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Lagrangian

standard form problem (not necessarily convex)

minimize  fo(z)
subject to  fi(x) <0, i=1,...,m
hi(x) =0, 1

|
—
i

variable x € R", domain D, optimal value p*

Lagrangian: L : R" X R™ X R? — R, with dom L =D x R™ x RP,

Lz, \,v) Z)\ fi(z Zuz-hz-(x)
i=1

m weighted sum of objective and constraint functions
= )\; is Lagrange multiplier associated with f;(x) <0

= v; is Lagrange multiplier associated with h;(x) =0
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Lagrange dual function

Lagrange dual function: g : R™ x RP — R,

g\, v) = inf L(xz,\,v)

xeD
= ;211; (fo(iﬂ) + ; Aifi(x) + ; Vfahz'(af))

g 1s concave, can be —oo for some A, v

*

lower bound property: if A > 0, then g(\,v) <p

proof: if T is feasible and A > 0, then

fol#) > L&\, v) > inf L(z,),v) = g(\,»)
xre

minimizing over all feasible = gives p* > g(\,v)
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Least-norm solution of linear equations

minimize zlx

subject to Ax =1b
dual function

= Lagrangian is L(z,v) = otz + v1(Az — 1)

m to minimize L over x, set gradient equal to zero:

Vol(z,v)=224+Av =0 — x=—(1/2)A"v

m plug in in L to obtain g:

1

g(v) = L((-1/2)ATv,v) = —ZI/TAATI/ — bl

a concave function of v

lower bound property: p* > —(1/4)v AATv — bv for all v
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Standard form LP

minimize ¢!z

subjectto Ax=0b, x>0
dual function

m Lagrangian is

Lz, \v) = ca+vi(Az—b) - Nz
= bv+(c+ATv Nz

m L is linear in x, hence

: —bly ATy —A+c¢=0
g(xv) = lgfL(x’ Av) = { —oo  otherwise
g is linear on affine domain {(\,v) | A’v — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blvif ATv4+c>0
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Equality constrained norm minimization

minimize  ||x||
subject to Ax =1b

dual function

vlv  ||ATY]. <1

g(v) = 11;31f(HfEH v Az +b'v) = { —oo  otherwise

where ||v||. = supy,,j<; u" v is dual norm of || - |

proof: follows from inf,(||z| — y'x) = 0 if ||y||« < 1, —co otherwise
w if |lyll« <1, then ||z]] — yT2 > 0 for all z, with equality if z =0

m if ||y]|« > 1, choose z = tu where ||u|| <1, uly = ||y||. > 1:

|zl = y"z = t(|Jull = yll.) = —o00 ast—oc

lower bound property: p* > blv if ATy, <1

A. d'Aspremont. Convex Optimization M2.

9/49



Two-way partitioning

minimize z!Wzx
subjectto z?=1, i=1,...,n

m a nonconvex problem; feasible set contains 2™ discrete points

m interpretation: partition {1,...,n} in two sets; W, is cost of assigning i, j to
the same set; —W;; is cost of assigning to different sets

dual function

g(v) = inf(z' Wz + Z vi(x? —1)) = infz? (W + diag(v))z — 11w

x

B —11Tv W + diag(v) = 0
o —00 otherwise

lower bound property: p* > —11v if W + diag(v) = 0

example: v = — A (W)1 gives bound p* > nApin (W)
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The dual problem

Lagrange dual problem
maximize g(\,v)
subjectto A >0

m finds best lower bound on p*, obtained from Lagrange dual function
m a convex optimization problem; optimal value denoted d*

m )\, v are dual feasible if A = 0, (\,v) € domg

= often simplified by making implicit constraint (), v) € dom g explicit

example: standard form LP and its dual (page 8)

minimize clx maximize —blv
subject to Az =1b subject to Alv+c¢ >0
x>~ 0
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Weak and strong duality

weak duality: d* < p*

= always holds (for convex and nonconvex problems)
m can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —17v
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 10

strong duality: d* = p*

m does not hold in general
= (usually) holds for convex problems

m conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem
minimize

fo(z)
subject to  fi(z) <0, i=1,...,m
Ar =10

if it is strictly feasible, i.e.,

dr € int D : filx) <0, i=1,...,m, Ax =10

= also guarantees that the dual optimum is attained (if p* > —o0)

m can be sharpened: e.g., can replace int D with relint D (interior relative to
affine hull); linear inequalities do not need to hold with strict inequality, . . .

