
Convex Optimization

Homework 2

Exercise 1 (LP Duality) For given c ∈ Rd, b ∈ Rn and A ∈ Rn×d consider the two following linear
optimization problems,

min
x
cTx

s.t. Ax = b

x ≥ 0

(P)

and
max

y
bT y

s.t. AT y ≤ c
(D)

1. Compute the dual of problem (P) and simplify it if possible.

2. Compute the dual of problem (D).

3. A problem is called self-dual if its dual is the problem itself. Prove that the following problem is
self-dual.

min
x,y

cTx− bT y

s.t. Ax = b

x ≥ 0

AT y ≤ c

(Self-Dual)

4. Assume the above problem feasible and bounded, and let [x∗, y∗] be its optimal solution. Using
the strong duality property of linear programs, show that

• the vector [x∗, y∗] can also be obtained by solving (P) and (D),

• the optimal value of (Self-Dual) is exactly 0.

Exercise 2 (Regularized Least-Square) For given A ∈ Rn×d and b ∈ Rn, consider the following
optimization problem,

min
x
‖Ax− b‖22 + ‖x‖1. (RLS)

1. Compute the conjugate of ‖x‖1.

2. Compute the dual of (RLS).

Exercise 3 (Data Separation) Assume we have n data points xi ∈ Rd, with label yi ∈ {−1, 1}. We
are searching for an hyper-plane defined by its normal ω, which separates the points according to their
label. Ideally, we would like to have

ωTxi ≤ −1 ⇒ yi = −1 and ωTxi ≥ 1 ⇒ yi = 1.

Unfortunately, this condition is rarely met with real-life problems. Instead, we solve an optimization
problem which minimizes the gap between the hyper-plane and the miss-classified points. To do so, we
will use a specific loss function

L(ω, xi, yi) = max
{

0 ; 1− yi(ωTxi)
}
, (1)
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which is equal to 0 when the point xi is well-classified (the sign of ωTxi and yi is the same), but is strictly
positive when the sign of ωTxi and yi is different. To improve the performances, instead of minimizing
the loss function alone, we also use a quadratic regularizer as follow,

min
ω

1

n

n∑
i=1

L(ω, xi, yi) +
τ

2
‖ω‖22, (Sep. 1)

where τ is the regularization parameter.

1. Consider the following quadratic optimization problem (1 is a vector full of ones),

min
ω,z

1

nτ
1T z +

1

2
‖ω‖22

s.t. zi ≥ 1− yi(ωTxi) ∀i = 1 . . . n (λi)

z ≥ 0 (π)

(Sep. 2)

Explain why problem (Sep. 2) solves problem (Sep. 1).

2. Compute the dual of (Sep. 2), and try to reduce the number of variables. Use the notations λi
and π for the dual variables.

Optional Exercise 4 (Robust linear programming) Sometimes, it is possible to encounter prob-
lems with some uncertainty in the constraints. One way to deal with them is to solve their worst-case
scenario, and this can be achieved by using robust programming. Consider the following robust LP

min
x
cTx

s.t. supa∈P a
Tx ≤ b,

with variable x ∈ Rn, where P = {a | CTa � d} is a nonempty polyhedra. The supremum represents
the worst-case scenario for the constraint. Show that this problem is equivalent to the following LP.

min cTx
s.t. dT z ≤ b

CT z = x
z ≥ 0

Hint. Find the dual of the problem of maximizing aTx over a ∈ P (with variable a).

Optional Exercise 5 (Boolean LP) A Boolean LP is an optimization problem of the form

minimize cTx
subject to Ax ≤ b

xi ∈ {0, 1}, i = 1, . . . , n,

and is, in general, very difficult to solve. Consider the LP relaxation of this problem,

minimize cTx
subject to Ax ≤ b

0 ≤ xi ≤ 1, i = 1, . . . , n,
(2)

which is far easier to solve, and gives a lower bound on the optimal value of the Boolean LP. In this
problem we derive another lower bound for the Boolean LP, and work out the relation between the two
lower bounds.

1. Lagrangian relaxation. The Boolean LP can be reformulated as the problem

minimize cTx
subject to Ax ≤ b

xi(1− xi) = 0, i = 1, . . . , n,
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which has quadratic equality constraints. Find the Lagrange dual of this problem and simplify it
to have only one dual variable. Hint. You can use that

sup
y≥0

(
− (b+ aTx− y)2

y

)
=

{
4(b+ aTx) b+ aTx ≤ 0
0 b+ aTx ≥ 0

= 4 min{0, (b+ aTx)}.

The optimal value of the dual problem (which is convex) gives a lower bound on the optimal value
of the Boolean LP. This method of finding a lower bound on the optimal value is called Lagrangian
relaxation.

2. Show that the lower bound obtained via Lagrangian relaxation, and via the LP relaxation (2), are
the same. Hint. Derive the dual of the LP relaxation (2) and simplify it.
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