in a
larger, block-diagonal semidefinite program.

3 Sensitivity analysis

In this section, we begin by a brief description of Lagrangian duality for semidefinite programs. We then show
how the dual optimal solution can be exploited for computing solution sensitivities with minimal numerical
cost.

3.1 Semidefinite duality

We very briefly summarize here the duality theory for semidefinite programming. We refer the reader to
Nesterov & Nemirovskii (1994) or Vandenberghe & Boyd (1996) for a complete analysis. As we have seen
in the previous section, the calibration problem can be written as a standard form primal semidefinite program:

minimize Tr(CX)
s.t. Tr(ΩkX) = σ2

kTSk
for k = 1, ...,m

X 
 0
(13)

in the variable X ∈ SM with parameters Ωk, C ∈ SM and σ2
kTSk

∈ R+. For X 
 0, y ∈ R
m, we form the

following Lagrangian:

L(X, y) = Tr(CX) +
m∑

k=1

yk

(
Tr(ΩkX) − σ2

kTSk

)
= Tr

(
m∑

k=1

(ykΩk + C) X

)
−

m∑
k=1

ykσ2
kTSk

and because the semidefinite cone is self-dual, we find that L(X, y) is bounded below in X 
 0 iff:

0 �
m∑

k=1

ykΩk + C

hence the dual semidefinite problem becomes:

maximize −∑m
k=1 ykσ2

kTSk

s.t. 0 � (
∑m

k=1 ykΩk + C)
(14)

All modern solvers (see for example Sturm (1999)) produce both primal and dual solutions to this problem
as well as a certificate of optimality for the solution in the form of the associated duality gap:

µ = Tr

(
X

(
m∑

k=1

ykΩk − C

))

which is an upper bound on the absolute error. We now show how this dual solution can be used for risk-
management purposes.

3.2 Computing sensitivities

Let us suppose that we have solved both the primal and the dual calibration problems above with market
constraints σ2

kTSk
and let Xopt and yopt be the optimal solutions. Suppose also that the market swaption
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price constraints are modified by a small amount u ∈ R
m. The new calibration problem becomes:

maximize Tr(CX)
s.t. Tr(ΩkX) = σ2

kTSk
+ uk for k = 1, ...,m

X 
 0

in the variable X ∈ SM with parameters Ωk, C ∈ SM and σ2
kTSk

∈ R+ and if we note popt(u) the optimal
solution to the revised problem, we get (at least formally for now) the sensitivity of the solution to a change
in market condition as:

∂popt(0)
∂uk

= −yopt
k (15)

where yopt is the optimal solution to the dual problem. As we will see in this section and the next one, this
has various interpretations depending on the objective function. here, we want to study the variation in the
solution matrix Xopt, given a small change u in the market conditions. Let us suppose that we have solved
the general calibration problem:

maximize Tr(CX)
s.t. Tr(ΩkX) = σ2

kTSk
+ uk for k = 1, ...,m

X 
 0

X ∈ SM with parameters Ωk, C ∈ SM and σ2
kTSk

∈ R+. Here C is, for example, an historical estimate of
the covariance matrix.

Notation 1 Let us call Xopt and yopt the primal and dual solutions to the above problem with u = 0. We
note

Zopt =

(
C −

m∑
k=1

yopt
k Ωk

)
the dual solution matrix. As in Alizadeh, Haeberly & Overton (1998), we also define the symmetric Kronecker
product as:

(P � Q) K :=
1
2
(
PKQT + QKPT

)
We note A and A∗, the linear operators defined by:

A : SM −→ R
m

X �−→ AX := (Tr (AiX))i=1,...,m

and its dual
A∗ : R

m −→ SM

y �−→ A∗y :=
∑m

i=1 yiΩi

The results in Todd & Yildirim (1999) compute the impact ∆X on the solution of a small change in the
market price data (uk)k=1,..,m, i.e. given u small enough we compute the next Newton step ∆X . Each solver
implements one particular search direction to compute this step and some most common ones are the A.H.O.
search direction based on the work by Alizadeh et al. (1998), the H.K.M. direction by Helmberg, Rendl,
Vanderbei & Wolkowicz (1996), Kojima, Shindoh & Hara (1997) and Monteiro (1997). Depending on the
choice of the search direction, we define a matrix m such that:

• M = I for the A.H.O. direction

• M = Zopt for the H.K.M. direction.

