Convex Optimization M2

Lecture 4

A. d'Aspremont. Convex Optimization M2. 1/53



Unconstrained minimization
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Unconstrained minimization

m terminology and assumptions
m gradient descent method

m steepest descent method

= Newton's method

m self-concordant functions

m implementation

A. d’'Aspremont. Convex Optimization M2. 3/53



Unconstrained minimization

minimize f(x)

m f convex, twice continuously differentiable (hence dom f open)

= we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

= produce sequence of points z(*) € dom f, k=0, 1, ... with

F(z®) — p*

m can be interpreted as iterative methods for solving optimality condition

Vf(z*) =0
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Initial point and sublevel set

algorithms in this chapter require a starting point (%) such that

s 29 € dom f
= sublevel set S = {z | f(x) < f(2(®)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

m equivalent to condition that epi f is closed
m true if dom f = R"

s true if f(z) > o0 as * — bddom f

examples of differentiable functions with closed sublevel sets:

f(z) =1og(}explale+b)),  f(x) =~ log(bi — alx)

1=1
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(z) = ml for all z € S

implications

m for x,y € 5,

) = f@)+ V@) (y —2) + Sl = yl3

hence, S is bounded

m p* > —o0, and for x € S,

1
f@)—p* < 5 IVF@)3

useful as stopping criterion (if you know m)
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Descent methods

20D = ) 4 WAZR)  ith £(20HD) < f(20)

m other notations: 7 =z + tAx, x = x + tAx
m Ax is the step, or search direction; t is the step size, or step length

= from convexity, f(z*) < f(x) implies Vf(z)T Az < 0
(i.e., Ax is a descent direction)

General descent method.

given a starting point r € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. z := x + tAx.

until stopping criterion is satisfied.
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Line search types

exact line search: ¢t = argmin,  f(z + tAz)

backtracking line search (with parameters « € (0,1/2), 5 € (0,1))

m starting at t = 1, repeat ¢ := [t until

flx +tAz) < f(x) + atVf(z) Az

m graphical interpretation: backtrack until ¢t < ¢

f(x + tAx)

) + tVf(a;)TAg;\\\\‘ f(x) + atV f(z)" Az
f | |

t=20 to
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Gradient descent method

general descent method with Ax = —V f(z)

given a starting point x € dom f.

repeat
1. Az := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. z := z + tAx.

until stopping criterion is satisfied.

= stopping criterion usually of the form ||V f(x)|2 <€

m convergence result: for strongly convex f,

f@®) —p* < F(f() - pY)

c € (0,1) depends on m, (9, line search type

m very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flz) = (1/2)(x] + yx3) (v > 0)

with exact line search, starting at 2(%) = (v, 1):
k k
(khy _ (21 kwy _ (=1
Ly =TV <) > Lo =\ ——77
v+1 v+1

m very slow if y>1or v <1

m example for v = 10:

4r ]
& Of
—4} ]
—10 0 10
L1
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nonquadratic example

backtracking line search exact line search
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a problem in R'%°

102

10Y

f(z®) — p*

10_2,

\ backtracking I.s.

—4 | ‘ ‘
10 0 50 100 150 200

‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm || - ||):
AZpeg = argmin{V f(z)' v | ||v|| = 1}

interpretation: for small v, f(x +v) = f(z) + Vf(z)lv;
direction Ax,sq is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
Azsqa = ||V f(2)[[+AZnsa
satisfies Vf(2)1 Agq = —||Vf(2)|?

steepest descent method
m general descent method with Ax = Axyy

m convergence properties similar to gradient descent
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examples

= Euclidean norm: Axzgq = —V f(x)
= quadratic norm ||z||p = (2T Px)Y/2 (P € ST_): Azgg=—P 1V f(z)
m (1-norm: Axgq = —(0f(x)/0x;)e;, where |0f(x)/0x;| = |V f(2)|s

unit balls and normalized steepest descent directions for a quadratic norm and the
/1-norm:

—Vf(z)

—Vf(z)

ACCnsd
Aajnsd
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choice of norm for steepest descent

m steepest descent with backtracking line search for two quadratic norms
s ellipses show {z | ||z — 2¥)||p = 1}

= equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables z = P1/2z

shows choice of P has strong effect on speed of convergence
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Newton step

Azy = —V3if(z) 'V f(x)
interpretations

m x + Ax, minimizes second order approximation

P

Fla+v) = £(@) + V@) 0+ 50"V f (o)

m x + Ax,; solves linearized optimality condition

Vi +v) =Vl +v)= V) + Vf(z)v =0

=)

7
//// : (ZE + Aajnta f/(CC + Amnt))
“ (z, f'(2))

(z, f(z))

(.CC + Axnt) f(aj —|_ Axnt;).// f
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m Aux, is steepest descent direction at x in local Hessian norm

1/2
lullv2p@) = (u" V2 f(z)u)

dashed lines are contour lines of f; ellipse is {z + v | v V2 f(z)v = 1} arrow
shows —V f(x)
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Newton decrement

1/2

Ax) = (V@) V?f(2) "'V (@)

a measure of the proximity of x to x*
properties

*

m gives an estimate of f(x) — p*, using quadratic approximation f

() in Fly) = SN

m equal to the norm of the Newton step in the quadratic Hessian norm

1/2

Ax) = (Aa:ntv2f(az)Aa:nt)

= directional derivative in the Newton direction: Vf(2)! Az, = —\(2)?

