
Convex Optimization M2

Lecture 4

A. d’Aspremont. Convex Optimization M2. 1/53

Unconstrained minimization

A. d’Aspremont. Convex Optimization M2. 2/53

Unconstrained minimization

� terminology and assumptions

� gradient descent method

� steepest descent method

� Newton’s method

� self-concordant functions

� implementation

A. d’Aspremont. Convex Optimization M2. 3/53

Unconstrained minimization

minimize f(x)

� f convex, twice continuously differentiable (hence dom f open)

� we assume optimal value p? = infx f(x) is attained (and finite)

unconstrained minimization methods

� produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k))→ p?

� can be interpreted as iterative methods for solving optimality condition

∇f(x?) = 0

A. d’Aspremont. Convex Optimization M2. 4/53

Initial point and sublevel set

algorithms in this chapter require a starting point x(0) such that

� x(0) ∈ dom f

� sublevel set S = {x | f(x) ≤ f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

� equivalent to condition that epi f is closed

� true if dom f = Rn

� true if f(x)→∞ as x→ bddom f

examples of differentiable functions with closed sublevel sets:

f(x) = log(

m∑
i=1

exp(aTi x+ bi)), f(x) = −
m∑
i=1

log(bi − aTi x)

A. d’Aspremont. Convex Optimization M2. 5/53

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

� for x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖22

hence, S is bounded

� p? > −∞, and for x ∈ S,

f(x)− p? ≤ 1

2m
‖∇f(x)‖22

useful as stopping criterion (if you know m)

A. d’Aspremont. Convex Optimization M2. 6/53

Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

� other notations: x+ = x+ t∆x, x := x+ t∆x

� ∆x is the step, or search direction; t is the step size, or step length

� from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0
(i.e., ∆x is a descent direction)

General descent method.

given a starting point x ∈ dom f .
repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

A. d’Aspremont. Convex Optimization M2. 7/53

Line search types

exact line search: t = argmint>0 f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

� starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

� graphical interpretation: backtrack until t ≤ t0

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x

A. d’Aspremont. Convex Optimization M2. 8/53

Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

� stopping criterion usually of the form ‖∇f(x)‖2 ≤ ε

� convergence result: for strongly convex f ,

f(x(k))− p? ≤ ck(f(x(0))− p?)

c ∈ (0, 1) depends on m, x(0), line search type

� very simple, but often very slow; rarely used in practice

A. d’Aspremont. Convex Optimization M2. 9/53

quadratic problem in R2

f(x) = (1/2)(x21 + γx22) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

� very slow if γ � 1 or γ � 1

� example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4

A. d’Aspremont. Convex Optimization M2. 10/53

nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search

A. d’Aspremont. Convex Optimization M2. 11/53

a problem in R100

f(x) = cTx−
500∑
i=1

log(bi − aTi x)

k

f
(x

(k
))

−
p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot

A. d’Aspremont. Convex Optimization M2. 12/53

Steepest descent method

normalized steepest descent direction (at x, for norm ‖ · ‖):

∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

interpretation: for small v, f(x+ v) ≈ f(x) +∇f(x)Tv;
direction ∆xnsd is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

∆xsd = ‖∇f(x)‖∗∆xnsd

satisfies ∇f(x)T∆sd = −‖∇f(x)‖2∗

steepest descent method

� general descent method with ∆x = ∆xsd

� convergence properties similar to gradient descent

A. d’Aspremont. Convex Optimization M2. 13/53

examples

� Euclidean norm: ∆xsd = −∇f(x)

� quadratic norm ‖x‖P = (xTPx)1/2 (P ∈ Sn
++): ∆xsd = −P−1∇f(x)

� `1-norm: ∆xsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = ‖∇f(x)‖∞

unit balls and normalized steepest descent directions for a quadratic norm and the
`1-norm:

−∇f(x)

∆xnsd

−∇f(x)

∆xnsd

A. d’Aspremont. Convex Optimization M2. 14/53

choice of norm for steepest descent

x(0)

x(1)
x(2)

x
(0)

x
(1)

x
(2)

� steepest descent with backtracking line search for two quadratic norms

� ellipses show {x | ‖x− x(k)‖P = 1}

� equivalent interpretation of steepest descent with quadratic norm ‖ · ‖P :
gradient descent after change of variables x̄ = P 1/2x

shows choice of P has strong effect on speed of convergence

A. d’Aspremont. Convex Optimization M2. 15/53

Newton step

∆xnt = −∇2f(x)−1∇f(x)

interpretations

� x+ ∆xnt minimizes second order approximation

f̂(x+ v) = f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v

� x+ ∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

f

f̂

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

f̂ ′

(x, f ′(x))

