
Convex Optimization - Homework 3

Report plots, comments and theoretical results in pdf or similar. Send code with requested
functions and a main script with standard examples of your functions what reproduces all
the main experiments. Please use either Julia, Python or MATLAB.
This is the new version. Some errors are corrected in question 2.

1 Interior Points Method

The interior point algorithm uses the combination of self-concordant barrier and Newton
method to efficiently solve many convex problems. In this homework, we focus on the
general quadratic problem

min
x
φ(x) =

1

2
xTQx+ pTx s.t. Ax ≤ b, (QP)

where Q is a symmetric semi-definite matrix and x ∈ Rd. The goal of the interior point
algorithm is to transform the constrained problem into

min
x
φt(x) = t

(
1

2
xTQx+ pTx

)
+ B(b− Ax)

where B(b − Ax) is a self-concordant barrier for the set Ax ≤ b and t the parameter of the
barrier (see lecture notes). In this homework, we will use the logarithmic barrier

B(x) = −
∑
i

log(xi).

Note: The sum of a quadratic function and a self-concordant function is a self-concordant
function.

Questions

• Compute ∇φt(x) and ∇2φt(x).

• Implement the functions phi(x,t,Q,p,A,b), grad(x,t,Q,p,A,b) and hess(x,t,Q,p,A,b)

which return respectively the function value, gradient and hessian of φt(x) at point x.
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2 Newton Method

Errata:

• The Newton decrement λ(x) is changed into λ2(x), to be consistent with the notation
in the slides.

• Optionnal question 2: the term −ln(1 + λ(x)) was missing.

• A ∇2 in the Newton’s step was missing.

For minimizing the function φt(x) we will use the Newton method. However, when the
Newton decrements

λ2(x) = (∇φt(x))T (∇2φt(x))−1∇φt(x)

is too large, the Newton step

xns = x− (∇2φt(x))−1∇φt(x)

is no longer guaranteed to be feasible. However, it is possible to overcome this problem using
a backtracking line-search. We will explore here another solution, called the damped Newton
method, written

xdns = x− 1

1 + λ(x)
(φt(x))−1∇φt(x). (dNm)

Questions

• Implement the function [xnew,gap] = dampedNewtonStep(x,f,g,h), which compute
the damped Newton step at point x. Assume the argument f is a function which takes
input x and returns φt(x) (the same for g and h for the gradient and the hessian). The
output gap is the estimated gap between φt(xnew) and minx φt(x) (see lecture notes).
Note: this function should call one and only one time g(x) and h(x).

• Implement the function [xstar,xhist] = dampedNewton(x0,f,g,h,tol) which min-
imizes the function f starting at x0 using the damped Newton algorithm. The output
xstar is the estimated minimum, which satisfies φt(xstar) −minx φt(x) ≤ tol. The
output xhist contains the history of all Newton steps.
Warning: For theoretical reasons, the parameter tol should be smaller than 3−

√
5

2
.

• Implement a function [xstar,xhist] = newtonLS(x0,f,g,h,tol) which minimizes
the function f starting at x0 using the Newton algorithm with backtracking line-search
(see lecture notes).
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Optional questions

• Using the following inequality (true for any self-concordant functions),

φt(y) ≤ φt(x) + (∇φt(x))T (y − x) + ω∗

(
(y − x)T

(
∇2φt(x)

)
(y − x)

)
,

where ω∗(τ) = −τ−ln(1−τ), show that the damped Newton method (dNm) is optimal.

• Using the same inequality, show that the decrement is at least

φt(x)− φt(xdns) ≥ λ(x)−ln(1 + λ(x)).

3 Support Vector Machine Problem

In the previous homework, we introduced the Data Separation problem (ex. 3), more
commonly known as Support Vector Machine (SVM) problem. Its common formulation is
the following. Given n data points xi ∈ Rd with labels yi ∈ {−1, 1} and a regularization
parameter τ > 0, the SVM reads

minimize 1
τn

∑n
i=1 zi + 1

2
‖w‖22

subject to yi(w
Txi) ≥ 1− zi, i = 1, . . . , n

z ≥ 0
(SVM-P)

and its dual is written
maximize 1Tλ− 1

2
‖
∑n

i=1 λiyixi‖
2

2

subject to 0 ≤ λ ≤ 1
τn

(SVM-D)

1. Give strictly feasible points for primal and dual.

2. Implement the barrier method (using logarithmic barrier) to solve (SVM-P) and (SVM-D)
given a data matrix X = (xT1 , ..., x

T
n ) ∈ Rn×d, a vector of labels y ∈ {−1, 1}n and a

regularization parameter τ > 0 by

• coding the generic functions [Q,p,A,b] = transform svm primal(tau,X,y) and
[Q,p,A,b] = transform svm dual(tau,X,y), which writes the primal and the
dual SVM problem as particular instances of the quadratic problem (QP).

• coding a function [x sol,xhist] = barr method(Q,p,A,b,x 0,mu,tol) which
implements the barrier method to solve QP given the inputs (Q, p,A, b) and the
initial point x 0 (which should be strictly feasible). The input mu is the increment
of the barrier at each iteration (see lecture notes). The output x sol must be
feasible and satisfies

φ(x sol)− φ(x∗) ≤ tol

where x∗ is the solution of (QP). The function also outputs xhist, the history of
all Newton steps.
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3. Use the Iris dataset (https://archive.ics.uci.edu/ml/datasets/iris) to test your code
and try to separate the last two classes, i.e., Iris-versicolor versus Iris-virginica. Try
different values of τ and measure out-of-sample performance by learning the classifier
on 80% of the dataset. Add one dimension to your data points in order to account for
the offset if your data is not centered.
Optional: In addition, generate randomly another data set.

4. Plot the duality gap versus iterations (using the damped Newton Method) for the
primal and dual problem in semilog-scale for different values of the barrier method
parameter µ = 2, 15, 50, 100 and comment the results. Compare the performance with
the line-search strategy. Hint: Use the fact that any primal solution is an upper bound
for the dual problem and vice-versa.

Tips

You can declare anonymous functions. It will help you to use the code you have done in
Question 1 and 2.

1 % Matlab Implementation
2 Q=10; p=1; A=2; b=−1; % Declare some parameters
3 t =0.001; % Set the b a r r i e r parameter
4

5 % Declare f as an anonymous func t i on which takes one
6 % input x , and r e tu rn s phi (x , t ,Q, p ,A, b)
7 f = @( x ) phi (x , t ,Q, p ,A, b) ;
8 g = @( x ) grad (x , t ,Q, p ,A, b) ; % same
9 h = @( x ) hess (x , t ,Q, p ,A, b) ; % same

10

11 % Perform a Damped Newton Step at x=−1.
12 x = −1;
13 [ x dns , gap ] = dampedNewtonStep (x , f , g , h ) ;

1 # Python Implementation

2 Q=10; p=1; A=2; b=-1; # Declare some parameters

3 t=0.001; # Set the barrier parameter

4

5 # Declare f as an anonymous function which takes one

6 # input x, and returns phi(x,t,Q,p,A,b)

7 f = lambda x: phi(x,t,Q,p,A,b);

8 g = lambda x: grad(x,t,Q,p,A,b); # same

9 h = lambda x: hess(x,t,Q,p,A,b); # same

10

11 # Perform a Damped Newton Step at x=-1.

12 x = -1;

13 (x_dns ,gap) = dampedNewtonStep(x,f,g,h);
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