= affine invariant (unlike |V f(x)]|2)
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Newton’s method

given a starting point z € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Axy = —V2f(2)"IVf(z); N :=Vf(a)!V2f(z)"1Vf(x).
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. © := x + tAxy;.

affine invariant, 7.e., independent of linear changes of coordinates:

~

Newton iterates for f(y) = f(Ty) with starting point y(©) = T2 zre

Y8 = = 15(k)

A. d'Aspremont. Convex Optimization M2. 19/53



Classical convergence analysis

assumptions

m f strongly convex on S with constant m

s V2f is Lipschitz continuous on S, with constant L > 0:

IV f(z) = V2f()ll2 < Lllz — y]2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants n € (0,m?/L), v > 0 such that

o IV/ (@)l > 1, then f(atkHD) — f(@®) < —
m if ||[Vf(x)]2 <n, then

L (k+1) L GNRAY
VD) < (VA
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damped Newton phase (||Vf(z)|2 > n)

m most iterations require backtracking steps
m function value decreases by at least

= if p* > —o00, this phase ends after at most (f(z(?) — p*)/~ iterations

quadratically convergent phase (||V f(x)|2 < n)

m all iterations use step size t =1

s |[Vf(2)|l2 converges to zero quadratically: if ||V f(2(¥))||5 < n, then

2l—k 2l—k

L L 1
el VI < (5l VI6M) < (5) . iz

A. d'Aspremont. Convex Optimization M2. 21/53



conclusion: number of iterations until f(z) — p* < € is bounded above by

f(@®) —p*
v

+ log, log, (€0 /€)

m 7, €g are constants that depend on m, L, 2(%

= second term is small (of the order of 6) and almost constant for practical
purposes

= in practice, constants m, L (hence 7, ¢p) are usually unknown

= provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)
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Examples

example in R? (page 11)

m backtracking parameters a = 0.1, 5 = 0.7

m converges in only 5 steps

m quadratic local convergence
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example in R'% (page 12)

10° 2
exact line search
« 10° 1.5}
Q <
| backtracki by
acktrackin )
1070 ne N
=2 wn
. o
) exact line search 9
o 10 0.5 acktracking
—15 I 0 |
107 2 4 . 6 8 10 0 2 ]4€ 6 8

m backtracking parameters a = 0.01, 8 = 0.5
= backtracking line search almost as fast as exact |.s. (and much simpler)

m clearly shows two phases in algorithm
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example in R1999 (with sparse a;)

10000 100000

Zlogl—x Zlog . —a) x)

m backtracking parameters a = 0.01, 5 = 0.5.

m performance similar as for small examples
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Self-concordance

shortcomings of classical convergence analysis

= depends on unknown constants (m, L, . . .)

m bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

m does not depend on any unknown constants
m gives affine-invariant bound
= applies to special class of convex functions (‘self-concordant’ functions)

m developed to analyze polynomial-time interior-point methods for convex
optimization

A. d'Aspremont. Convex Optimization M2. 26/53



Self-concordant functions

definition
s f:R — Ris self-concordant if |f"'(z)| < 2f"(x)3/2 for all € dom f

s f:R"” — R is self-concordant if g(t) = f(x + tv) is self-concordant for all
r €dom f, v eR"

examples on R

m linear and quadratic functions
= negative logarithm f(z) = —logx

= negative entropy plus negative logarithm: f(x) = xlogx — logx

affine invariance: if f : R — R is s.c., then f(y) = f(ay + b) is s.c.:

]E///(y) _ a3f///(ay + b), f//(y) _ a2f”(ay + b)
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Self-concordant calculus

properties

m preserved under positive scaling o > 1, and sum
m preserved under composition with affine function

= if g is convex with dom g =R, and |¢"'(x)| < 3¢"(x)/x then

f(x) =log(—g(z)) — logz

Is self-concordant

examples: properties can be used to show that the following are s.c.

s flx)=—=> " log(b;—alz)on{z|alx <by i=1,...,m}
= f(X)=—logdet X on S’

