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Lagrangian

standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p?

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

� weighted sum of objective and constraint functions

� λi is Lagrange multiplier associated with fi(x) ≤ 0

� νi is Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ � 0, then g(λ, ν) ≤ p?

proof: if x̃ is feasible and λ � 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p? ≥ g(λ, ν)
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Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

� Lagrangian is L(x, ν) = xTx+ νT (Ax− b)

� to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x+ATν = 0 =⇒ x = −(1/2)ATν

� plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −1
4
νTAATν − bTν

a concave function of ν

lower bound property: p? ≥ −(1/4)νTAATν − bTν for all ν
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Standard form LP

minimize cTx
subject to Ax = b, x � 0

dual function

� Lagrangian is

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx
= −bTν + (c+ATν − λ)Tx

� L is linear in x, hence

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−bTν ATν − λ+ c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | ATν − λ+ c = 0}, hence concave

lower bound property: p? ≥ −bTν if ATν + c � 0
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Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

dual function

g(ν) = inf
x
(‖x‖ − νTAx+ bTν) =

{
bTν ‖ATν‖∗ ≤ 1
−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 u
Tv is dual norm of ‖ · ‖

proof: follows from infx(‖x‖ − yTx) = 0 if ‖y‖∗ ≤ 1, −∞ otherwise

� if ‖y‖∗ ≤ 1, then ‖x‖ − yTx ≥ 0 for all x, with equality if x = 0

� if ‖y‖∗ > 1, choose x = tu where ‖u‖ ≤ 1, uTy = ‖y‖∗ > 1:

‖x‖ − yTx = t(‖u‖ − ‖y‖∗)→ −∞ as t→∞

lower bound property: p? ≥ bTν if ‖ATν‖∗ ≤ 1
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Two-way partitioning

minimize xTWx
subject to x2i = 1, i = 1, . . . , n

� a nonconvex problem; feasible set contains 2n discrete points

� interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning i, j to
the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x
(xTWx+

∑
i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x− 1Tν

=

{
−1Tν W + diag(ν) � 0
−∞ otherwise

lower bound property: p? ≥ −1Tν if W + diag(ν) � 0

example: ν = −λmin(W )1 gives bound p? ≥ nλmin(W )
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The dual problem

Lagrange dual problem
maximize g(λ, ν)
subject to λ � 0

� finds best lower bound on p?, obtained from Lagrange dual function

� a convex optimization problem; optimal value denoted d?

� λ, ν are dual feasible if λ � 0, (λ, ν) ∈ dom g

� often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual (page 8)

minimize cTx
subject to Ax = b

x � 0

maximize −bTν
subject to ATν + c � 0
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Weak and strong duality

weak duality: d? ≤ p?

� always holds (for convex and nonconvex problems)

� can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for the two-way partitioning problem on page 10

strong duality: d? = p?

� does not hold in general

� (usually) holds for convex problems

� conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

� also guarantees that the dual optimum is attained (if p? > −∞)

� can be sharpened: e.g., can replace intD with relintD (interior relative to
affine hull); linear inequalities do not need to hold with strict inequality, . . .

� there exist many other types of constraint qualifications
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Feasibility problems

feasibility problem A in x ∈ Rn.

fi(x) < 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

feasibility problem B in λ ∈ Rm, ν ∈ Rp.

λ � 0, λ 6= 0, g(λ, ν) ≥ 0

where g(λ, ν) = infx (
∑m

i=1 λifi(x) +
∑p

i=1 νihi(x))

� feasibility problem B is convex (g is concave), even if problem A is not

� A and B are always weak alternatives: at most one is feasible

proof: assume x̃ satisfies A, λ, ν satisfy B

0 ≤ g(λ, ν) ≤
∑m

i=1 λifi(x̃) +
∑p

i=1 νihi(x̃) < 0

� A and B are strong alternatives if exactly one of the two is feasible (can
prove infeasibility of A by producing solution of B and vice-versa).
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Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function

g(λ) = inf
x

(
(c+ATλ)Tx− bTλ

)
=

{
−bTλ ATλ+ c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ+ c = 0, λ � 0

� from Slater’s condition: p? = d? if Ax̃ ≺ b for some x̃

� in fact, p? = d? except when primal and dual are infeasible
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Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax � b

dual function

g(λ) = inf
x

(
xTPx+ λT (Ax− b)

)
= −1

4
λTAP−1ATλ− bTλ

dual problem
maximize −(1/4)λTAP−1ATλ− bTλ
subject to λ � 0

� from Slater’s condition: p? = d? if Ax̃ ≺ b for some x̃

� in fact, p? = d? always
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A nonconvex problem with strong duality

minimize xTAx+ 2bTx
subject to xTx ≤ 1

nonconvex if A 6� 0

dual function: g(λ) = infx(x
T (A+ λI)x+ 2bTx− λ)

� unbounded below if A+ λI 6� 0 or if A+ λI � 0 and b 6∈ R(A+ λI)

� minimized by x = −(A+ λI)†b otherwise: g(λ) = −bT (A+ λI)†b− λ

dual problem and equivalent SDP:

maximize −bT (A+ λI)†b− λ
subject to A+ λI � 0

b ∈ R(A+ λI)

maximize −t− λ

subject to

[
A+ λI b
bT t

]
� 0

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

For simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

G

p⋆

g(λ)
λu + t = g(λ)

t

u

G

p⋆

d⋆

t

u

� λu+ t = g(λ) is (non-vertical) supporting hyperplane to G

� hyperplane intersects t-axis at t = g(λ)
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epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

A

p⋆

g(λ)

λu + t = g(λ)

t

u

strong duality

� holds if there is a non-vertical supporting hyperplane to A at (0, p?)

