Convex Optimization M2

Lecture 2
Convex Optimization Problems
Outline

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities
Definition

\(f : \mathbb{R}^n \to \mathbb{R} \) is convex if \(\text{dom} \, f \) is a convex set and

\[
 f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

for all \(x, y \in \text{dom} \, f, \ 0 \leq \theta \leq 1 \)

- \(f \) is concave if \(-f \) is convex
- \(f \) is strictly convex if \(\text{dom} \, f \) is convex and

\[
 f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)
\]

for \(x, y \in \text{dom} \, f, \ x \neq y, \ 0 < \theta < 1 \)
Examples on \mathbb{R}

convex:

- **affine**: $ax + b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
- **exponential**: e^{ax}, for any $a \in \mathbb{R}$
- **powers**: x^α on \mathbb{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- **powers of absolute value**: $|x|^p$ on \mathbb{R}, for $p \geq 1$
- **negative entropy**: $x \log x$ on \mathbb{R}_{++}

concave:

- **affine**: $ax + b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
- **powers**: x^α on \mathbb{R}_{++}, for $0 \leq \alpha \leq 1$
- **logarithm**: $\log x$ on \mathbb{R}_{++}
Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

Examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}$ for $p \geq 1$; $\|x\|_{\infty} = \max_k |x_k|$

Examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

- affine function

 $$f(X) = \text{Tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

- spectral (maximum singular value) norm

 $$f(X) = \|X\|_2 = \sigma_{\text{max}}(X) = \left(\lambda_{\text{max}}(X^T X)\right)^{1/2}$$
Restriction of a convex function to a line

\[f : \mathbb{R}^n \rightarrow \mathbb{R} \] is convex if and only if the function \(g : \mathbb{R} \rightarrow \mathbb{R} \),

\[g(t) = f(x + tv), \quad \text{dom } g = \{ t \mid x + tv \in \text{dom } f \} \]

is convex (in \(t \)) for any \(x \in \text{dom } f, v \in \mathbb{R}^n \)

can check convexity of \(f \) by checking convexity of functions of one variable

example. \(f : \mathbb{S}^n \rightarrow \mathbb{R} \) with \(f(X) = \log \det X, \text{ dom } X = \mathbb{S}^{n+} \)

\[g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2}) \]
\[= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i) \]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2}VX^{-1/2} \)

g is concave in \(t \) (for any choice of \(X \succ 0, V \)); hence \(f \) is concave
Extended-value extension

extended-value extension \tilde{f} of f is

$$
\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \notin \text{dom } f
$$

often simplifies notation; for example, the condition

$$
0 \leq \theta \leq 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)
$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions

- $\text{dom } f$ is convex
- for $x, y \in \text{dom } f,$

$$
0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
$$
First-order condition

f is **differentiable** if $\text{dom } f$ is open and the gradient

\[
\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right)
\]

exists at each $x \in \text{dom } f$

1st-order condition: differentiable f with convex domain is convex iff

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \text{for all } x, y \in \text{dom } f
\]

first-order approximation of f is global underestimator
Second-order conditions

f is **twice differentiable** if $\text{dom} \, f$ is open and the Hessian $\nabla^2 f(x) \in S^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n,$$

exists at each $x \in \text{dom} \, f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

 $$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom} \, f$$

- if $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom} \, f$, then f is strictly convex
Examples

quadratic function: $f(x) = (1/2)x^T Px + q^T x + r$ (with $P \in \mathbb{S}^n$)

$$\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = \|Ax - b\|_2^2$

$$\nabla f(x) = 2A^T (Ax - b), \quad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x, y) = x^2 / y$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y & -x \\ -x & y \end{bmatrix}^T \succeq 0$$

convex for $y > 0$
log-sum-exp: \(f(x) = \log \sum_{k=1}^{n} \exp x_k \) is convex

\[
\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} z z^T \quad (z_k = \exp x_k)
\]

To show \(\nabla^2 f(x) \succeq 0 \), we must verify that \(v^T \nabla^2 f(x) v \geq 0 \) for all \(v \):

\[
v^T \nabla^2 f(x) v = \frac{\left(\sum_k z_k v_k^2 \right) \left(\sum_k z_k \right) - \left(\sum_k v_k z_k \right)^2}{\left(\sum_k z_k \right)^2} \geq 0
\]

since \(\left(\sum_k v_k z_k \right)^2 \leq \left(\sum_k z_k v_k^2 \right) \left(\sum_k z_k \right) \) (from Cauchy-Schwarz inequality)

geometric mean: \(f(x) = (\prod_{k=1}^{n} x_k)^{1/n} \) on \(\mathbb{R}_{++}^n \) is concave

(similar proof as for log-sum-exp)
Epigraph and sublevel set

α-sublevel set of $f : \mathbb{R}^n \to \mathbb{R}$:

$$C_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}$$

Sublevel sets of convex functions are convex (converse is false).

Epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$\text{epi } f = \{ (x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, \ f(x) \leq t \}$$

f is convex if and only if $\text{epi } f$ is a convex set.
Jensen’s inequality

Basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

Extension: if f is convex, then

$$f(\mathbb{E} z) \leq \mathbb{E} f(z)$$

for any random variable z

Basic inequality is special case with discrete distribution

$$\text{Prob}(z = x) = \theta, \quad \text{Prob}(z = y) = 1 - \theta$$
Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show \(\nabla^2 f(x) \succeq 0 \)

3. show that \(f \) is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective
Positive weighted sum & composition with affine function

nonnegative multiple: \(\alpha f \) is convex if \(f \) is convex, \(\alpha \geq 0 \)

sum: \(f_1 + f_2 \) convex if \(f_1, f_2 \) convex (extends to infinite sums, integrals)

composition with affine function: \(f(Ax + b) \) is convex if \(f \) is convex

examples

- log barrier for linear inequalities

\[
f(x) = - \sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \ldots, m\}
\]

- (any) norm of affine function: \(f(x) = \|Ax + b\| \)
if \(f_1, \ldots, f_m \) are convex, then \(f(x) = \max\{f_1(x), \ldots, f_m(x)\} \) is convex

examples

- piecewise-linear function: \(f(x) = \max_{i=1,\ldots,m}(a_i^T x + b_i) \) is convex
- sum of \(r \) largest components of \(x \in \mathbb{R}^n \):

\[
f(x) = x[1] + x[2] + \cdots + x[r]
\]

is convex (\(x[i] \) is \(i \)th largest component of \(x \))

proof:

\[
f(x) = \max\{x_{i_1} + x_{i_2} + \cdots + x_{i_r} | 1 \leq i_1 < i_2 < \cdots < i_r \leq n\}
\]
Pointwise supremum

If \(f(x, y) \) is convex in \(x \) for each \(y \in A \), then

\[
g(x) = \sup_{y \in A} f(x, y)
\]

is convex.

Examples

- Support function of a set \(C \): \(S_C(x) = \sup_{y \in C} y^T x \) is convex.
- Distance to farthest point in a set \(C \):
 \[
f(x) = \sup_{y \in C} \| x - y \|
\]
- Maximum eigenvalue of symmetric matrix: for \(X \in \mathbb{S}^n \),
 \[
 \lambda_{\text{max}}(X) = \sup_{\| y \|_2 = 1} y^T X y
 \]
Composition with scalar functions

composition of $g : \mathbb{R}^n \rightarrow \mathbb{R}$ and $h : \mathbb{R} \rightarrow \mathbb{R}$:

$$f(x) = h(g(x))$$

f is convex if g convex, h convex, \tilde{h} nondecreasing

g concave, h convex, \tilde{h} nonincreasing

■ proof (for $n = 1$, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

■ note: monotonicity must hold for extended-value extension \tilde{h}

examples

■ $\exp g(x)$ is convex if g is convex

■ $1/g(x)$ is convex if g is concave and positive
Vector composition

composition of \(g : \mathbb{R}^n \to \mathbb{R}^k \) and \(h : \mathbb{R}^k \to \mathbb{R} \):

\[
f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))
\]

\(f \) is convex if \(g_i \) convex, \(h \) convex, \(\tilde{h} \) nondecreasing in each argument

\(g_i \) concave, \(h \) convex, \(\tilde{h} \) nonincreasing in each argument

proof (for \(n = 1 \), differentiable \(g, h \))

\[
f''(x) = g'(x)^T \nabla^2 h(g(x))g'(x) + \nabla h(g(x))^T g''(x)
\]

examples

- \(\sum_{i=1}^{m} \log g_i(x) \) is concave if \(g_i \) are concave and positive
- \(\log \sum_{i=1}^{m} \exp g_i(x) \) is convex if \(g_i \) are convex
Minimization

If \(f(x, y) \) is convex in \((x, y)\) and \(C\) is a convex set, then

\[
g(x) = \inf_{y \in C} f(x, y)
\]

is convex

Examples

- \(f(x, y) = x^T Ax + 2x^T By + y^T Cy \) with

\[
\begin{bmatrix}
A & B \\
B^T & C
\end{bmatrix} \succeq 0, \quad C \succ 0
\]

minimizing over \(y \) gives

\[
g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x
\]

g is convex, hence Schur complement \(A - BC^{-1}B^T \succeq 0 \)