(x + ∆xnt, f
′(x + ∆xnt))

0

A. d’Aspremont. Convex Optimization M2. 16/53

� ∆xnt is steepest descent direction at x in local Hessian norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1} arrow
shows −∇f(x)

A. d’Aspremont. Convex Optimization M2. 17/53

Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
a measure of the proximity of x to x?

properties

� gives an estimate of f(x)− p?, using quadratic approximation f̂ :

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

� equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xnt∇2f(x)∆xnt

)1/2
� directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

� affine invariant (unlike ‖∇f(x)‖2)

A. d’Aspremont. Convex Optimization M2. 18/53

Newton’s method

given a starting point x ∈ dom f , tolerance ε > 0.
repeat

1. Compute the Newton step and decrement.
∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ε.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)

A. d’Aspremont. Convex Optimization M2. 19/53

Classical convergence analysis

assumptions

� f strongly convex on S with constant m

� ∇2f is Lipschitz continuous on S, with constant L > 0:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants η ∈ (0,m2/L), γ > 0 such that

� if ‖∇f(x)‖2 ≥ η, then f(x(k+1))− f(x(k)) ≤ −γ

� if ‖∇f(x)‖2 < η, then

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2

A. d’Aspremont. Convex Optimization M2. 20/53

damped Newton phase (‖∇f(x)‖2 ≥ η)

� most iterations require backtracking steps

� function value decreases by at least γ

� if p? > −∞, this phase ends after at most (f(x(0))− p?)/γ iterations

quadratically convergent phase (‖∇f(x)‖2 < η)

� all iterations use step size t = 1

� ‖∇f(x)‖2 converges to zero quadratically: if ‖∇f(x(k))‖2 < η, then

L

2m2
‖∇f(xl)‖2 ≤

(
L

2m2
‖∇f(xk)‖2

)2l−k

≤
(

1

2

)2l−k

, l ≥ k

A. d’Aspremont. Convex Optimization M2. 21/53

conclusion: number of iterations until f(x)− p? ≤ ε is bounded above by

f(x(0))− p?

γ
+ log2 log2(ε0/ε)

� γ, ε0 are constants that depend on m, L, x(0)

� second term is small (of the order of 6) and almost constant for practical
purposes

� in practice, constants m, L (hence γ, ε0) are usually unknown

� provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)

A. d’Aspremont. Convex Optimization M2. 22/53

Examples

example in R2 (page 11)

x(0)

x(1)

k

f
(x

(k
))

−
p
⋆

0 1 2 3 4 5
10−15

10−10

10−5

100

105

� backtracking parameters α = 0.1, β = 0.7

� converges in only 5 steps

� quadratic local convergence

A. d’Aspremont. Convex Optimization M2. 23/53

example in R100 (page 12)

k

f
(x

(k
))

−
p
⋆

exact line search

backtracking

0 2 4 6 8 10
10−15

10−10

10−5

100

105

k

st
ep

si
ze

t(
k
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

� backtracking parameters α = 0.01, β = 0.5

� backtracking line search almost as fast as exact l.s. (and much simpler)

� clearly shows two phases in algorithm

A. d’Aspremont. Convex Optimization M2. 24/53

example in R10000 (with sparse ai)

f(x) = −
10000∑
i=1

log(1− x2i)−
100000∑
i=1

log(bi − aTi x)

k

f
(x

(k
))

−
p
⋆

0 5 10 15 20

10−5

100

105

� backtracking parameters α = 0.01, β = 0.5.

� performance similar as for small examples

A. d’Aspremont. Convex Optimization M2. 25/53

Self-concordance

shortcomings of classical convergence analysis

� depends on unknown constants (m, L, . . .)

� bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

� does not depend on any unknown constants

� gives affine-invariant bound

� applies to special class of convex functions (‘self-concordant’ functions)

� developed to analyze polynomial-time interior-point methods for convex
optimization

A. d’Aspremont. Convex Optimization M2. 26/53

Self-concordant functions

definition

� f : R→ R is self-concordant if |f ′′′(x)| ≤ 2f ′′(x)3/2 for all x ∈ dom f

� f : Rn → R is self-concordant if g(t) = f(x+ tv) is self-concordant for all
x ∈ dom f , v ∈ Rn

examples on R

� linear and quadratic functions

� negative logarithm f(x) = − log x

� negative entropy plus negative logarithm: f(x) = x log x− log x

affine invariance: if f : R→ R is s.c., then f̃(y) = f(ay + b) is s.c.:

f̃ ′′′(y) = a3f ′′′(ay + b), f̃ ′′(y) = a2f ′′(ay + b)

A. d’Aspremont. Convex Optimization M2. 27/53

Self-concordant calculus

properties

� preserved under positive scaling α ≥ 1, and sum

� preserved under composition with affine function

� if g is convex with dom g = R++ and |g′′′(x)| ≤ 3g′′(x)/x then

f(x) = log(−g(x))− log x

is self-concordant

examples: properties can be used to show that the following are s.c.

� f(x) = −
∑m

i=1 log(bi − aTi x) on {x | aTi x < bi, i = 1, . . . ,m}

� f(X) = − log detX on Sn
++

� f(x) = − log(y2 − xTx) on {(x, y) | ‖x‖2 < y}

A. d’Aspremont. Convex Optimization M2. 28/53

Convergence analysis for self-concordant functions

summary: there exist constants η ∈ (0, 1/4], γ > 0 such that

� if λ(x) > η, then
f(x(k+1))− f(x(k)) ≤ −γ

� if λ(x) ≤ η, then

2λ(x(k+1)) ≤
(

2λ(x(k))
)2

(η and γ only depend on backtracking parameters α, β)

complexity bound: number of Newton iterations bounded by

f(x(0))− p?

γ
+ log2 log2(1/ε)

for α = 0.1, β = 0.8, ε = 10−10, bound evaluates to 375(f(x(0))− p?) + 6

A. d’Aspremont. Convex Optimization M2. 29/53

numerical example: 150 randomly generated instances of

minimize f(x) = −
∑m

i=1 log(bi − aTi x)

◦: m = 100, n = 50
2: m = 1000, n = 500
3: m = 1000, n = 50

f(x(0)) − p⋆

it
er
a
ti
o
n
s

0 5 10 15 20 25 30 35
0

5

10

15

20

25

� number of iterations much smaller than 375(f(x(0))− p?) + 6

� bound of the form c(f(x(0))− p?) + 6 with smaller c (empirically) valid

A. d’Aspremont. Convex Optimization M2. 30/53

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

H∆x = g

where H = ∇2f(x), g = −∇f(x)

via Cholesky factorization

H = LLT , ∆xnt = L−TL−1g, λ(x) = ‖L−1g‖2

� cost (1/3)n3 flops for unstructured system

� cost � (1/3)n3 if H sparse, banded

A. d’Aspremont. Convex Optimization M2. 31/53

example of dense Newton system with structure

f(x) =

n∑
i=1

ψi(xi) + ψ0(Ax+ b), H = D +ATH0A

� assume A ∈ Rp×n, dense, with p� n

� D diagonal with diagonal elements ψ′′i (xi); H0 = ∇2ψ0(Ax+ b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)

method 2: factor H0 = L0L
T
0 ; write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

eliminate ∆x from first equation; compute w and ∆x from

(I + LT
0AD

−1ATL0)w = −LT
0AD

−1g, D∆x = −g −ATL0w

cost: 2p2n (dominated by computation of LT
0AD

−1AL0)

A. d’Aspremont. Convex Optimization M2. 32/53

Equality Constraints

A. d’Aspremont. Convex Optimization M2. 33/53

Equality Constraints

� equality constrained minimization

� eliminating equality constraints

� Newton’s method with equality constraints

� infeasible start Newton method

� implementation

A. d’Aspremont. Convex Optimization M2. 34/53

Equality constrained minimization

minimize f(x)
subject to Ax = b

� f convex, twice continuously differentiable

� A ∈ Rp×n with RankA = p

� we assume p? is finite and attained

optimality conditions: x? is optimal iff there exists a ν? such that

∇f(x?) +ATν? = 0, Ax? = b

A. d’Aspremont. Convex Optimization M2. 35/53

equality constrained quadratic minimization (with P ∈ Sn
+)

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

optimality condition: [
P AT

A 0

] [
x?

ν?