m there exist many other types of constraint qualifications
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Feasibility problems

feasibility problem A in z € R™.

feasibility problem B in A € R, v € RP.
A >0, A # 0, g(Av) >0
where g(A,v) = inf, (221 Aifi(x) + Zz vihi())

= feasibility problem B is convex (g is concave), even if problem A is not
m A and B are always weak alternatives: at most one is feasible

proof: assume x satisfies A, A, v satisfy B
0<g(A\v) <30 Nifi(Z) + 3220 vihi(Z) <0

= A and B are strong alternatives if exactly one of the two is feasible (can
prove infeasibility of A by producing solution of B and vice-versa).
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Inequality form LP

primal problem

minimize clzx

subject to Ax <b

dual function

g(\) =inf ((c+ A" X))z —b"\) =

x

{ —bIN ATA+c=0

— 00 otherwise

dual problem
maximize —bi )\
subject to AA+c=0, A>0

m from Slater's condition: p* = d* if Ax < b for some &

m in fact, p* = d* except when primal and dual are infeasible
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Quadratic program

primal problem (assume P € S7} )

minimize z! Px
subject to Ax <b

dual function

1
g(A) =inf (z" Pz + X" (Az — b)) = —ZATAP—lATA —blA

X

dual problem maximize —(1/4)NAP~TAT N — b1\

subjectto A >0

m from Slater's condition: p* = d* if Ax < b for some T

m in fact, p* = d* always
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A nonconvex problem with strong duality

minimize z!Ax + 2bl'x
subject to z'z <1
nonconvex if A /0

dual function: g(\) = inf, (21 (A + M)z + 2012 — \)

= unbounded below if A+ A # 0orif A+ X[ =0and b€ R(A+ \I)
= minimized by = —(A + M\ )b otherwise: g(\) = —bT (A + XI)Th — A

dual problem and equivalent SDP:

maximize —bT (A + \I)Th — ) maximize —t — A
subjectto A+ A >0 : A+ b
be R(A+ ) subject to [ Tt ] =0

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

For simplicity, consider problem with one constraint fi(x) <0

interpretation of dual function:

g(\) = (ui,gf;g(t +Au),  where G ={(fi(z), folz)) |z cDj

m \u+t = g()\) is (non-vertical) supporting hyperplane to G

= hyperplane intersects t-axis at t = g(\)
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epigraph variation: same interpretation if G is replaced with

A= {(u,t) | fi(x) <wu, fo(xr) <t for some x € D}

Au 4+t = g(\) p
g(A)

strong duality

= holds if there is a non-vertical supporting hyperplane to A at (0, p*)

m for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

~

= Slater's condition: if there exist (u,t) € A with 4 < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Complementary slackness

*

Assume strong duality holds, x* is primal optimal, (A*, ) is dual optimal

fo@*) = g(\",v") = inf (fo(ar) DREIOEDY u;hz-<x>>

< fo(x*) + D> N fila*) + ) vihi(a?)
1=1 =1
fo(z™)

IA

hence, the two inequalities hold with equality

= ¥ minimizes L(x, \*, ")

s A fi(z*)=0fori=1,...,m (known as complementary slackness):

N> 0= fi(z") =0, fi(z*) <0= \ =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. Primal feasibility: f;(z) <0,¢=1,....m, hy(z)=0,1=1,...,p
2. Dual feasibility: A >~ 0

3. Complementary slackness: \;f;(z) =0,i=1,...,m

4

. Gradient of Lagrangian with respect to = vanishes (first order condition):

V folx +Z>\ Vil —|-ZVZVh

If strong duality holds and x, A, v are optimal, then they must satisfy the KKT
conditions
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KKT conditions for convex problem

~

If x, A\, U satisfy KKT for a convex problem, then they are optimal:
s from complementary slackness: fo(Z) = L(&, \, D)

= from 4th condition (and convexity): g(\,7) = L(&, \, D)

hence, fo(Z) = g(\, D)