- Distance to a set: \(\text{dist}(x, S) = \inf_{y \in S} \|x - y\| \) is convex if \(S \) is convex
the **perspective** of a function \(f : \mathbb{R}^n \to \mathbb{R} \) is the function \(g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, \)

\[
g(x, t) = tf(x/t), \quad \text{dom } g = \{(x, t) \mid x/t \in \text{dom } f, \ t > 0\}
\]

\(g \) is convex if \(f \) is convex

examples

- \(f(x) = x^T x \) is convex; hence \(g(x, t) = x^T x/t \) is convex for \(t > 0 \)
- negative logarithm \(f(x) = -\log x \) is convex; hence relative entropy \(g(x, t) = t \log t - t \log x \) is convex on \(\mathbb{R}^2_+ \)
- if \(f \) is convex, then

\[
g(x) = (c^T x + d)f \left(\frac{(Ax + b)}{(c^T x + d)} \right)
\]

is convex on \(\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \text{dom } f\} \)
The conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

- f^* is convex (even if f is not)
- Used in regularization, duality results, . . .
examples

- negative logarithm $f(x) = -\log x$

\[
f^*(y) = \sup_{x > 0} (xy + \log x)
= \begin{cases}
-1 - \log(-y) & y < 0 \\
\infty & \text{otherwise}
\end{cases}
\]

- strictly convex quadratic $f(x) = (1/2)x^T Q x$ with $Q \in \mathbb{S}^n_{++}$

\[
f^*(y) = \sup_x (y^T x - (1/2)x^T Q x)
= \frac{1}{2} y^T Q^{-1} y
\]
Quasiconvex functions

\(f : \mathbb{R}^n \to \mathbb{R} \) is quasiconvex if \(\text{dom} \ f \) is convex and the sublevel sets

\[
S_\alpha = \{ x \in \text{dom} \ f \mid f(x) \leq \alpha \}
\]

are convex for all \(\alpha \)

\[\begin{array}{ccc}
\alpha & \alpha & \beta \\
\hline
a & b & c
\end{array}\]

- \(f \) is quasiconcave if \(-f \) is quasiconvex
- \(f \) is quasilinear if it is quasiconvex and quasiconcave
Examples

\[\sqrt{|x|} \text{ is quasiconvex on } \mathbb{R} \]

\[\text{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\} \text{ is quasilinear} \]

\[\log x \text{ is quasilinear on } \mathbb{R}_{++} \]

\[f(x_1, x_2) = x_1 x_2 \text{ is quasiconcave on } \mathbb{R}_{++}^2 \]

\[\text{linear-fractional function} \]

\[f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\} \]

\[\text{is quasilinear} \]

\[\text{distance ratio} \]

\[f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{x \mid \|x - a\|_2 \leq \|x - b\|_2\} \]

\[\text{is quasiconvex} \]
modified Jensen inequality: for quasiconvex f

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \leq f(x) \implies \nabla f(x)^T(y - x) \leq 0$$

sums of quasiconvex functions are not necessarily quasiconvex
Log-concave and log-convex functions

A positive function \(f \) is log-concave if \(\log f \) is concave:

\[
f(\theta x + (1 - \theta)y) \geq f(x)^\theta f(y)^{1-\theta} \quad \text{for } 0 \leq \theta \leq 1
\]

\(f \) is log-convex if \(\log f \) is convex

- powers: \(x^a \) on \(\mathbb{R}_{++} \) is log-convex for \(a \leq 0 \), log-concave for \(a \geq 0 \)
- many common probability densities are log-concave, \textit{e.g.}, normal:

\[
f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1} (x-\bar{x})}
\]

- cumulative Gaussian distribution function \(\Phi \) is log-concave

\[
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du
\]
Properties of log-concave functions

- twice differentiable f with convex domain is log-concave if and only if

\[f(x) \nabla^2 f(x) \preceq \nabla f(x) \nabla f(x)^T \]

for all $x \in \text{dom } f$

- product of log-concave functions is log-concave

- sum of log-concave functions is not always log-concave

- integration: if $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is log-concave, then

\[g(x) = \int f(x, y) \, dy \]

is log-concave (not easy to show)
consequences of integration property

- Convolution $f \ast g$ of log-concave functions f, g is log-concave

$$ (f \ast g)(x) = \int f(x - y)g(y)dy $$

- If $C \subseteq \mathbb{R}^n$ convex and y is a random variable with log-concave pdf then

$$ f(x) = \text{Prob}(x + y \in C) $$

is log-concave

Proof: write $f(x)$ as integral of product of log-concave functions

$$ f(x) = \int g(x + y)p(y)dy, \quad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C \end{cases} $$

p is pdf of y
example: yield function

\[Y(x) = \text{Prob}(x + w \in S) \]

