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Convex Optimization Problems
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Outline

m basic properties and examples

m operations that preserve convexity

m the conjugate function

m quasiconvex functions

m log-concave and log-convex functions

m convexity with respect to generalized inequalities
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Definition

f:R™ — R is convex if dom f is a convex set and

flOx+ (1—=0)y) <0f(zx)+ (1-0)f(y)

forall z,y€cdomf, 0<0<1

(y, f(y))
(x, f(x))

m f is concave if —f is convex

m f is strictly convex if dom f is convex and

flO0z +(1—0)y) <O0f(x)+(1-0)f(y)

forx,yedomf, x#y, 0<0<1
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Examples on R

convex:

m affine: ax 4+ b on R, for any a,b € R

m exponential: e**, for any a € R

m powers: x*on Ry, fora>1ora <0

= powers of absolute value: |z|P on R, for p > 1

m negative entropy: xlogx on R,

concave:
m affine: ax 4+ b on R, for any a,b € R
m powers: z%on R,,, for0 <a <1

m logarithm: logx on R, 4
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Examples on R™ and R"™*"

affine functions are convex and concave; all norms are convex

examples on R”
= affine function f(z) = alx +b

s norms: ||z, = (300, |2i[P)YP for p > 1; ||7||eo = maxy, |z

examples on R™*™ (m x n matrices)

m affine function

m

f(X)=Tr(ATX)+b=Y_ f: AiiXii+b

i=1 j=1

= spectral (maximum singular value) norm

FX) = [ Xl2 = Tmax(X) = Amax(XT X))
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Restriction of a convex function to a line

f :R™ — R is convex if and only if the function g : R — R,
g(t) = f(z + tv), domg = {t |z +tv € dom f}

is convex (in t) for any x € dom f, v € R"

can check convexity of f by checking convexity of functions of one variable

example. f:S" — R with f(X) =logdet X, dom X =S

g(t) =logdet(X +tV) log det X + log det(I + tX—l/QVX—1/2)

= logdet X + Z log(1 +tA;)
i=1

where )\; are the eigenvalues of X ~1/2y X ~1/2

g is concave in t (for any choice of X = 0, V'); hence f is concave

A. d'Aspremont. Convex Optimization M2. 7/67



Extended-value extension

extended-value extension f of f is

~

f(x) = f(x), «x € domf, f(r) =00, =z ¢&domf

often simplifies notation; for example, the condition
0<0<1 = [(lr+(1-0)y) <0f(x)+(1-0)/(y)
(as an inequality in R U {oc}), means the same as the two conditions

m dom f is convex

m for z,y € dom f,

0<0<1 = fllz+Q—-0)y) <0f(x)+(1-0)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

V16 = (o T )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) = f(z) + Vf(z)'(y —x) forall z,y € dom f

f(y)
flx) + V(@) (y— =)

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian VZf(z) € S™,

_ P f(=)
N 8%8:1;]-’

V2 ()i

1,7=1,...,n,
exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

m f is convex if and only if

V2f(z) =0 forall z € dom f

m if V2f(z) = 0 for all z € dom f, then f is strictly convex
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Examples

ion: f(z) = (1/2)z" Px + ¢'z +r (with P € S™)

quadratic funct

V3 f(z)

= Pr+q,

V()

convex if P >0

| Az — b]3

least-squares objective: f(x)

— 9247 A

Vi f ()

2AT (Ax — b)),

V()

convex (for any A)

(-

==

Lz

=
W
e,

LZ7 ....

quadratic-over-linear: f(z,y) = 2°/y

T

1
-—-—-—-—-ﬂ-—-—-—-ﬂ\n

convex for y > 0
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log-sum-exp: f(z) =log> ,_, expxy is convex

to show V2f(z) = 0, we must verify that vI'VZf(x)v > 0 for all v:

(2_k Zkvi)(Zk zk) — (D Uk 2k)’ >0

UTVQf(g;)'U = 5, )

since (3, vpzi)? < (02, zkvi) (O, 2k) (from Cauchy-Schwarz inequality)

geometric mean: f(z) = ([];_, zx)'/™ on R", is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

a-sublevel set of f : R" — R:
Co={redom | f(x) < a}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R" — R:

epi f = {(x,t) € R"™ |z € dom f, f(x) <t}

epi f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 <6 <1,

SOz +(1—0)y) <0f(x)+ (1-0)f(y)

extension: if f is convex, then

f(Ez) <E f(z)

for any random variable z

basic inequality is special case with discrete distribution

Prob(z =z) =6, Prob(z=y)=1-26
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations that
preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: o f is convex if f is convex, a > 0
sum: f; + fo convex if fi, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

m log barrier for linear inequalities

f(x) = —Zlog(bi —alx), domf={z|alz<b,i=1,...,m}
i=1

= (any) norm of affine function: f(x) = ||Ax + b||
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fin(x)} is convex

examples

= piecewise-linear function: f(z) = max;—1.._m(alx + b;) is convex

m sum of r largest components of z € R™:
fl) = xpy+ 2 4+ 2y

is convex (xy; is ith largest component of x)
proof:

flx) =max{z; +zi,+ - +x;, |1 <i1 <ia < - <ip <n}
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Pointwise supremum

if f(x,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

IS convex

examples

= support function of a set C: S¢(x) = sup, ey’  is convex

m distance to farthest point in a set C:

f(z) = sup ||z — y
yeC

= maximum eigenvalue of symmetric matrix: for X € S”,

)\max(X): Sup yTXy
lyll2=1
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Composition with scalar functions

composition of g : R - R and h: R — R:

. .. g convex, h convex, h nondecreasing
f is convex if ~

g concave, h convex, h nonincreasing
m proof (for n = 1, differentiable g, h)
() = h'(9(z))g'(x)* + W (9(x))g"(2)
m note: monotonicity must hold for extended-value extension h

examples
m exp g(x) is convex if g is convex

m 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : R™ — R¥ and h : R¥ — R:

f(.fl?) — h(g(x)) — h(gl(x)agQ(x)7 T 791@(33))

I is convex if g; convex, h convex, h nondecreasing in each argument
IS convex i ~ _ Lo
g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

(@) = g'(x)"'V?h(g(z))g' (z) + Vh(g(z))" g" (z)

examples
m > .~ loggi(x) is concave if g; are concave and positive

= log > " expg;(x) is convex if g; are convex
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Minimization

if f(x,y) is convex in (x,y) and C' is a convex set, then

g9(x) = inf f(z,y)

yel

IS convex

examples

s f(z,y) = 2T Az + 227 By + ¢y Cy with

[AB

BT C]zo, C >0

minimizing over y gives g(z) = inf, f(z,y) = 21 (A — BC~'B")x
g is convex, hence Schur complement A — BC~1B* >0

= distance to a set: dist(x,S) = inf,cs |z — y|| is convex if S is convex
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Perspective

the perspective of a function f : R™ — R is the function g : R” X R — R,
g(z,t) =tf(z/t),  domg={(z1)|x/t € domf, t >0}
g is convex if f is convex

examples
s f(x) =21z is convex; hence g(z,t) = z1x/t is convex for t > 0

= negative logarithm f(z) = —logx is convex; hence relative entropy
g(z,t) = tlogt — tlogx is convex on R% |

m if f is convex, then
g(x) = (clz+d)f ((Ax +b)/(c'x + d))

is convex on {z |tz +d >0, (Az +b)/(c'z + d) € dom f}

A. d'Aspremont. Convex Optimization M2. 22/67



The conjugate function

the conjugate of a function f is

f*y)= sup (y'z— f(z))

redom f

f(x)

Ay

A0, = ()

m f*is convex (even if f is not)

m Used in regularization, duality results, . . .
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examples

= negative logarithm f(z) = —logx
f*(y) = sup(zy +logx)
x>0
_ )] —1-log(-y) y<0
N 00 otherwise

= strictly convex quadratic f(z) = (1/2)z'Qx with @ € ST},
fy) = sup(y'=—(1/2)z" Qx)

1T—1
= 2yQ Y
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Quasiconvex functions

: R™ — IR is quasiconvex if dom f is convex and the sublevel sets
g

So ={z €dom [ | f(z) < a}

are convex for all «

m f is quasiconcave if —f is quasiconvex

m f is quasilinear if it is quasiconvex and quasiconcave
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Examples