]
=

[
−q
b

]

� coefficient matrix is called KKT matrix

� KKT matrix is nonsingular if and only if

Ax = 0, x 6= 0 =⇒ xTPx > 0

� equivalent condition for nonsingularity: P +ATA � 0

A. d’Aspremont. Convex Optimization M2. 36/53

Eliminating equality constraints

represent solution of {x | Ax = b} as

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}

� x̂ is (any) particular solution

� range of F ∈ Rn×(n−p) is nullspace of A (RankF = n− p and AF = 0)

reduced or eliminated problem

minimize f(Fz + x̂)

� an unconstrained problem with variable z ∈ Rn−p

� from solution z?, obtain x? and ν? as

x? = Fz? + x̂, ν? = −(AAT)−1A∇f(x?)

A. d’Aspremont. Convex Optimization M2. 37/53

example: optimal allocation with resource constraint

minimize f1(x1) + f2(x2) + · · ·+ fn(xn)
subject to x1 + x2 + · · ·+ xn = b

eliminate xn = b− x1 − · · · − xn−1, i.e., choose

x̂ = ben, F =

[
I
−1T

]
∈ Rn×(n−1)

reduced problem:

minimize f1(x1) + · · ·+ fn−1(xn−1) + fn(b− x1 − · · · − xn−1)

(variables x1, . . . , xn−1)

A. d’Aspremont. Convex Optimization M2. 38/53

Newton step

Newton step of f at feasible x is given by (1st block) of solution of[
∇2f(x) AT

A 0

] [
∆xnt
w

]
=

[
−∇f(x)

0

]

interpretations

� ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) +∇f(x)Tv + (1/2)vT∇2f(x)v
subject to A(x+ v) = b

� equations follow from linearizing optimality conditions

∇f(x+ ∆xnt) +ATw = 0, A(x+ ∆xnt) = b

A. d’Aspremont. Convex Optimization M2. 39/53

Newton decrement

λ(x) =
(
∆xTnt∇2f(x)∆xnt

)1/2
=
(
−∇f(x)T∆xnt

)1/2
properties

� gives an estimate of f(x)− p? using quadratic approximation f̂ :

f(x)− inf
Ay=b

f̂(y) =
1

2
λ(x)2

� directional derivative in Newton direction:

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

� in general, λ(x) 6=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

A. d’Aspremont. Convex Optimization M2. 40/53

Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ε > 0.

repeat
1. Compute the Newton step and decrement ∆xnt, λ(x).
2. Stopping criterion. quit if λ2/2 ≤ ε.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

� a feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k))

� affine invariant

A. d’Aspremont. Convex Optimization M2. 41/53

Newton’s method and elimination

Newton’s method for reduced problem

minimize f̃(z) = f(Fz + x̂)

� variables z ∈ Rn−p

� x̂ satisfies Ax̂ = b; RankF = n− p and AF = 0

� Newton’s method for f̃ , started at z(0), generates iterates z(k)

Newton’s method with equality constraints

when started at x(0) = Fz(0) + x̂, iterates are

x(k+1) = Fz(k) + x̂

hence, don’t need separate convergence analysis

A. d’Aspremont. Convex Optimization M2. 42/53

Newton step at infeasible points

2nd interpretation of page 39 extends to infeasible x (i.e., Ax 6= b)

linearizing optimality conditions at infeasible x (with x ∈ dom f) gives[
∇2f(x) AT

A 0

] [
∆xnt
w

]
= −

[
∇f(x)
Ax− b

]
(1)

primal-dual interpretation

� write optimality condition as r(y) = 0, where

y = (x, ν), r(y) = (∇f(x) +ATν,Ax− b)

� linearizing r(y) = 0 gives r(y + ∆y) ≈ r(y) +Dr(y)∆y = 0:[
∇2f(x) AT

A 0

] [
∆xnt
∆νnt

]
= −

[
∇f(x) +ATν

Ax− b

]
same as (1) with w = ν + ∆νnt

A. d’Aspremont. Convex Optimization M2. 43/53

Infeasible start Newton method

given starting point x ∈ dom f , ν, tolerance ε > 0, α ∈ (0, 1/2), β ∈ (0, 1).

repeat
1. Compute primal and dual Newton steps ∆xnt, ∆νnt.
2. Backtracking line search on ‖r‖2.

t := 1.
while ‖r(x+ t∆xnt, ν + t∆νnt)‖2 > (1− αt)‖r(x, ν)‖2, t := βt.