- \(x \in \mathbb{R}^n \): nominal parameter values for product
- \(w \in \mathbb{R}^n \): random variations of parameters in manufactured product
- \(S \): set of acceptable values

if \(S \) is convex and \(w \) has a log-concave pdf, then

- \(Y \) is log-concave
- yield regions \(\{ x \mid Y(x) \geq \alpha \} \) are convex
- Not necessarily tractable though...
Convexity with respect to generalized inequalities

\[f : \mathbb{R}^n \to \mathbb{R}^m \] is \(K \)-convex if \(\text{dom} \ f \) is convex and

\[
f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)
\]

for \(x, y \in \text{dom} \ f, \ 0 \leq \theta \leq 1 \)

example \(f : \mathbb{S}^m \to \mathbb{S}^m, \ f(X) = X^2 \) is \(\mathbb{S}^m_+ \)-convex

proof: for fixed \(z \in \mathbb{R}^m, \ z^T X^2 z = \| Xz \|^2_2 \) is convex in \(X \), i.e.,

\[
z^T (\theta X + (1 - \theta)Y)^2 z \leq \theta z^T X^2 z + (1 - \theta)z^T Y^2 z
\]

for \(X, Y \in \mathbb{S}^m, \ 0 \leq \theta \leq 1 \)

therefore \((\theta X + (1 - \theta)Y)^2 \preceq \theta X^2 + (1 - \theta)Y^2 \)
Convex Optimization Problems
Outline

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization
Optimization problem in standard form

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- \(x \in \mathbb{R}^n \) is the optimization variable
- \(f_0 : \mathbb{R}^n \to \mathbb{R} \) is the objective or cost function
- \(f_i : \mathbb{R}^n \to \mathbb{R}, \quad i = 1, \ldots, m \), are the inequality constraint functions
- \(h_i : \mathbb{R}^n \to \mathbb{R} \) are the equality constraint functions

optimal value:

\[
p^* = \inf \{ f_0(x) \mid f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad h_i(x) = 0, \quad i = 1, \ldots, p \}
\]

- \(p^* = \infty \) if problem is infeasible (no \(x \) satisfies the constraints)
- \(p^* = -\infty \) if problem is unbounded below
Optimal and locally optimal points

x is feasible if $x \in \text{dom } f_0$ and it satisfies the constraints

a feasible x is optimal if $f_0(x) = p^*$; X_{opt} is the set of optimal points

x is locally optimal if there is an $R > 0$ such that x is optimal for

$$
\begin{align*}
\text{minimize (over } z) & \quad f_0(z) \\
\text{subject to} & \quad f_i(z) \leq 0, \quad i = 1, \ldots, m, \quad h_i(z) = 0, \quad i = 1, \ldots, p \\
& \quad \|z - x\|_2 \leq R
\end{align*}
$$

examples (with $n = 1$, $m = p = 0$)

- $f_0(x) = 1/x$, $\text{dom } f_0 = \mathbb{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\text{dom } f_0 = \mathbb{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, $\text{dom } f_0 = \mathbb{R}_{++}$: $p^* = -1/e$, $x = 1/e$ is optimal
- $f_0(x) = x^3 - 3x$, $p^* = -\infty$, local optimum at $x = 1$
Implicit constraints

the standard form optimization problem has an implicit constraint

\[
x \in \mathcal{D} = \bigcap_{i=0}^{m} \text{dom } f_i \cap \bigcap_{i=1}^{p} \text{dom } h_i,
\]

- we call \(\mathcal{D} \) the domain of the problem
- the constraints \(f_i(x) \leq 0, h_i(x) = 0 \) are the explicit constraints
- a problem is unconstrained if it has no explicit constraints \((m = p = 0)\)

example:

\[
\text{minimize } f_0(x) = - \sum_{i=1}^{k} \log(b_i - a_i^T x)
\]

is an unconstrained problem with implicit constraints \(a_i^T x < b_i \)
Feasibility problem

\[
\begin{align*}
\text{find} & \quad x \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

can be considered a special case of the general problem with \(f_0(x) = 0\):

\[
\begin{align*}
\text{minimize} & \quad 0 \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- \(p^* = 0\) if constraints are feasible; any feasible \(x\) is optimal
- \(p^* = \infty\) if constraints are infeasible
Convex optimization problem

standard form convex optimization problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad a_i^T x = b_i, \quad i = 1, \ldots, p
\end{align*}
\]