O \/m Is quasiconvex on R

m ceil(x) =inf{z € Z | z > x} is quasilinear
m logx is quasilinear on R,

s f(z1,22) = x122 is quasiconcave on R2 |

m linear-fractional function

T b
f(x):%, dom f = {z|clz+d> 0}
Is quasilinear
m distance ratio
x—a
fay=tzall o f = | o —alla < [z — b2}
|z — b2

IS quasiconvex
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Properties

modified Jensen inequality: for quasiconvex f

0<0<1 = fOx+(1—-0)y) <max{f(zx),f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fly) < fla) = V(@) (y—2)<0

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:
f(0x + (1=0)y) > f(z)'f(y)' ™" for0<6<1

f is log-convex if log f is convex

m powers: % on R, is log-convex for a < 0, log-concave for a > 0

m many common probability densities are log-concave, e.g., normal:

f(z) = 1 o3 a—2)TS (2 7)

v (2m)rdet X

m cumulative Gaussian distribution function ® is log-concave

1 T
O(z) = E/ e~ /2 dy
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Properties of log-concave functions

m twice differentiable f with convex domain is log-concave if and only if

Fx)V2f(x) < V)V f(x)T

for all x € dom f
m product of log-concave functions is log-concave
m sum of log-concave functions is not always log-concave

m integration: if f:R™ X R™ — R is log-concave, then

g(x) = / F(x,y) dy

is log-concave (not easy to show)

A. d'Aspremont. Convex Optimization M2. 29/67



consequences of integration property

m convolution f x g of log-concave functions f, g is log-concave

(f*g)(x) = /f(:v —y)g(y)dy

m if C CR" convex and y is a random variable with log-concave pdf then
f(x) = Prob(x +y € C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

/() Z/g(aﬂry)p(y)dy, 9(“):{ (1) Z;g

p is pdf of y
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example: yield function

Y (z) = Prob(z +w € S)

m x € R™: nominal parameter values for product
m w € R™: random variations of parameters in manufactured product

m S: set of acceptable values

if S is convex and w has a log-concave pdf, then

m Y is log-concave
= yield regions {z | Y () > o} are convex

m Not necessarily tractable though. . .
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Convexity with respect to generalized inequalities

f:R™®™ - R™is K-convex if dom f is convex and

f0z+ (1 =0)y) =k 0f(x)+(1—-0)f(y)

forr,yecdomf,0<60<1

example f: S™ — S™, f(X) = X?is S'"-convex

proof: for fixed z € R™, 21 X2z = || X 2|3 is convex in X, i.e.,
dOX +(1-0)Y)2<0" X2+ (1-60)2'Y?2

for X, Y eS™ 0<6<1

therefore (0X + (1 —-0)Y)? <0X*+ (1 -0)Y?
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Convex Optimization Problems
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Outline

m optimization problem in standard form
m convex optimization problems

m quasiconvex optimization

m linear optimization

m quadratic optimization

m geometric programming

m generalized inequality constraints

m semidefinite programming

m vector optimization
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Optimization problem in standard form

minimize  fo(z)
subject to  fi(x) <0, i=1,....,m
hi(x) =0, 1

m r € R" is the optimization variable
m fo: R®™ — R is the objective or cost function
m f;, : R" =R, i=1,...,m, are the inequality constraint functions

m h; : R™ — R are the equality constraint functions

optimal value:

m p* = oo if problem is infeasible (no x satisfies the constraints)

m p* = —o0 if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x+ € dom f; and it satisfies the constraints
a feasible z is optimal if fo(x) = p*; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,...,m, hi(z)=0, 1=1,...

lz =zl < R

examples (with n =1, m = p = 0)

s fo(r) =1/z, dom fy = R, : p* =0, no optimal point

= fo

()

() =

m fo(x) = loga: dom fy =R, : p* = —1/e, x = 1/e is optimal
()

