An Optimal Affine Invariant Smooth Minimization Algorithm.

Alexandre d’Aspremont, CNRS & École Polytechnique.

Joint work with Martin Jaggi. Support from ERC SIPA.
A Basic Convex Problem

Solve

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in Q, \\
\text{in} & \quad x \in \mathbb{R}^n.
\end{align*}
\]

\begin{itemize}
\item Here, \(f(x) \) is convex, \textit{smooth}.
\item Assume \(Q \subset \mathbb{R}^n \) is compact, convex and \textit{simple}.
\end{itemize}
Complexity

Newton’s method. At each iteration, take a step in the direction

\[\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \]

Assume that

- the function \(f(x) \) is self-concordant, i.e. \(|f'''(x)| \leq 2f''(x)^{3/2} \),
- the set \(Q \) has a self concordant barrier \(g(x) \).

[Nesterov and Nemirovskii, 1994] Newton’s method produces an \(\epsilon \) optimal solution to the barrier problem

\[\min_x h(x) \triangleq f(x) + tg(x) \]

for some \(t > 0 \), in at most

\[\frac{20 - 8\alpha}{\alpha\beta(1 - 2\alpha)^2}(h(x_0) - h^*) + \log_2 \log_2(1/\epsilon) \]

iterations

where \(0 < \alpha < 0.5 \) and \(0 < \beta < 1 \) are line search parameters.
Newton’s method. Basically

\[
\text{\# Newton iterations} \leq 375(h(x_0) - h^*) + 6
\]

- Empirically valid, up to constants.
- Independent from the dimension n.
- Affine invariant.

In practice, implementation mostly requires efficient linear algebra. . .

- Form the Hessian.
- Solve the Newton (or KKT) system $\nabla^2 f(x) \Delta x_{nt} = -\nabla f(x)$.
Affine Invariance

Set $x = Ay$ where $A \in \mathbb{R}^{n \times n}$ is nonsingular

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in Q,
\end{align*}
\]

becomes

\[
\begin{align*}
\text{minimize} & \quad \hat{f}(y) \\
\text{subject to} & \quad y \in \hat{Q},
\end{align*}
\]

in the variable $y \in \mathbb{R}^n$, where $\hat{f}(y) \triangleq f(Ay)$ and $\hat{Q} \triangleq A^{-1}Q$.

- **Identical Newton steps**, with $\Delta x_{nt} = A \Delta y_{nt}$
- **Identical complexity bounds** $375(h(x_0) - h^*) + 6$ since $h^* = \hat{h}^*$

Newton’s method is **invariant w.r.t. an affine change of coordinates**. The same is true for its complexity analysis.
Large-Scale Problems

The challenge now is scaling.

“Real men/women solve optimization problems with terabytes of data.”

(Michael Jordan, Paris, 2013.)

- Newton’s method (and derivatives) solve all reasonably large problems.
- Beyond a certain scale, second order information is out of reach.

Question today: clean complexity bounds for first order methods?
Frank-Wolfe

Conditional gradient. At each iteration, solve

\[
\begin{align*}
\text{minimize} & \quad \langle \nabla f(x_k), u \rangle \\
\text{subject to} & \quad u \in Q
\end{align*}
\]

in \(u \in \mathbb{R}^n \). Define the curvature

\[
C_f \triangleq \sup_{s, x \in M, \alpha \in [0, 1], y = x + \alpha(s - x)} \frac{1}{\alpha^2} \left(f(y) - f(x) - \langle y - x, \nabla f(x) \rangle \right).
\]

The Franke-Wolfe algorithm will then produce an \(\epsilon \) solution after

\[
N_{\text{max}} = \frac{4C_f}{\epsilon}
\]

iterations.

- \(C_f \) is affine invariant but the bound is suboptimal in \(\epsilon \).
- If \(f(x) \) has a Lipschitz gradient, the lower bound is \(O \left(\frac{1}{\sqrt{\epsilon}} \right) \).
Smooth Minimization algorithm in [Nesterov, 1983] to solve

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in Q,
\end{align*}
\]

- **Choose a norm** \(\| \cdot \| \). \(\nabla f(x) \) Lipschitz with constant \(L \) w.r.t. \(\| \cdot \| \)

\[
f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}L\|y - x\|^2, \quad x, y \in Q
\]

- **Choose a prox function** \(d(x) \) for the set \(Q \), with

\[
\frac{\sigma}{2}\|x - x_0\|^2 \leq d(x)
\]

for some \(\sigma > 0 \).
Smooth minimization algorithm [Nesterov, 2005]

Input: x_0, the prox center of the set Q.