- \(f_0, f_1, \ldots, f_m \) are convex; equality constraints are affine
- problem is quasiconvex if \(f_0 \) is quasiconvex (and \(f_1, \ldots, f_m \) convex)

often written as

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad A x = b
\end{align*}
\]

important property: feasible set of a convex optimization problem is convex
example

minimize \(f_0(x) = x_1^2 + x_2^2 \)
subject to \(\begin{align*}
 f_1(x) &= x_1/(1 + x_2^2) \leq 0 \\
 h_1(x) &= (x_1 + x_2)^2 = 0
\end{align*} \)

- \(f_0 \) is convex; feasible set \(\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\} \) is convex
- not a convex problem (according to our definition): \(f_1 \) is not convex, \(h_1 \) is not affine
- equivalent (but not identical) to the convex problem

minimize \(x_1^2 + x_2^2 \)
subject to \(\begin{align*}
 x_1 &\leq 0 \\
 x_1 + x_2 &= 0
\end{align*} \)
Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal and y is optimal with $f_0(y) < f_0(x)$

x locally optimal means there is an $R > 0$ such that

$$z \text{ feasible, } \|z - x\|_2 \leq R \implies f_0(z) \geq f_0(x)$$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2\|y - x\|_2)$

- $\|y - x\|_2 > R$, so $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
- $\|z - x\|_2 = R/2$ and

$$f_0(z) \leq \theta f_0(x) + (1 - \theta)f_0(y) < f_0(x)$$

which contradicts our assumption that x is locally optimal
x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T (y - x) \geq 0 \quad \text{for all feasible } y$$

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x
■ **unconstrained problem:** x is optimal if and only if

$$x \in \text{dom} f_0, \quad \nabla f_0(x) = 0$$

■ **equality constrained problem**

$$\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad Ax = b
\end{align*}$$

x is optimal if and only if there exists a ν such that

$$x \in \text{dom} f_0, \quad Ax = b, \quad \nabla f_0(x) + A^T \nu = 0$$

■ **minimization over nonnegative orthant**

$$\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad x \succeq 0
\end{align*}$$

x is optimal if and only if

$$x \in \text{dom} f_0, \quad x \succeq 0, \quad \begin{cases}
\nabla f_0(x)_i \geq 0 & x_i = 0 \\
\nabla f_0(x)_i = 0 & x_i > 0
\end{cases}$$
Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

- **eliminating equality constraints**

 \[
 \begin{align*}
 & \text{minimize} \quad f_0(x) \\
 & \text{subject to} \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 & \quad Ax = b
 \end{align*}
 \]

 is equivalent to

 \[
 \begin{align*}
 & \text{minimize (over } z) \quad f_0(Fz + x_0) \\
 & \text{subject to} \quad f_i(Fz + x_0) \leq 0, \quad i = 1, \ldots, m
 \end{align*}
 \]

 where \(F \) and \(x_0 \) are such that

 \[
 Ax = b \quad \iff \quad x = Fz + x_0 \text{ for some } z
 \]
introducing equality constraints

\[
\begin{align*}
\text{minimize} & \quad f_0(A_0x + b_0) \\
\text{subject to} & \quad f_i(A_ix + b_i) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize (over } x, \ y_i) & \quad f_0(y_0) \\
\text{subject to} & \quad f_i(y_i) \leq 0, \quad i = 1, \ldots, m \\
y_i & = A_ix + b_i, \quad i = 0, 1, \ldots, m
\end{align*}
\]

introducing slack variables for linear inequalities

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize (over } x, \ s) & \quad f_0(x) \\
\text{subject to} & \quad a_i^T x + s_i = b_i, \quad i = 1, \ldots, m \\
s_i & \geq 0, \quad i = 1, \ldots, m
\end{align*}
\]
epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to
$f_0(x) - t \leq 0$
$f_i(x) \leq 0, \quad i = 1, \ldots, m$
$Ax = b$

minimizing over some variables

minimize $f_0(x_1, x_2)$
subject to $f_i(x_1) \leq 0, \quad i = 1, \ldots, m$

is equivalent to

minimize $\tilde{f}_0(x_1)$
subject to $f_i(x_1) \leq 0, \quad i = 1, \ldots, m$

where $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$
Quasiconvex optimization