We also define the linear operators:

E = Zopt � M and F = MXopt � I

and their adjoints
E∗ = Zopt � M and XoptM � I

We remark that if A,B ∈ SMcommute, with eigenvalues α, β ∈ R
M and common eigenvectors vi for

i = 1, ...,M , then A � B has eigenvalues (αiβj + αjβi) for i, j = 1, ...,M and eigenvectors viv
T
i if i = j
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and (viv
T
j + vjv

T
i ) if i �= j for i, j = 1, ...,M . Provided the strict feasibility and nonsingularity conditions

in §3 of Todd & Yildirim (1999) hold, we can compute the Newton step ∆X as:

∆X = E−1FA∗
[(

AE−1FA∗)−1
u
]

(16)

and this will lead to a feasible point Xopt + ∆X 
 0 iff the market variation movement u is such that:∥∥∥(Xopt
)− 1

2
(
E−1FA∗

[(
AE−1FA∗)−1

u
]) (

Xopt
)− 1

2

∥∥∥
2
≤ 1 (17)

The intuition behind this formula is that semidefinite programming solvers are based on the Newton method
and condition (17) ensures that the solution Xopt remains in the region of quadratic convergence of the
Newton algorithm. This means that only one Newton step is required to produce the new optimal solution
Xopt +∆X and (16) simply computes this step. The matrix in (16) produces a direct method for updating X
which we can now use to compute price sensitivities for any given portfolio. This illustrates how a semidef-
inite programming based calibration allows to test various realistic scenarios at a minimum numerical cost
and improves on the classical non-convex methods that either had to ”bump the market data and recalibrate”
the model for every scenario with the risk of jumping from one local optimum to the next, or simulate unreal-
istic market movements by directly adjusting the covariance matrix. One key remaining question however is
that of stability: the calibration program in (10) has a unique solution, but this optimum can be very unstable
and the matrix in (16) badly conditioned. In the spirit of the work by Cont (2001) on volatility surfaces, we
now look for a way to stabilize the calibration result.

3.3 Robustness

The previous sections were focused on how to compute the impact of a change in market conditions. Here we
will focus on how to anticipate those variations and make the calibrated matrix optimally robust to a given set
of scenarios. Depending on the way the perturbations are modeled, this problem can remain convex and be
solved very efficiently. Let us suppose here that we want to solve the calibration problem on a set of market
Bid-Ask spreads data defined by the following L.M.I.:

find X
s.t. σ2

Bid,kTSk
≤ Tr(ΩkX) ≤ σ2

Ask,kTSk
for k = 1, ...,m

X 
 0

in the variable X ∈ SM with parameters Ωk, C ∈ SM and σ2
Bid,kTSk

, σ2
Ask,kTSk

∈ R+. In the absence
of any information on the uncertainty in the market data, we can simply maximize the distance between the
solution and the market bounds to ensure that it remains valid in the event of a small change in the market
variance input. As the robustness objective is equivalent to a distance maximization between the solution and
the constraints (or Chebyshev centering), the input of assumptions on the movement structure is equivalent
to a choice of norm. Without any particular structural information on the volatility market dynamics, we can
use the l∞ norm and the calibration problem becomes:

maximize t
s.t. σ2

Bid,kTSk
+ t ≤ Tr(ΩkX) ≤ σ2

Ask,kTSk
− t for k = 1, ...,m

X 
 0

or, using the l1 norm instead:

maximize
∑m

i=1 tk
s.t. σ2

Bid,kTSk
+ tk ≤ Tr(ΩkX) ≤ σ2

Ask,kTSk
− tk for k = 1, ...,m

X 
 0

The problems above optimally center the solution within the Bid-Ask spreads, which makes it robust to
a change in market conditions given no particular information on the nature of that change. In the same
vein, Ben-Tal, El Ghaoui & Lebret (1998) also show how to design a program that is robust to a change in
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the matrixes Ωk. However, because the matrixes Ωk are computed from ratios of zero-coupon bonds, their
variance is negligible compared to that of σ2

k.
Suppose now that V is a statistical estimate of the daily covariance of σ2

kTSk
(the mid-market volatilities

in this case) and let us assume that these volatilities have a Gaussian distribution. We adapt the method used
by Lobo, Vandenberghe, Boyd & Lebret (1998) for robust L.P. We suppose that the matrix V has full rank.
We can then center the model with respect to this information:

maximize Tr(CX)
s.t. Tr (ΩkX) − σ2

kTSk
= vk for k = 1, ...,m∥∥∥V − 1

2 v
∥∥∥
∞

≤ Φ−1(µ)

X 
 0

where ‖·‖∞ is the l∞ norm and Φ(x) is given by

Φ(x) = 1 − 1√
2π

∫ x

−x

exp(−u2/2)du

There is no guarantee that this program is feasible and we can solve instead for the best confidence level by
forming the following program:

minimize t
s.t. Tr (ΩkX) − σ2

kTSk
= vk for k = 1, ...,m∥∥∥V − 1

2 v
∥∥∥
∞

≤ t

X 
 0

The optimal confidence level is then η = Φ(t) and ”centers” the calibrated matrix with respect to the uncer-
tainty in σ2

kTSk
. This is a symmetric cone program, i.e. a program mixing LP, second-order and semidefinite

cone constraints, and can be solved very efficiently using the code by Sturm (1999) for example.