If Slater’s condition is satisfied, x is optimal if and only if there exist A\, v that
satisfy KKT conditions

m recall that Slater implies strong duality, and dual optimum is attained

= generalizes optimality condition V fo(x) = 0 for unconstrained problem

Summary:

m When strong duality holds, the KK'T conditions are necessary conditions for
optimality

m If the problem is convex, they are also sufficient
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example: water-filling (assume «; > 0)

minimize  — 2?21 log(z; + ;)
subjectto >0, 1iz=1

z is optimal iff z = 0, 17z = 1, and there exist A € R”, v € R such that

1

Ti + Q

—I—)\iZV

s ifv<l/a; \ij=0and z; =1/v — o
s ifv>1/a; iy=v—1/a;and 2; =0

s determine v from 172 =3"" max{0,1/v —«a;} =1

interpretation

m n patches; level of patch 7 is at height «; L
74

m flood area with unit amount of water I

= resulting level is 1/v*
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Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize  fo(x) maximize g(\,v)
subject to  f;(z) <0, i=1,...,m subjectto A >0
]’Lz<$) — 07 1= ) -y P

min. fo(x) max. g(\,v)—ulX—oly
st.  file)<wu;, i=1,....m s.t. A>~0
hz(az) = Uy, 1= 1, -, P

m T is primal variable; u, v are parameters
. . . : : :
= p*(u,v) is optimal value as a function of u, v

= we are interested in information about p*(u,v) that we can obtain from the
solution of the unperturbed problem and its dual
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Perturbation and sensitivity analysis

global sensitivity result Strong duality holds for unperturbed problem and \*, v*
are dual optimal for unperturbed problem. Apply weak duality to perturbed
problem:

'V

g\, v*) —ut N — ot

= p*(0,0) —u' N —o'*

p*(u,v)

local sensitivity: if (in addition) p*(u, v) is differentiable at (0,0), then

W ~ 9p*(0,0) . 0p*(0,0)
v 8“@ ’ g (9”0@'
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Duality and problem reformulations

m equivalent formulations of a problem can lead to very different duals

m reformulating the primal problem can be useful when the dual is difficult to
derive, or uninteresting

common reformulations

m introduce new variables and equality constraints
m make explicit constraints implicit or vice-versa
m transform objective or constraint functions

e.g., replace fo(x) by ¢(fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize fo(Ax + b)

= dual function is constant: g = inf, L(x) = inf, fo(Ax 4+ b) = p*

m we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize blv — fE(v)
subjectto Ax+b—y =0 subject to A'v =0

dual function follows from
g(v) = inf(fo(y) —viy+viAz+ ')
T,y
B —fEw)+blv ATv =0
o —00

otherwise
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norm approximation problem: minimize ||Ax — b||

minimize ||y
subjectto y=Ax —b

can look up conjugate of || -

|, or derive dual directly

glv) = if(yll+viy—v Az +b'v)
x7y

_ [ Vv 4infy([lyll+vTy) ATv =0
- —00 otherwise

viv Atv =0, |v|«<1
—0o0  otherwise

(see page 7)

dual of norm approximation problem

maximize b'v
subject to ATv =0, |v|.<1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize c¢lx maximize —blv — 1T ; — 11\,
subject to Az =1b subject to ¢+ AT+ X =Xy =0
-1=z=X1 A=0, A2=0

reformulation with box constraints made implicit

e —1<2=<1
00 otherwise

minimize  fo(z) = {

subject to Az =0b

dual function

_ : T T _
o) = il (T v(Ax - b))

—b'v —||ATY + |y

dual problem: maximize —b!v — ||ATv + ¢||;
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Problems with generalized inequalities

minimize  fo(z)

subject to  fi(z) =k, 0, i=1,...,m

K;
0, 2=1,...,p

<k, is generalized inequality on R"i
definitions are parallel to scalar case:
s Lagrange multiplier for f;(z) <k, 0 is vector \; € R

m Lagrangian L : R™ x R¥1 x ... x RFm x RP — R, is defined as

L(xa ALyt s Am, V) — f0<x) + Z )\?fz(ilf) + Z V’Lh’t(x)
1=1 1=1

m dual function g : RF1 x ... x RFm x RP — R is defined as

g A1, .. A, V) = gg)[/(x,)\l,--- p—
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lower bound property: if A; = 0, then g A1y A, v) < p*

proof: if x is feasible and A EK; 0, then

X

fol@) > fo<:7:>+ZA? fi<5:>+2uihi<5:>

> inf L(x, A1, ..., Am, V)

x€D
= g()\l,...,)\m,y)
minimizing over all feasible & gives p* > g(A1,..., A\, V)
dual problem
maximize  g(A1,..., A, V)
subject to  \; k0, i=1,...,m

m weak duality: p* > d* always

m strong duality: p* = d* for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (F;, G € S%)
minimize ¢z
subjectto x1F1+---+x,F, =G