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

with \(f_0 : \mathbb{R}^n \to \mathbb{R} \) quasiconvex, \(f_1, \ldots, f_m \) convex

can have locally optimal points that are not (globally) optimal
quasiconvex optimization via convex feasibility problems

\[f_0(x) \leq t, \quad f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Ax = b \] (1)

- for fixed \(t \), a convex feasibility problem in \(x \)
- if feasible, we can conclude that \(t \geq p^* \); if infeasible, \(t \leq p^* \)

Bisection method for quasiconvex optimization

given \(l \leq p^*, u \geq p^*, \) tolerance \(\epsilon > 0 \).

repeat

1. \(t := (l + u)/2 \).
2. Solve the convex feasibility problem (1).
3. **if** (1) is feasible, \(u := t \); **else** \(l := t \).

until \(u - l \leq \epsilon \).

requires exactly \(\lceil \log_2((u - l)/\epsilon) \rceil \) iterations (where \(u, l \) are initial values)
Linear program (LP)

\[
\begin{align*}
\text{minimize} & \quad c^T x + d \\
\text{subject to} & \quad G x \preceq h \\
& \quad A x = b
\end{align*}
\]

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron
Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- one unit of food j costs c_j, contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i

To find cheapest healthy diet,

$$\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \succeq b, \quad x \succeq 0
\end{align*}$$

piecewise-linear minimization

$$\begin{align*}
\text{minimize} & \quad \max_{i=1,\ldots,m}(a_i^T x + b_i)
\end{align*}$$

Equivalent to an LP

$$\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad a_i^T x + b_i \leq t, \quad i = 1, \ldots, m
\end{align*}$$
Chebyshev center of a polyhedron

Chebyshev center of

\[\mathcal{P} = \{ x \mid a_i^T x \leq b_i, \ i = 1, \ldots, m \} \]

is center of largest inscribed ball

\[\mathcal{B} = \{ x_c + u \mid \|u\|_2 \leq r \} \]

- \(a_i^T x \leq b_i \) for all \(x \in \mathcal{B} \) if and only if

\[\sup \{ a_i^T (x_c + u) \mid \|u\|_2 \leq r \} = a_i^T x_c + r \|a_i\|_2 \leq b_i \]

- hence, \(x_c, r \) can be determined by solving the LP

\[
\begin{align*}
\text{maximize} & \quad r \\
\text{subject to} & \quad a_i^T x_c + r \|a_i\|_2 \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]
(Generalized) linear-fractional program

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad Gx \preceq h \\
& \quad Ax = b
\end{align*}
\]

linear-fractional program

\[
f_0(x) = \frac{c^T x + d}{e^T x + f}, \quad \text{dom } f_0(x) = \{ x \mid e^T x + f > 0 \}
\]

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables \(y, z\))

\[
\begin{align*}
\text{minimize} & \quad c^T y + d z \\
\text{subject to} & \quad G y \preceq h z \\
& \quad A y = b z \\
& \quad e^T y + f z = 1 \\
& \quad z \geq 0
\end{align*}
\]
Quadratic program (QP)

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} x^T P x + q^T x + r \\
\text{subject to} & \quad G x \preceq h \\
& \quad A x = b
\end{align*}
\]

- \(P \in \mathbb{S}_+^n \), so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

\[-\nabla f_0(x^*) \]

\[x \]

\[\mathcal{P} \]
Examples

least-squares

\[
\text{minimize} \quad \|Ax - b\|_2^2
\]

- analytical solution \(x^* = A^\dagger b \) (\(A^\dagger \) is pseudo-inverse)
- can add linear constraints, \(e.g., \ l \leq x \leq u \)

linear program with random cost

\[
\begin{align*}
\text{minimize} \quad & \bar{c}^T x + \gamma x^T \Sigma x = E c^T x + \gamma \text{var}(c^T x) \\
\text{subject to} \quad & Gx \leq h, \ Ax = b
\end{align*}
\]