—logx, dom fy =R, : p* = —

— 3z, p* = —o0o, local optimum at z =1

lfoﬂ?
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Implicit constraints

the standard form optimization problem has an implicit constraint

m p
xED:mdomﬁ; N ﬂdomhi,

1=0 =1

m we call D the domain of the problem
= the constraints f;(x) <0, h;(z) = 0 are the explicit constraints

= a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Z,’f:l log(b; — alx)

is an unconstrained problem with implicit constraints a! z < b;

A. d'Aspremont. Convex Optimization M2. 37/67



Feasibility problem

find x
subject to  fi(x) <0, i=1,...,m
hi(x)=0, i=1,...,p

can be considered a special case of the general problem with fo(x) = 0:

minimize 0

m p* = 0 if constraints are feasible; any feasible = is optimal

m p* = oo if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem

N——"

minimize  fy(x
subject to  fi(z) < i=1,...,m
0T
'L

m fo, f1, ..., fm are convex; equality constraints are affine

m problem is quasiconvex if fy is quasiconvex (and fi, ..., fi, convex)

often written as o
minimize  fo(x)
subject to fz( )<0, i=1,....m
Ax =b

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(2) = x{ + 23
subject to  fi(z) = x1/(1+23) <0

= fo is convex; feasible set {(x1,x2) | 1 = —x2 < 0} is convex

= not a convex problem (according to our definition): fi is not convex, h; is not
affine

= equivalent (but not identical) to the convex problem
minimize 2% + 23

subject to x1 <0
xr1 + Io = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose x is locally optimal and y is optimal with fo(y) < fo(x)

x locally optimal means there is an R > 0 such that

z feasible, |z—z|o <R = fo(z2) > fo(x)

consider z = 0y + (1 — 0)x with 0 = R/(2||ly — x||2)

mlly—z|2 >R, s00<60<1/2

m z Is a convex combination of two feasible points, hence also feasible

m ||z —z|2=R/2 and
fo(z) < 0fo(z) + (1 —=0)fo(y) < fo(x)
which contradicts our assumption that z is locally optimal
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Optimality criterion for differentiable f

x is optimal if and only if it is feasible and

Vfo(x)! (y —x) >0 for all feasible y

if nonzero, V fo(x) defines a supporting hyperplane to feasible set X at z
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= unconstrained problem: z is optimal if and only if

xr € dom fo, Vfo(x)=0

m equality constrained problem
minimize fo(x) subjectto Az =10
x is optimal if and only if there exists a v such that

xr € dom fy, Az =0, Vfolx) + A'v =0

= minimization over nonnegative orthant
minimize fo(x) subjectto x>0

x is optimal if and only if

.
xédomf(b .T/'_O, { Vf()(aj)z:o ZUZ>O
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained

from the solution of the other, and vice-versa

some common transformations that preserve convexity:
= eliminating equality constraints
minimize  fo(x)
subject to fz( ) <0, i=1,....m
Az =0
is equivalent to

minimize (over z) fo(Fz 4+ xg)

subject to filFz4+x9) <0, i=1,...

where F' and z( are such that

Ar=b <= x = Fz+ xg for some z

A. d'Aspremont. Convex Optimization M2.

4467



= introducing equality constraints

minimize  fo(Aoz + bo)
subject to  fi(A;x+b;) <0, 1=1,.

is equivalent to

minimize (over x, v;) fo(yo)
subject to fily;)) <0, i=1,...

yZ:AZZIZ‘—Fb“ i:O,l,...,m

m introducing slack variables for linear inequalities

minimize  fo(z)
subject to alx <b;, i=1,....,m

Is equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=b;, i=1,...
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m epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to fo(x) —

= minimizing over some variables

minimize  fo(21, 72)
subject to  fi(x1) <0, i=1,...,m

is equivalent to

minimize  fo(z1)
subject to  fi(xz1) <0, i=1,...,m

where fo(x1) = infy, fo(z1,72)
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Quasiconvex optimization

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
Axz =0

with fy : R™ — R quasiconvex, f1, ..., fm convex

can have locally optimal points that are not (globally) optimal
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quasiconvex optimization via convex feasibility problems

for)<t,  fil@)<0, i=1,...m, Az=} (1)

m for fixed ¢, a convex feasibility problem in z

m if feasible, we can conclude that t > p*; if infeasible, ¢t < p*

Bisection method for quasiconvex optimization

given [ < p*, u > p*, tolerance ¢ > 0.
repeat

L.t :=({+u)/2.