4 Hedging

In this section, we show how the calibration programs can be used to build a superreplicating portfolio,
approximating the upper and lower hedging prices defined in El Karoui & Quenez (1991) and El Karoui &
Quenez (1995). An efficient technique for computing those price bounds with general non-convex payoffs
on a single asset with univariate dynamics was introduced in Avellaneda et al. (1995) and recent work on this
topic by Romagnoli & Vargiolu (2000) provided closed-form solutions for the prices of exchange options and
options on the geometrical mean of two assets. Gozzi & Vargiolu (2000) applied the same technique to caps
and floors.

4.1 Approximate solution

Here, using the approximation in (8), we first compute arbitrage bounds on the price of a basket by adapting
the method used by Avellaneda et al. (1995) in the one-dimensional case. We then provide approximate (to
within 1-2%) closed-form solutions for these arbitrage bounds on swaptions and show how one can use the
dual solution to build an optimal hedging portfolio in the sense of Avellaneda & Paras (1996), using derivative
securities taken from the calibration set.

As in Avellaneda & Paras (1996), the price here is derived from a mixed static-dynamic representation:

Price = Min {Value of static hedge + Max (PV of residual liability)} (18)

where the static hedge is a portfolio composed of the calibration assets and the maximum residual liability is
computed as in El Karoui et al. (1998) or Avellaneda et al. (1995). Because of the sub-additivity of the above
program with respect to payoffs, we expect this diversification of the volatility risk to bring down the total cost
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of hedging. Let K(t) = (K(t, Ti))i=1,...,M and suppose we have a set of market prices Ci, i = 1, . . . , m,
with corresponding market volatilities σk and payoffs

hωk,Kk
(K(T )) =

 Nk∑
j=Sk

ωj,kK(TSk
, Tj)

+

for basket options with coefficient matrixes Ωk ∈ SM for k = 1, . . . , m. To approximate the optimal hedging
portfolio in the sense of Avellaneda & Paras (1996) we can form a portfolio composed of a static part with
λopt

k basket k, where λopt
k is given by:

λopt
k = −yopt

k

∂BS0 (Tr(Ω0X
opt)) /∂v

∂BSk (Tr(ΩkXopt)) /∂v
for k = 1, ...,m (19)

where, for simplicity, we have noted BSk(v) the price of basket k as a function of the cumulative variance
v, computed as in (8) with Xopt ∈ SM and yopt

k ∈ R
m are the primal and dual solutions to the semidefinite

program:
maximize σ2

maxT = Tr(Ω0X)
s.t. Tr(ΩkX) = σ2

kTSk
for k = 1, ...,m

X 
 0

This is because as in Avellaneda & Paras (1996) we can write the price as:

inf
λ∈Rm

{
m∑

k=1

λkCk +

(
sup
P

EP

[
β(T )−1hω,Ko

(K(T )) −
m∑

k=1

λkβ(T )−1hωk,Kk
(K(T ))

])}
(20)

where P varies within the set of equivalent martingale measure and β(T ) is the value of the savings account
in T . We can rewrite the above problem as:

inf
λ

{
sup
P

(
EP

[
β(T )−1hω0,K0(K(T ))

]− m∑
i=1

λk

(
EP

[
β(T )−1hωk,Kk

(K(T ))
]− Ck

))}

where we recognize the optimum hedging portfolio problem as the dual of the maximum price problem
above:

maximize EP
[
β(T )−1hω0,K0(K(T ))

]
s.t. EP

[
β(T )−1hωk,Kk

(K(T ))
]

= Ck for k = 1, ...,m

Using (8), we get an approximate solution by solving the following problem:

maximize BS0(Tr(Ω0X))
s.t. BSk (Tr(ΩkX)) = Ck for k = 1, ...,m

X 
 0

and its dual:

inf
λ

{
sup
X�0

(
BS(Tr(Ω0X)) −

m∑
k=1

λk (BS (Tr(ΩkX)) − Ck)