- \(c \) is random vector with mean \(\bar{c} \) and covariance \(\Sigma \)
- hence, \(c^T x \) is random variable with mean \(\bar{c}^T x \) and variance \(x^T \Sigma x \)
- \(\gamma > 0 \) is risk aversion parameter; controls the trade-off between expected cost and variance (risk)
Quadratically constrained quadratic program (QCQP)

\[
\begin{align*}
\text{minimize} & \quad (1/2)x^T P_0 x + q_0^T x + r_0 \\
\text{subject to} & \quad (1/2)x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- \(P_i \in \mathbf{S}_+^n \); objective and constraints are convex quadratic
- if \(P_1, \ldots, P_m \in \mathbf{S}_{++}^n \), feasible region is intersection of \(m \) ellipsoids and an affine set
Second-order cone programming

\[
\begin{align*}
\text{minimize} & \quad f^T x \\
\text{subject to} & \quad \| A_i x + b_i \|_2 \leq c_i^T x + d_i, \quad i = 1, \ldots, m \\
& \quad Fx = g
\end{align*}
\]

\((A_i \in \mathbb{R}^{n_i \times n}, F \in \mathbb{R}^{p \times n}) \)

- inequalities are called second-order cone (SOC) constraints:

\[(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbb{R}^{n_i+1} \]

- for \(n_i = 0 \), reduces to an LP; if \(c_i = 0 \), reduces to a QCQP
- more general than QCQP and LP
Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, \ldots, m,
\end{align*}
\]

there can be uncertainty in \(c, a_i, b_i \)

two common approaches to handling uncertainty (in \(a_i \), for simplicity)

- deterministic model: constraints must hold for all \(a_i \in E_i \)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i \text{ for all } a_i \in E_i, \quad i = 1, \ldots, m,
\end{align*}
\]

- stochastic model: \(a_i \) is random variable; constraints must hold with probability \(\eta \)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \text{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \ldots, m
\end{align*}
\]
deterministic approach via SOCP

- choose an ellipsoid as \mathcal{E}_i:

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid \|u\|_2 \leq 1 \} \quad (\bar{a}_i \in \mathbb{R}^n, \ P_i \in \mathbb{R}^{n \times n})$$

center is \bar{a}_i, semi-axes determined by singular values/vectors of P_i

- robust LP

$$\begin{align*}
\text{minimize} \quad & c^T x \\
\text{subject to} \quad & a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \ i = 1, \ldots, m
\end{align*}$$

is equivalent to the SOCP

$$\begin{align*}
\text{minimize} \quad & c^T x \\
\text{subject to} \quad & \bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i = 1, \ldots, m
\end{align*}$$

(follows from $\sup_{\|u\|_2 \leq 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$)
stochastic approach via SOCP

- assume \(a_i \) is Gaussian with mean \(\bar{a}_i \), covariance \(\Sigma_i \) \((a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)) \)
- \(a_i^T x \) is Gaussian r.v. with mean \(\bar{a}_i^T x \), variance \(x^T \Sigma_i x \); hence

\[
\text{Prob}(a_i^T x \leq b_i) = \Phi \left(\frac{b_i - \bar{a}_i^T x}{\| \Sigma_i^{1/2} x \|_2} \right)
\]

where \(\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt \) is CDF of \(\mathcal{N}(0, 1) \)

- robust LP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \text{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \ldots, m,
\end{align*}
\]

with \(\eta \geq 1/2 \), is equivalent to the SOCP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \bar{a}_i^T x + \Phi^{-1}(\eta) \| \Sigma_i^{1/2} x \|_2 \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]
Geometric programming

monomial function

\[f(x) = cx_1^{a_1}x_2^{a_2} \cdots x_n^{a_n}, \quad \text{dom } f = \mathbb{R}^n_+ \]

with \(c > 0 \); exponent \(\alpha_i \) can be any real number

posynomial function: sum of monomials

\[f(x) = \sum_{k=1}^{K} c_kx_1^{a_{1k}}x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbb{R}^n_+ \]

dom f = \mathbb{R}^n_+

geometric program (GP)

minimize \(f_0(x) \)
subject to \(f_i(x) \leq 1, \quad i = 1, \ldots, m \)

\(h_i(x) = 1, \quad i = 1, \ldots, p \)

with \(f_i \) posynomial, \(h_i \) monomial
Geometric program in convex form

change variables to \(y_i = \log x_i \), and take logarithm of cost, constraints

- monomial \(f(x) = c x_1^{a_1} \cdots x_n^{a_n} \) transforms to

 \[
 \log f(e^{y_1}, \ldots, e^{y_n}) = a^T y + b \quad (b = \log c)
 \]

- posynomial \(f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}} \) transforms to

 \[
 \log f(e^{y_1}, \ldots, e^{y_n}) = \log \left(\sum_{k=1}^{K} e^{a_k^T y + b_k} \right) \quad (b_k = \log c_k)
 \]