1. **for** $k = 0, \ldots, N$ **do**
2. Compute $\nabla f(x_k)$.
3. Compute $y_k = \arg\min_{y \in Q} \{\langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} L \|y - x_k\|^2\}$.
4. Compute $z_k = \arg\min_{x \in Q} \left\{\sum_{i=0}^{k} \alpha_i [f(x_i) + \langle \nabla f(x_i), x - x_i \rangle] + \frac{L}{\sigma} d(x)\right\}$.
5. Set $x_{k+1} = \tau_k z_k + (1 - \tau_k) y_k$.
6. **end for**

Output: $x_N, y_N \in Q$.

Produces an ϵ-solution in at most

$$\sqrt{\frac{8L d(x^*)}{\epsilon \sigma}}$$

iterations. **Optimal in ϵ, but not affine invariant.**

Heavily used: TFOCS, NESTA, Structured ℓ_1, . . .
Choosing norm and prox can have a big impact. Consider the following matrix game problem

\[
\begin{align*}
\min_{\{1^T x = 1, x \geq 0\}} & \quad \max_{\{1^T x = 1, x \geq 0\}} x^T A y \\
\end{align*}
\]

- **Euclidean prox.** pick \(\| \cdot \|_2 \) and \(d(x) = \|x\|_2^2/2 \), after regularization, the complexity bound is

\[
N_{\text{max}} = \frac{4\|A\|_2}{N + 1}
\]

- **Entropy prox.** pick \(\| \cdot \|_1 \) and \(d(x) = \sum_i x_i \log x_i + \log n \), the bound becomes

\[
N_{\text{max}} = \frac{4\sqrt{\log n \log m} \max_{ij} |A_{ij}|}{N + 1}
\]

which can be significantly smaller.

Speedup is roughly \(\sqrt{n} \) when \(A \) is Bernoulli.
Choosing the norm

Invariance means $\| \cdot \|$ and $d(x)$ constructed using only f and the set Q.

Minkovski gauge. Assume Q is centrally symmetric with non-empty interior. The Minkowski gauge of Q is a norm

$$\| x \|_Q \triangleq \inf \{ \lambda \geq 0 : x \in \lambda Q \}$$

Lemma

Affine invariance. The function $f(x)$ has Lipschitz continuous gradient with respect to the norm $\| \cdot \|_Q$ with constant $L_Q > 0$, i.e.

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} L_Q \| y - x \|_Q^2, \quad x, y \in Q,$$

if and only if the function $f(Aw)$ has Lipschitz continuous gradient with respect to the norm $\| \cdot \|_{A^{-1}Q}$ with the same constant L_Q.

A similar result holds for **strong convexity.** Note that $\| x \|_Q^* = \| x \|_Q^\circ$.

A. d'Aspremont

IWSL, Moscow, June 2013, 11/18
Choosing the prox.

How do we choose the prox.? Start with two definitions.

Definition

Banach-Mazur distance. Suppose $\| \cdot \|_X$ and $\| \cdot \|_Y$ are two norms on a space E, the *distortion* $d(\| \cdot \|_X, \| \cdot \|_Y)$ is the

smallest product $ab > 0$ such that $\frac{1}{b} \| x \|_Y \leq \| x \|_X \leq a \| x \|_Y$, for all $x \in E$.

$log(d(\| \cdot \|_X, \| \cdot \|_Y))$ is the Banach-Mazur distance between X and Y.

A. d’Aspremont

IWSL, Moscow, June 2013, 12/18
Choosing the prox.

Regularity constant. Regularity constant of \((E, \| \cdot \|)\), defined in [Juditsky and Nemirovski, 2008] to study large deviations of vector valued martingales.