= f(z) = —log(y® — 2" x) on {(z,y) | =]z < y}
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Convergence analysis for self-concordant functions

summary: there exist constants n € (0,1/4], v > 0 such that

= if A\(x) > 1, then
F+0) - f@®) <

= if AM(x) <, then
2
ox(zk+D) < (2A(x<k>))

and v only depend on backtracking parameters «, (3
U Y

complexity bound: number of Newton iterations bounded by

+ log, log,(1/¢€)

f(@l®) —p*
v

for a = 0.1, 3 =0.8, ¢ = 107'°, bound evaluates to 375(f(xz(?) — p*) + 6
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numerical example: 150 randomly generated instances of

minimize f(x)=—>_" log(b; — a] )
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f(a') —p*

= number of iterations much smaller than 375(f (%)) — p*) + 6

= bound of the form ¢(f(x(?)) — p*) + 6 with smaller ¢ (empirically) valid

A. d’'Aspremont. Convex Optimization M2. 30/53



Implementation

main effort in each iteration: evaluate derivatives and solve Newton system
HAx =g

where H = V2f(z), g = =V f(x)

via Cholesky factorization

H=LL",  Aryw=L"TL" g  Xz)=|L g2

= cost (1/3)n? flops for unstructured system

m cost < (1/3)n® if H sparse, banded
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example of dense Newton system with structure
f@) = i) +o(Az+b),  H=D+ATHoA
i=1

m assume A € RP*"™, dense, with p < n

= D diagonal with diagonal elements 9! (x;); Hy = V?o(Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n?)
method 2: factor Hy = LoL}; write Newton system as
DAz + A' Lyw = —g, LEAAT —w =0
eliminate Ax from first equation; compute w and Ax from
I+ LiAD AT Ly)w = L} AD 'g, DAz = —g— Al Lyw

cost: 2p*n (dominated by computation of LI ADtAL)
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Equality Constraints
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Equality Constraints

m equality constrained minimization

m eliminating equality constraints

m Newton's method with equality constraints
m infeasible start Newton method

m implementation
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Equality constrained minimization

minimize  f(x)
subject to Ax =1b

m f convex, twice continuously differentiable
m A€ RP" with Rank A =p

m we assume p~ is finite and attained

optimality conditions: =™ is optimal iff there exists a v* such that

Vf(x*)+Alv* =0, Ax* =D
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equality constrained quadratic minimization (with P € S/)

minimize  (1/2)z! Pz +qlz +r
subject to Ax =1b

o =0

m coefficient matrix is called KKT matrix

optimality condition:

m KKT matrix is nonsingular if and only if

Ar =0, x#0 — ! Px > 0

= equivalent condition for nonsingularity: P+ AT A = 0
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Eliminating equality constraints

represent solution of {z | Ax = b} as

{x | Az =b} ={Fz+2|2€R" P}

= T is (any) particular solution

= range of F' € R™*("=P) is nullspace of A (Rank FF=n —p and AF = 0)

reduced or eliminated problem

minimize f(Fz+ )

m an unconstrained problem with variable z € R*™P

m from solution z*, obtain x* and v* as

= F2"+ 2, v = —(AAT) LAV f(2*)
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example: optimal allocation with resource constraint

minimize  fi(z1) + fa(z2) + - + fu(2n)
subjectto x1+x9+---+1x, =0

eliminate x,, =b—x1 —--- — x,,_1, t.e., choose
T = ben, F = [ _iT ] c Rnx(n—l)

reduced problem:

minimize  fi(z1) + -+ fa—1(Tn-1) + fu(b—21 — -

(variables 1, . .., xp_1)
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Newton step

Newton step of f at feasible x is given by (1st block) of solution of

7 -l

interpretations

s Az, solves second order approximation (with variable v)

AN

minimize  f(z +v) = f(z) + Vf(z)'v+ (1/2)v V2 f(z)v
subject to A(x+v) =10

m equations follow from linearizing optimality conditions

Vi(x+ Azy) + ATw =0, A(x 4+ Axpy) = b
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Newton decrement

1/2

Mz) = (AzL V2 f(2)Azn) ' = (=V (@) Azn) "
properties
m gives an estimate of f(x) — p* using quadratic approximation ]/”\

f(x) ~ inf Fly) = @)

Ay=b

m directional derivative in Newton direction:

d
%f(x + tAxyy) = —\(z)?

1/2

m in general, A\(z) # (Vf(2)TV2f(z) 'V f(x))
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Newton’s method with equality constraints

given starting point x € dom f with Ax = b, tolerance € > 0.

repeat
1. Compute the Newton step and decrement Az, A(x).