2. Solve the convex feasibility problem (1).

3.if (1) is feasible, u:=t; elsel:=t.
until v — [ <e.

requires exactly [log,((u —1)/€)] iterations (where u, [ are initial values)
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Linear program (LP)

minimize ¢z +d
subject to Gx <X h
Axr =0b

m convex problem with affine objective and constraint functions

m feasible set is a polyhedron
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Examples

diet problem: choose quantities z1, . .., x, of n foods

= one unit of food j costs c¢;, contains amount a;; of nutrient ;

m healthy diet requires nutrient ¢ in quantity at least b;

to find cheapest healthy diet,

minimize cl'z

subjectto Axr >b, x>0

piecewise-linear minimization
minimize max;—1 . ,(al T+ b;)
equivalent to an LP

minimize ¢
subject to alx +b; <t, i=1,...,m
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Chebyshev center of a polyhedron
Chebyshev center of

P={x|alax<b;, i=1,...,m}
is center of largest inscribed ball

B=ze+ulllullz <7}

m alx < b; for all x € B if and only if

sup{a; (zc +u) | [lull2 <7} = aj zc + rllaill2 < b;

m hence, x., r can be determined by solving the LP

maximize r
subject to  alx.+7rl|ailla < b, i=1,....,m
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(Generalized) linear-fractional program

minimize  fo(z)
subject to Gz X h

Ax =0
linear-fractional program
T d
folz) = % dom fo(z) = {z | Tz + f > 0}

m a quasiconvex optimization problem; can be solved by bisection

= also equivalent to the LP (variables y, 2)

minimize cly + dz
subject to Gy = hz
Ay = bz
ely+ fz=1
z >0
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Quadratic program (QP)

minimize  (1/2)z? Pz + ¢tz +r
subject to Gx =X h
Ax =b

m P €S, soobjective is convex quadratic

m minimize a convex quadratic function over a polyhedron
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Examples

least-squares
minimize ||Ax — bl|3

= analytical solution z* = ATb (AT is pseudo-inverse)

m can add linear constraints, e.q., [ 2z 2 u

linear program with random cost

minimize iz +y2lYr = Ecly + yvar(clz)
subjectto Gx < h, Ax=2b

m c is random vector with mean ¢ and covariance X

T T

= hence, ¢!z is random variable with mean &'z and variance =z Xz

m v > 0 is risk aversion parameter; controls the trade-off between expected cost
and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize  (1/2)x! Pyz + ¢l x + rg
subject to  (1/2)x'Px+qlz+r; <0, i=1,...,m
Ax =b

m P, € ST; objective and constraints are convex quadratic

w if Pp,..., P, €S _, feasible region is intersection of m ellipsoids and an
affine set
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Second-order cone programming

minimize  flz
subject to || Az + il < clz+d;, i=1,...,m
Fr=g

(A; € R"*™ F € RPX™)
= inequalities are called second-order cone (SOC) constraints:

(A;x + by, ¢} « + d;) € second-order cone in R™it!

m for n; = 0, reduces to an LP; if ¢; = 0, reduces to a QCQP
m more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize clzx

subject to alx <b;, i=1,...,m,

there can be uncertainty in ¢, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

m deterministic model: constraints must hold for all a; € &;

minimize clx

subject to alx <b;foralla; €&, i=1,...,m,

m stochastic model: a; is random variable; constraints must hold with

probability n
minimize clz
subject to Prob(alz <b;))>n, i=1,...,m
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deterministic approach via SOCP

m choose an ellipsoid as &;:
E = {C_LZ' + Pu ‘ HUHQ < 1} (C_L@‘ c Rn, P; € Ran)

center is a;, semi-axes determined by singular values/vectors of P;

m robust LP

minimize c¢'x
subjectto a:x <0b; Va; €&, 1=1,...,m

is equivalent to the SOCP

minimize  clx

subject to  alz+ [|[Plz|a <b;, i=1,....,m

(follows from supy,,1,<1(@; + Pu)le =alz + ||Plz|2)
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stochastic approach via SOCP

m assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N (a;, %;))
T T

m a; x is Gaussian r.v. with mean a; x, variance 1Y x; hence

by —
Prob(als <b;) = |
12" |l
where ®(z) = (1/v2m) [©_ e~t"/2 dt is CDF of N(0,1)
m robust LP
minimize ¢’z
subject to Prob(axz <b;)) >n, i=1,...,m,

with n > 1/2, is equivalent to the SOCP

minimize ey

subject to  alx + <I>_1(77)H23/233H2 <b;, i=1,....m
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Geometric programming

monomial function

f(x) = cxitag? - xdn dom f =R

with ¢ > 0; exponent «; can be any real number

posynomial function: sum of monomials

K

f(x) = Z cpwy Tyt . gk dom f =R
k=1

geometric program (GP)
minimize  fo(z)
subject to  fi(x) <
with f; posynomial, h; monomial
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Geometric program in convex form

change variables to y; = log x;, and take logarithm of cost, constraints

= monomial f(x) = ca{'---x% transforms to

log f(e¥,...,e¥) =a'y +b (b =logc)

. K
= posynomial f(x) => ", , cxpxi¥ag® - xp" transforms to

K
log f(e¥t, ..., eY") = log (Z ea;{y%k) (b, = log ci)
k=1

m geometric program transforms to convex problem

minimize  log Zle exp(ald,y + b%))
subject to log Zle exp(aly + bzk)> <0, 1=1,....m
Gy+d=20
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Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue A\ ¢(A)

= exists for (elementwise) positive A € R™*"

= a real, positive eigenvalue of A, equal to spectral radius max; |A;(A)|

= determines asymptotic growth (decay) rate of A*: A ~ Agf as k — oo
m alternative characterization: Apf(A) = inf{\ | Av < Av for some v > 0}

minimizing spectral radius of matrix of posynomials

= minimize Aps(A(x)), where the elements A(x);; are posynomials of x

m equivalent geometric program:

minimize A
subject to Z?:1 A(Qﬁ)w’l}j/()\’vz) <1, 2=1,....n

variables A\, v, x
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize  fo(x)
subject to fz( ) 2k, i=1,....m
Az =0

s fo:R™ = R convex; f; : R — RFi K;-convex w.r.t. proper cone K;

m same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize clzx

subjectto Fx+ g g 0
Axr =0

extends linear programming (K = R’") to nonpolyhedral cones
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Semidefinite program (SDP)

minimize clzx

subject to x1Fi +20F5+ -+, F, + G X0
Ax =b

with F;, G € SF

= inequality constraint is called linear matrix inequality (LMI)

m includes problems with multiple LMI constraints: for example,

is equivalent to single LMI

F0 Fy 0 F 0 G 0
N N . N -1 =<0
:1:1[0 F1]+x2lo F2]+ —I—xlo Fn]+[0 G]_

A. d'Aspremont. Convex Optimization M2. 64/67



LP and SOCP as SDP

LP and equivalent SDP

LP:  minimize ¢’z SDP: minimize ¢’z
subject to Ax <b subject to diag(Ax —b) <0
(note different interpretation of generalized inequality <)
SOCP and equivalent SDP
SOCP:  minimize f'x
subject to || Az + il < clz+d;, i=1,...,m

SDP: minimize 'z

i -
subject to (Ai.r—kbi)T C,LTZC—l—dZ' -
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Eigenvalue minimization

minimize Apax(A(2))

where A(x) = Ag + 141+ - + 2, A, (with given A; € Sk)

equivalent SDP

minimize t

subject to A(x) < tI
m variables z € R™, t € R

m follows from
Amax(A) <t <=  A=<t]
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Matrix norm minimization

1/2

minimize ||A(z)]|2 = ()\maX(A(:C)TA(w)))

where A(x) = Ag+ 2141 + - -+ + 2, 4, (with given A; € SP*9)

equivalent SDP
minimize ¢

subject to [ t Alz) ] =0

m variablesz €¢ R™, t € R

m constraint follows from

[Alls <t <= ATA<tI, t>0

tI A
[AT tI]EO
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