Definition [Juditsky and Nemirovski, 2008]

Regularity constant of a Banach \((E, \| \cdot \|)\). The smallest constant \(\Delta > 0\) for which there exists a smooth norm \(p(x)\) such that:

- The prox \(p(x)^2/2\) has a Lipschitz continuous gradient w.r.t. the norm \(p(x)\), with constant \(\mu\) where \(1 \leq \mu \leq \Delta\),
- The norm \(p(x)\) satisfies:

\[
\|x\| \leq p(x) \leq \|x\| \left(\frac{\Delta}{\mu}\right)^{1/2}, \quad \text{for all } x \in E
\]

i.e. \(d(p(x), \| \cdot \|) \leq \sqrt{\Delta/\mu}\).
Using the algorithm in [Nesterov, 2005] to solve

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in Q.
\end{align*}
\]

Proposition [d’Aspremont and Jaggi, 2013]

Affine invariant complexity bounds. Suppose \(f(x) \) has a Lipschitz continuous gradient with constant \(L_Q \) with respect to the norm \(\| \cdot \|_Q \) and the space \((\mathbb{R}^n, \| \cdot \|_Q^\ast) \) is \(D_Q \)-regular, then the smooth algorithm in [Nesterov, 2005] will produce an \(\epsilon \) solution in at most

\[
N_{\max} = \sqrt{\frac{4L_QD_Q}{\epsilon}}
\]

iterations. Furthermore, the constants \(L_Q \) and \(D_Q \) are affine invariant.

We can show \(C_f \leq L_QD_Q \), but it is not clear if the bound is attained. . .
A few more facts about L_Q and D_Q...

Suppose we scale $Q \rightarrow \alpha Q$, with $\alpha > 0$,

- the Lipschitz constant $L_{\alpha Q}$ satisfies $\alpha^2 L_Q \leq L_{\alpha Q}$.
- the smoothness term D_Q remains unchanged.
- Given our choice of norm (hence L_Q), $L_Q D_Q$ is the best possible bound.

Also, from [Juditsky and Nemirovski, 2008], in the dual space

- The regularity constant decreases on a subspace F, i.e. $D_Q \cap F \leq D_Q$.
- From D regular spaces $(E_i, \| \cdot \|)$, we can construct a $2D + 2$ regular product space $E \times \ldots \times E_m$.
Minimizing a smooth convex function over the unit simplex

\[
\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & 1^T x \leq 1, \ x \geq 0
\end{align*}
\]

in \(x \in \mathbb{R}^n \).

- Choosing \(\| \cdot \|_1 \) as the norm and \(d(x) = \log n + \sum_{i=1}^{n} x_i \log x_i \) as the prox function, complexity bounded by

\[
\sqrt{8 \frac{L_1 \log n}{\epsilon}}
\]

(note \(L_1 \) is lowest Lipschitz constant among all \(\ell_p \) norm choices.)

- Symmetrizing the simplex into the \(\ell_1 \) ball. The space \((\mathbb{R}^n, \| \cdot \|_\infty) \) is \(2 \log n \) regular [Juditsky and Nemirovski, 2008, Ex. 3.2]. The prox function chosen here is \(\| \cdot \|_\alpha^2/2 \), with \(\alpha = 2 \log n/(2 \log n - 1) \) and our complexity bound is

\[
\sqrt{16 \frac{L_1 \log n}{\epsilon}}
\]
In practice

Easy and hard problems.

- The parameter L_Q satisfies

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}L_Q\|y - x\|_Q^2, \quad x, y \in Q,$$

On easy problems, $\| \cdot \|$ is large in directions where ∇f is large, i.e. the sublevel sets of $f(x)$ and Q are aligned.

- For l_p spaces for $p \in [2, \infty]$, the unit balls B_p have low regularity constants,

$$D_{B_p} \leq \min\{p - 1, 2\log n\}$$

while $D_{B_1} = n$ (worst case). By duality, problems over unit balls B_q for $q \in [1, 2]$ are easier.

- Optimizing over cubes is harder.
Conclusion

■ **Affine invariant** complexity bound for the optimal algorithm [Nesterov, 1983]

\[N_{\text{max}} = \sqrt{\frac{4L_Q D_Q}{\epsilon}} \]

■ Matches best known bounds on key examples.

Open problems.

■ Prove optimality of product \(L_Q D_Q \). Matches curvature \(C_f \)?

■ Symmetrize non-symmetric sets \(Q \).

■ Systematic, tractable procedure for smoothing \(Q \).
References