2. Stopping criterion. quit if \?/2 < e.

3. Line search. Choose step size t by backtracking line search.

4. Update. © := x + tAx;.

= a feasible descent method: x(%) feasible and f(x*T1)) < f(z(®)

m affine invariant
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Newton’s method and elimination

Newton’s method for reduced problem

minimize f(z) = f(Fz + &)

m variables z € R" 7P
m 2 satisfies Az =b;, Rank FF=n—pand AF =0

m Newton’'s method for f started at z(0), generates iterates 2 ()

Newton’s method with equality constraints

when started at () = Fz(0) + % iterates are

kY = ) 4 g

hence, don't need separate convergence analysis
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Newton step at infeasible points

2nd interpretation of page 39 extends to infeasible x (i.e., Ax # b)

linearizing optimality conditions at infeasible z (with x € dom f) gives

MR EAE b B

primal-dual interpretation

= write optimality condition as r(y) = 0, where

y=(e.v),  rly) = (Vi(x)+ ATv, Az - b)

= linearizing r(y) = 0 gives r(y + Ay) ~ r(y) + Dr(y)Ay = 0:

RN i R

same as (1) with w = v + Ay
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Infeasible start Newton method

given starting point € dom f, v, tolerance ¢ > 0, a € (0,1/2), g € (0,1).
repeat
1. Compute primal and dual Newton steps Az, Avpy.
2. Backtracking line search on ||r||s.
t:=1.
while ||7(x + tAxpn, v + tAvy) |2 > (1 — at)||r(z, v)|
3. Update. © := x4+ tAxpn, V= v+ tAvy.
until Ax = b and ||r(x,v)||2 <.

2 t:= Bt.

= not a descent method: f(z(*T1)) > f(2(*)) is possible

= directional derivative of ||7(y)||3 in direction Ay = (Azy, Avy) is

d

Slr+ Apl,| ==l )l
t=0
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Solving KKT systems

solution methods

m LDLT factorization

= elimination (if H nonsingular)

AH 'ATw=h— AH 1y, Hv = —(g+ A'w)

m elimination with singular H: write as

H+ATQA AT [ v ] [ g+ ATQh
A 0 w | h

with Q > 0 for which H + ATQA > 0, and apply elimination
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Equality constrained analytic centering

primal problem: minimize —>_" | logx; subject to Az =

dual problem: maximize —b'v + 31" log(A'v); +n

three methods for an example with A € R'99%590 " different starting points

1. Newton method with equality constraints (requires (%) = 0, Az(9) = p)

10°

10Y

107° |

f(™) — p*

10— 10
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2. Newton method applied to dual problem (requires ATpO) 0)

10°

—10 ‘
100 2
k

3. infeasible start Newton method (requires (%) ~ 0)

I (2, v ™)l

1010

—15 w ‘ ‘ ‘
10077 5 10 15 20 25
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complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

diag(z)* A" ] [ Aa ] B [ ding(z)1 ]

reduces to solving A diag(z)?ATw =b
2. solve Newton system Adiag(Alv) 2ATAv = —b+ Adiag(Alv)~11

3. use block elimination to solve KKT system

e ][] <[

reduces to solving Adiag(z)?ATw = 2Ax — b

conclusion: in each case, solve ADA*w = h with D positive diagonal
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Network flow optimization

minimize Z?:l di(x;)
subject to Ax =1b

m directed graph with n arcs, p + 1 nodes
= z;: flow through arc i; ¢;: cost flow function for arc i (with ¢ (z) > 0)

= node-incidence matrix A € R®T1X7 defined as

1 arc j leaves node ¢
A;; =< —1 arcj enters node ¢
0 otherwise

= reduced node-incidence matrix A € RP*" is A with last row removed
m b€ R?is (reduced) source vector

s Rank A = p if graph is connected
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KKT system

s H =diag(¢{(z1),...,¢!(x,)), positive diagonal

m solve via elimination:
AH 'ATw=h—AH g, Hv = —(g+ A'w)
sparsity pattern of coefficient matrix is given by graph connectivity

(AHT'AT);; #0 < (AA4");; #0

<= nodes ¢ and j are connected by an arc
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Analytic center of linear matrix inequality

minimize  —logdet X
subject to Tr(A;X)=10b;, i=1,...,p

variable X € S"
optimality conditions

p

X* =0, —(X)7'+Y viA;=0, Tr(AX*)=b, i=1,...p

g=1

Newton equation at feasible X:

p
XTAXX T 4 wjdy =X Tr(A,AX)=0, i=1,...,p
j=1

= follows from linear approximation (X + AX) !~ X! - X~ 1AX X!
m n(n+1)/2+ p variables AX, w
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solution by block elimination

m eliminate AX from first equation: AX = X — Z?Zl w; XA; X

m substitute AX in second equation
p
Y Tr(AXAX)w;=b;, i=1,...p (2)
71=1

a dense positive definite set of linear equations with variable w € RP

flop count (dominant terms) using Cholesky factorization X = LL?"

s form p products LY A;L: (3/2)pn®
s form p(p + 1)/2 inner products Tr((L* A;L)(LT A;L)): (1/2)p*n?
= solve (2) via Cholesky factorization: (1/3)p?
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