)}
The primal problem, after we write it in terms of variance, becomes the following semidefinite program:

maximize σ2
maxT = Tr(Ω0X)

s.t. Tr(ΩkX) = σ2
kTk for k = 1, ...,m

X 
 0

Again, we note yopt ∈ R
m the solution to the dual of this last problem:

minimize
∑m

k=1 ykσ2
kTk

s.t. 0 � ∑m
k=1 ykΩk − Ω0

10



The KKT optimality conditions on the primal-dual semidefinite program pair above (see Vandenberghe &
Boyd (1996) for example) can be written:

0 � ∑m
k=1 ykΩk − Ω0

0 =
∑m

k=1 ykΩkX − Ω0X
Tr(ΩkX) = σ2

kTk for k = 1, ...,m
0 � X

and we can compare those to the KKT conditions for the price maximization problem:
Z = ∂BS0(Tr(Ω0X))

∂v Ω0 +
∑m

k=1 λk
∂BSk(Tr(ΩkX))

∂v Ωk

XZ = 0
BSk (Tr(ΩkX)) = Ci for k = 1, ...,m
0 � X,Z

with dual variables λ ∈ R
m and Z ∈ Sn. An optimal dual solution for the price maximization problem can

then be constructed from yopt, the optimal dual solution of the semidefinite program on the variance, as:

λopt
k = −yopt

k

∂BS0 (Tr(Ω0X)) /∂v

∂BSk (Tr(ΩkX)) /∂v

which corresponds to the composition in the baskets k of the optimal static hedging portfolio (18) .

4.2 The exact problem

The bounds found in the section above are only approximate solutions to the superreplicating problem. Al-
though the relative error in this approximation is known to be about 1-2%, it is interesting to notice that
although it does not remain completely tractable (as a dynamic program in multiple dimensions), the exact
problem shares the same optimization structure as the approximate one. Let us recall the results in Romag-
noli & Vargiolu (2000). If, as above, we note C(K(t), t) the superreplicating price of a basket option, then
C(K(t), t) is the solution to the a multidimensional Black-Scholes-Barenblatt equation We can create a su-
perreplicating strategy by dynamically trading in a portfolio composed of ∆i

t = ∂C
∂xi

(t,K(t, Ti)) in each
asset. The BSB equation in (Romagnoli & Vargiolu (2000)) can be rewritten it in a format that is similar to
that of the approximate problem above, to become:

∂C(x,t)
∂t + 1

2 maxΓ∈Λ Tr
(
diag(x)∂2C(x,t)

∂x2 diag(x)Γ
)

= 0

C(x, T ) = (
∑n

i=1 ωixi − k)+

where diag(x) is the diagonal matrix formed with the components of x and Γ = γγT is the model covariance
matrix. If the set Λ is given by the intersection of the semidefinite cone (the covariance matrix has to be
p.s.d.) with a polyhedron (for example approximate price constraints, sign constraints or bounds on the
matrix coefficients, ...), then the embedded optimization problem in (Romagnoli & Vargiolu (2000)) becomes
a semidefinite program:

maximize Γ∈ΛTr

(
Γdiag(x)

∂2C(x, t)
∂x2

diag(x)
)

on the feasible set Λ. Hence we recover the same optimization problem as in the approximate solution found
in the section above, the only difference being here that the solution to the exact general problem might not be
equal to a Black-Scholes price. This gives a very straightforward interpretation of the embedded optimization
problem in the BSB equation developed in Romagnoli & Vargiolu (2000).

4.3 Optimal Gamma Hedging

For simplicity here, we work in a pure equity framework and, along the lines of Douady (1995), we study the
problem of optimally adjusting the Gamma of a portfolio using only options on single assets. This problem is
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essentially motivated by a difference in liquidity between the vanilla and basket option markets, which makes
it impractical to use some baskets to adjust the Gamma of a portfolio. Suppose we have an initial portfolio
with a Gamma sensitivity matrix given by Γ in a market with underlying assets xi, i = 1, . . . n. We want to
hedge (imperfectly) this position with yi vanilla options on each single asset xi with Gamma given by γi. We
assume that the portfolio is maintained delta-neutral, hence a small perturbation of the stock price will induce
a change in the portfolio price given by:

∆P (X + ∆X) = P (X) +
1
2
∆ST Γ(y)∆S

where Γ(y) = Γ + diag(γ)y, with diag(γ) the diagonal matrix with components γi. As in Douady (1995),
our objective is to minimize in y the maximum possible perturbation given by:

max
∆S∈E

∣∣∆ST Γ(y)∆S
∣∣

where E is the ellipsoid defined by

E =
{
X ∈ Rn|XT ΣX = 1

}
with Σ = (cov(xi, xj))i,j=1,...,n

the covariance matrix of the underlying assets. This amounts to minimizing the maximum eigenvalue of the
matrix ΣΓ(y) and can be solved by the following semidefinite program:

minimize t
subject to −tI � ΣΓ + Σdiag(γ)y � tI

We can also introduce constraints on the cost of hedging. Suppose that there are proportional transaction costs
associated with trading in the vanilla option on xi given by ki |yi| for some ki ≥ 0. The problem becomes a
symmetric cone program:

minimize t0 + α
∑n

i=1 kiti
subject to −t0I � ΣΓ + Σdiag(γ)y � t0I

−ti ≤ yi ≤ ti

and can be solved using the code by Sturm (1999). The parameter α describes the relative importance of
minimizing hedging cost compared to minimizing the gamma.

5 Numerical results

We use a data set from Nov. 6 2000 and we plot in figure (1) the upper and lower bounds obtained by
maximizing (resp. minimizing ) the volatility of a given swaption provided that the Libor covariance matrix
remains positive semidefinite and that it matches the calibration instruments. We calibrate by fitting all caplets
up to 20 years plus the following set of swaptions: 2Y into 5Y, 5Y into 5Y, 5Y into 2Y, 10Y into 5Y, 7Y into
5Y, 10Y into 2Y, 10Y into 7Y, 2Y into 2Y. This choice of swaptions was motivated by liquidity (where all
swaptions on underlying and maturity in 2Y, 5Y, 7Y, 10Y are meant to be liquid). Table (1) details the market
caplet volatilities, while table (2) shows the swaption volatilities and the corresponding ω̂i weights (data
courtesy of BNP Paribas, London). For simplicity, all frequencies are annual.

Quite surprisingly considering the simplicity of the model (stationarity of the sliding Libor dynamics
L(t, θ)), figure (1) shows that all swaptions seem to fit reasonably well in the bounds imposed by the model,
except for the 10Y underlying. This is in line with the findings of Longstaff et al. (2000). In table (3) and
(4), we show the market volatility movement vector with largest impact on the covariance matrix (first vector
in the singular value decomposition of the sensitivity matrix in 16), computed in the A.H.O. case, using the
same dataset above and a minimum trace objective.

6 Conclusion

The results above have showed how semidefinite programming based calibration methods can provide in-
tegrated calibration and risk-management results with guaranteed numerical performance, the dual program
having a very natural interpretation in terms of hedging intruments and sensitivity.
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Figure 1: Calibration result and price bounds on a ”Sydney opera house” set of swaptions.

Caplet Vols (%, 1Y to 10Y) 14.3 15.6 15.4 15.1 14.8 14.5 14.2 14.0 13.9 13.3
Caplet Vols (%, 11Y to 20Y) 13.0 12.7 12.4 12.2 12.0 11.9 11.8 11.8 11.7 12.0

Table 1: Caplet volatilities.

Swaption Vol (%) ω̂i

2Y into 5Y 12.4 0.22 0.20 0.20 0.19 0.18
5Y into 5Y 11.7 0.22 0.21 0.20 0.19 0.18
5Y into 2Y 14.0 0.51 0.49
10Y into 5Y 10.0 0.22 0.21 0.20 0.19 0.18
7Y into 5Y 11.0 0.23 0.21 0.20 0.19 0.18
10Y into 2Y 12.2 0.51 0.49
10Y into 7Y 9.6 0.17 0.16 0.15 0.14 0.13 0.13 0.12
2Y into 2Y 14.8 0.52 0.48

Table 2: Swaption volatilities and weights.

Caplet (1Y to 10Y) 0.00 -0.01 0.01 0.21 -0.25 -0.08 0.04 -0.17 -0.09 0.18
Caplet (11Y to 20Y) 0.15 -0.01 0.19 -0.18 0.29 0.04 0.09 -0.52 0.09 0.00

Table 3: First sensitivity factor, coefficients corresponding to caplets.

Swaption (2Y,5Y) (5Y,5Y) (5Y,2Y) (10Y,5Y) (7Y,5Y) (10Y,2Y) (10Y,7Y) (2Y,2Y)
Sensitivity -0.05 0.16 0.28 0.17 -0.18 -0.38 0.15 -0.08

Table 4: First sensitivity factor, coefficients corresponding to swaptions.
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