= Lagrange multiplier is matrix Z € S¥
s Lagrangian L(z,Z) = clao + Tr (Z(x Fy + - - + 2, F, — G))

m dual function

~Tr(GZ) Tr(FZ)+¢ =0, i=1,...,n

9(Z) = igf[’(xv Z) = { 00 otherwise

dual SDP

maximize —Tr(GZ)
subjectto Z >0, Tr(F;Z)+c¢; =0, i=1,....n

p* = d* if primal SDP is strictly feasible (dx with x1Fy + -+ - + z,F,, < G)
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Duality: SOCP example

Let's consider the following Second Order Cone Program (SOCP):

minimize 'z
subject to || Az + il < cfz+d;, i=1,...,m,

with variable x € R". Let's show that the dual can be expressed as
maximize  >_" (bl u; + div;)

subject to > (A u; + civi) + f =0
HUiHQS’UZ’, z':l,...,m,

with variables u; € R™, v; € R, ¢ = 1,...,m and problem data given by f € R",

A; e R"*™ b, € R™, ¢; € R and d; € R.
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Duality: SOCP

We can derive the dual in the following two ways:

1. Introduce new variables y; € R™ and t; € R and equalities y; = A;x + b;,
t; = c¢l'x + d;, and derive the Lagrange dual.

2. Start from the conic formulation of the SOCP and use the conic dual. Use the
fact that the second-order cone is self-dual:

t> ||z < tv+azty >0, for all v,y such that v > ||y

The condition 'y < tv is a simple Cauchy-Schwarz inequality
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Duality: SOCP

We introduce new variables, and write the problem as

minimize c¢l'x
subject to  ||yillo <t;;, 1=1,...,m

yi=Ax+b, ti=clz+d;, i=1,....,m

The Lagrangian is

L(:C7 y? t’ A? V’ /’L)
= o+ Z Ailllyillz —t:) + Z vi (yi — Aiz — b;) + Zﬂi(ti — ¢z —dy)
1=1 1 =1 =1
= (c— Z A v — Z pici)’ x + Z()\iHyz'HQ + v ys) + Z(_)\i + pi)ti
i=1 i=1 i=1 i=1

- Z(b?%‘ + d;f;).

1=1
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Duality: SOCP

The minimum over x is bounded below if and only if

Z(A;FVZ -+ ,LLZCZ) = C.
1=1

To minimize over y;, we note that

[vill2 < N

0
: ;. T, \ —
1£lif()\z||yz”2 Vi i) { —00 otherwise.

The minimum over t; is bounded below if and only if \; = u;.
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Duality: SOCP

The Lagrange dual function is

(=i (b v+ dips) T 30 (AT v+ pici) =
g\, v, 1) = < |villa < Xi, =X

| — otherwise

which leads to the dual problem

n

maximize — Z(b;fpyi + d;\;)
i=1
subject to Z(A;TFVZ- + \ic;) = ¢
i=1
HV’&HZS)\% ’1,21,,771

which is again an SOCP
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Duality: SOCP

We can also express the SOCP as a conic form problem

minimize ¢!z

subject to —(clz+d;, Aix +b;) 2k, 0, i=1,...,m.
The Lagrangian is given by:
L(z,ujyv;) =clae =3 (Aw+b) u — > (clz+ di)v;
= (¢ — Y .(Afu; + c@-vi))T x— > (bl u; + dv;)

for (vi,ui) EKZ* 0 (WhICh is also v; > HUZH)
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Duality: SOCP

With -
L(x,u;,v;) = <c — Z(A;Fuz + cw?;)> T — Z(b?uz + d;v;)

) 1

the dual function is given by:

— Yo (b v+ dips) i 30 (A v+ i) = ¢,

g\, v, p) =
— 00 otherwise

The conic dual is then:

maximize — > " (bl u; + d;v;)
subject to > (Alu; +vic) = ¢
(vi,ui) iKz*O’ z:l,,m
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Proof

Convex problem & constraint qualification

{

Strong duality
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Slater’s constraint qualification

Convex problem

minimize  fo(x)
subject to fz( )<0, i=1,....,m
Ax =b

The problem satisfies Slater’s condition if it is strictly feasible, i.e.,

dr € int D : filx) <0, i=1,...,m, Ax =10

= also guarantees that the dual optimum is attained (if p* > —o0)

m there exist many other types of constraint qualifications
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KKT conditions for convex problem

~

If x, A\, U satisfy KKT for a convex problem, then they are optimal:

s from complementary slackness: fo(Z) = L(&, \, D)
L(z,

s from 4th condition (and convexity): g(\, ) = \, D)

~

hence, fo(Z) = g(\, ») with (Z, X, D) feasible.

If Slater’s condition is satisfied, x is optimal if and only if there exist )\, v that
satisfy KK'T conditions

= Slater implies strong duality (more on this now), and dual optimum is attained

= generalizes optimality condition V fo(x) = 0 for unconstrained problem

Summary

m For a convex problem satisfying constraint qualification, the KKT conditions
are necessary & sufficient conditions for optimality.

A. d'Aspremont. Convex Optimization M2. 42/49



Proof

To simplify the analysis. We make two additional technical assumptions:

= The domain D has nonempty interior (hence, relint D = int D)

s We also assume that A has full rank, i.e. Rank A = p.
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Proof

m We define the set A as

A=A{(u,v,t) |z €D, fi(zr)<wu; i=1,...,m,
hz(CE) = Uy, 1= 1, ey Py fo(.fl?) < t},

which is the set of values taken by the constraint and objective functions.

m If the problem is convex, A is defined by a list of convex constraints hence is
convex.

m We define a second convex set B as

B={(0,0,s) e R" xR xR | s < p*}.

m The sets A and B do not intersect (otherwise p* could not be optimal value of
the problem).

First step: The hyperplane separating A and B defines a supporting hyperplane
to A at (0, p*).
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Geometric proof

lllustration of strong duality proof, for a convex problem that satisfies Slater's
constraint qualification. The two sets A and B are convex and do not intersect,
so they can be separated by a hyperplane. Slater's constraint qualification
guarantees that any separating hyperplane must be nonvertical.
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Proof

~

= By the separating hyperplane theorem there exists (A, 7, ) # 0 and « such

that
(u,v,t) e A = Mo+ 0To+ ut > a,

and
(u,v,t) e B = MNu+vTv+ ut < a.
s From (1) we conclude that X\ = 0 and x> 0. (Otherwise ATu + ut is

unbounded below over A, contradicting (1).)

= The condition (2) simply means that ut < « for all ¢ < p*, and hence,
pp* < a.

Together with (1) we conclude that for any z € D,

pp* < o < pfo(x) + > Aifi(z) + 77 (Az — b)

1=1
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Proof

Let us assume that 1 > 0 (separating hyperplane is nonvertical)

m We can divide the previous equation by 1 to get

L(z, N, 0/p) > p*

for all x € D

= Minimizing this inequality over = produces p* < g(\,v), where

A= \/u, v=r/p.

*

= By weak duality we have g(\,v) < p*, so in fact g(\,v) = p*.

This shows that strong duality holds, and that the dual optimum is attained,
whenever 1 > 0. The normal vector has the form (A*, 1) and produces the
Lagrange multipliers.
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Proof

Second step: Slater’s constraint qualification is used to establish that the
hyperplane must be nonvertical, i.e. © > 0.

By contradiction, assume that © = 0. From (3), we conclude that for all z € D,

Z Xifi(z) + 0T (Az — b) > 0. (4)

s Since f;(Z) < 0 and \; > 0, we conclude that A = 0.
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Proof

This is where we use the two technical assumptions.

= Then (4) implies that for all z € D, o1 (Az — b) > 0.

m But x satisfies ﬂT(A:’i: —b) =0, and since Z € int D, there are points in D
with o7 (Ax — b) < 0 unless A0 = 0.
m [his contradicts our assumption that Rank A = p.

This means that we cannot have 1 = 0 and ends the proof.
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