- geometric program transforms to convex problem

 \[
 \begin{align*}
 \text{minimize} & \quad \log \left(\sum_{k=1}^{K} \exp(a_{0k}^T y + b_{0k}) \right) \\
 \text{subject to} & \quad \log \left(\sum_{k=1}^{K} \exp(a_{ik}^T y + b_{ik}) \right) \leq 0, \quad i = 1, \ldots, m \\
 & \quad G y + d = 0
 \end{align*}
 \]
Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue $\lambda_{pf}(A)$

- exists for (elementwise) positive $A \in \mathbb{R}^{n \times n}$
- a real, positive eigenvalue of A, equal to spectral radius $\max_i |\lambda_i(A)|$
- determines asymptotic growth (decay) rate of A^k: $A^k \sim \lambda_{pf}^k$ as $k \to \infty$
- alternative characterization: $\lambda_{pf}(A) = \inf \{ \lambda \mid Av \preceq \lambda v \text{ for some } v \succ 0 \}$

minimizing spectral radius of matrix of posynomials

- minimize $\lambda_{pf}(A(x))$, where the elements $A(x)_{ij}$ are posynomials of x
- equivalent geometric program:

\[
\begin{align*}
\text{minimize} & \quad \lambda \\
\text{subject to} & \quad \sum_{j=1}^{n} A(x)_{ij} v_j / (\lambda v_i) \leq 1, \quad i = 1, \ldots, n \\
\end{align*}
\]

variables λ, v, x
Generalized inequality constraints

convex problem with generalized inequality constraints

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \preceq_{K_i} 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- $f_0 : \mathbb{R}^n \to \mathbb{R}$ convex; $f_i : \mathbb{R}^n \to \mathbb{R}^{k_i}$ K_i-convex w.r.t. proper cone K_i
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Fx + g \preceq_K 0 \\
& \quad Ax = b
\end{align*}
\]

extends linear programming ($K = \mathbb{R}^m_+$) to nonpolyhedral cones
Semidefinite program (SDP)

minimize \(c^T x \)
subject to \(x_1 F_1 + x_2 F_2 + \cdots + x_n F_n + G \preceq 0 \)
\(Ax = b \)

with \(F_i, G \in \mathbb{S}^k \)

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

\[
x_1 \hat{F}_1 + \cdots + x_n \hat{F}_n + \hat{G} \preceq 0,
 x_1 \tilde{F}_1 + \cdots + x_n \tilde{F}_n + \tilde{G} \preceq 0
\]

is equivalent to single LMI

\[
x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \hat{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \hat{F}_2 \end{bmatrix} + \cdots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \hat{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \hat{G} \end{bmatrix} \preceq 0
\]
LP and SOCP as SDP

LP and equivalent SDP

LP: \[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \preceq b
\end{align*}
\]

SDP: \[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \text{diag}(Ax - b) \preceq 0
\end{align*}
\] (note different interpretation of generalized inequality \(\preceq\))

SOCP and equivalent SDP

SOCP: \[
\begin{align*}
\text{minimize} & \quad f^T x \\
\text{subject to} & \quad \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \ldots, m
\end{align*}
\]

SDP: \[
\begin{align*}
\text{minimize} & \quad f^T x \\
\text{subject to} & \quad \begin{bmatrix}
(c_i^T x + d_i)I & A_i x + b_i \\
(A_i x + b_i)^T & c_i^T x + d_i
\end{bmatrix} \succeq 0, \quad i = 1, \ldots, m
\end{align*}
\]
Eigenvalue minimization

\[
\begin{align*}
\text{minimize} & \quad \lambda_{\text{max}}(A(x)) \\
\text{where} & \quad A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n \quad (\text{with given } A_i \in S^k)
\end{align*}
\]

equivalent SDP

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad A(x) \preceq tI
\end{align*}
\]

- variables \(x \in \mathbb{R}^n, t \in \mathbb{R} \)
- follows from

\[
\lambda_{\text{max}}(A) \leq t \iff A \preceq tI
\]
Matrix norm minimization

\[
\begin{align*}
\text{minimize} & \quad \|A(x)\|_2 = \left(\lambda_{\max}(A(x)^T A(x))\right)^{1/2} \\
\text{where} & \quad A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n \text{ (with given } A_i \in S^{p \times q})
\end{align*}
\]

equivalent SDP

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad \begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0
\end{align*}
\]

- variables \(x \in \mathbb{R}^n, t \in \mathbb{R}\)
- constraint follows from

\[
\|A\|_2 \leq t \iff A^T A \preceq t^2 I, \quad t \geq 0
\]

\[
\iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \succeq 0
\]