3. Update. x := x+ t∆xnt, ν := ν + t∆νnt.
until Ax = b and ‖r(x, ν)‖2 ≤ ε.

� not a descent method: f(x(k+1)) > f(x(k)) is possible

� directional derivative of ‖r(y)‖22 in direction ∆y = (∆xnt,∆νnt) is

d

dt
‖r(y + ∆y)‖2

∣∣∣∣
t=0

= −‖r(y)‖2

A. d’Aspremont. Convex Optimization M2. 44/53

Solving KKT systems

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]
solution methods

� LDLT factorization

� elimination (if H nonsingular)

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

� elimination with singular H: write as[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g +ATQh

h

]

with Q � 0 for which H +ATQA � 0, and apply elimination

A. d’Aspremont. Convex Optimization M2. 45/53

Equality constrained analytic centering

primal problem: minimize −
∑n

i=1 log xi subject to Ax = b

dual problem: maximize −bTν +
∑n

i=1 log(ATν)i + n

three methods for an example with A ∈ R100×500, different starting points

1. Newton method with equality constraints (requires x(0) � 0, Ax(0) = b)

k

f
(x

(k
))

−
p
⋆

0 5 10 15 2010−10

10−5

100

105

A. d’Aspremont. Convex Optimization M2. 46/53

2. Newton method applied to dual problem (requires ATν(0) � 0)

k

p
⋆
−

g
(ν

(k
))

0 2 4 6 8 1010−10

10−5

100

105

3. infeasible start Newton method (requires x(0) � 0)

k

‖
r
(x

(k
) ,
ν
(k

))
‖
2

0 5 10 15 20 2510−15

10−10

10−5

100

105

1010

A. d’Aspremont. Convex Optimization M2. 47/53

complexity per iteration of three methods is identical

1. use block elimination to solve KKT system[
diag(x)−2 AT

A 0

] [
∆x
w

]
=

[
diag(x)−11

0

]

reduces to solving Adiag(x)2ATw = b

2. solve Newton system Adiag(ATν)−2AT∆ν = −b+Adiag(ATν)−11

3. use block elimination to solve KKT system[
diag(x)−2 AT

A 0

] [
∆x
∆ν

]
=

[
diag(x)−11
Ax− b

]

reduces to solving Adiag(x)2ATw = 2Ax− b

conclusion: in each case, solve ADATw = h with D positive diagonal

A. d’Aspremont. Convex Optimization M2. 48/53

Network flow optimization

minimize
∑n

i=1 φi(xi)
subject to Ax = b

� directed graph with n arcs, p+ 1 nodes

� xi: flow through arc i; φi: cost flow function for arc i (with φ′′i (x) > 0)

� node-incidence matrix Ã ∈ R(p+1)×n defined as

Ãij =

 1 arc j leaves node i
−1 arc j enters node i

0 otherwise

� reduced node-incidence matrix A ∈ Rp×n is Ã with last row removed

� b ∈ Rp is (reduced) source vector

� RankA = p if graph is connected

A. d’Aspremont. Convex Optimization M2. 49/53

KKT system

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

� H = diag(φ′′1(x1), . . . , φ
′′
n(xn)), positive diagonal

� solve via elimination:

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

sparsity pattern of coefficient matrix is given by graph connectivity

(AH−1AT)ij 6= 0 ⇐⇒ (AAT)ij 6= 0

⇐⇒ nodes i and j are connected by an arc

A. d’Aspremont. Convex Optimization M2. 50/53

Analytic center of linear matrix inequality

minimize − log detX
subject to Tr(AiX) = bi, i = 1, . . . , p

variable X ∈ Sn

optimality conditions

X? � 0, −(X?)−1 +

p∑
j=1

ν?jAi = 0, Tr(AiX
?) = bi, i = 1, . . . , p

Newton equation at feasible X:

X−1∆XX−1 +

p∑
j=1

wjAi = X−1, Tr(Ai∆X) = 0, i = 1, . . . , p

� follows from linear approximation (X + ∆X)−1 ≈ X−1 −X−1∆XX−1

� n(n+ 1)/2 + p variables ∆X, w

A. d’Aspremont. Convex Optimization M2. 51/53

solution by block elimination

� eliminate ∆X from first equation: ∆X = X −
∑p

j=1wjXAjX

� substitute ∆X in second equation

p∑
j=1

Tr(AiXAjX)wj = bi, i = 1, . . . , p (2)

a dense positive definite set of linear equations with variable w ∈ Rp

flop count (dominant terms) using Cholesky factorization X = LLT :

� form p products LTAjL: (3/2)pn3

� form p(p+ 1)/2 inner products Tr((LTAiL)(LTAjL)): (1/2)p2n2

� solve (2) via Cholesky factorization: (1/3)p3

A. d’Aspremont. Convex Optimization M2. 52/53