� for convex problem, A is convex, hence has supp. hyperplane at (0, p?)

� Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p?) must be non-vertical
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Complementary slackness

Assume strong duality holds, x? is primal optimal, (λ?, ν?) is dual optimal

f0(x
?) = g(λ?, ν?) = inf

x

(
f0(x) +

m∑
i=1

λ?i fi(x) +

p∑
i=1

ν?i hi(x)

)

≤ f0(x
?) +

m∑
i=1

λ?i fi(x
?) +

p∑
i=1

ν?i hi(x
?)

≤ f0(x
?)

hence, the two inequalities hold with equality

� x? minimizes L(x, λ?, ν?)

� λ?i fi(x
?) = 0 for i = 1, . . . ,m (known as complementary slackness):

λ?i > 0 =⇒ fi(x
?) = 0, fi(x

?) < 0 =⇒ λ?i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. Primal feasibility: fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

2. Dual feasibility: λ � 0

3. Complementary slackness: λifi(x) = 0, i = 1, . . . ,m

4. Gradient of Lagrangian with respect to x vanishes (first order condition):

∇f0(x) +
m∑
i=1

λi∇fi(x) +
p∑

i=1

νi∇hi(x) = 0

If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT
conditions
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KKT conditions for convex problem

If x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

� from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

� from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

If Slater’s condition is satisfied, x is optimal if and only if there exist λ, ν that
satisfy KKT conditions

� recall that Slater implies strong duality, and dual optimum is attained

� generalizes optimality condition ∇f0(x) = 0 for unconstrained problem

Summary:

� When strong duality holds, the KKT conditions are necessary conditions for
optimality

� If the problem is convex, they are also sufficient
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example: water-filling (assume αi > 0)

minimize −
∑n

i=1 log(xi + αi)
subject to x � 0, 1Tx = 1

x is optimal iff x � 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ � 0, λixi = 0,
1

xi + αi
+ λi = ν

� if ν < 1/αi: λi = 0 and xi = 1/ν − αi

� if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

� determine ν from 1Tx =
∑n

i=1max{0, 1/ν − αi} = 1

interpretation

� n patches; level of patch i is at height αi

� flood area with unit amount of water

� resulting level is 1/ν?

i

1/ν⋆

xi

αi
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Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

maximize g(λ, ν)
subject to λ � 0

perturbed problem and its dual

min. f0(x)
s.t. fi(x) ≤ ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , p

max. g(λ, ν)− uTλ− vTν
s.t. λ � 0

� x is primal variable; u, v are parameters

� p?(u, v) is optimal value as a function of u, v

� we are interested in information about p?(u, v) that we can obtain from the
solution of the unperturbed problem and its dual
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Perturbation and sensitivity analysis

global sensitivity result Strong duality holds for unperturbed problem and λ?, ν?

are dual optimal for unperturbed problem. Apply weak duality to perturbed
problem:

p?(u, v) ≥ g(λ?, ν?)− uTλ? − vTν?

= p?(0, 0)− uTλ? − vTν?

local sensitivity: if (in addition) p?(u, v) is differentiable at (0, 0), then

λ?i = −
∂p?(0, 0)

∂ui
, ν?i = −∂p

?(0, 0)

∂vi
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Duality and problem reformulations

� equivalent formulations of a problem can lead to very different duals

� reformulating the primal problem can be useful when the dual is difficult to
derive, or uninteresting

common reformulations

� introduce new variables and equality constraints

� make explicit constraints implicit or vice-versa

� transform objective or constraint functions

e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

minimize f0(Ax+ b)

� dual function is constant: g = infxL(x) = infx f0(Ax+ b) = p?

� we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)
subject to Ax+ b− y = 0

maximize bTν − f∗0 (ν)
subject to ATν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y)− νTy + νTAx+ bTν)

=

{
−f∗0 (ν) + bTν ATν = 0
−∞ otherwise
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norm approximation problem: minimize ‖Ax− b‖

minimize ‖y‖
subject to y = Ax− b

can look up conjugate of ‖ · ‖, or derive dual directly

g(ν) = inf
x,y

(‖y‖+ νTy − νTAx+ bTν)

=

{
bTν + infy(‖y‖+ νTy) ATν = 0
−∞ otherwise

=

{
bTν ATν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

(see page 7)

dual of norm approximation problem

maximize bTν
subject to ATν = 0, ‖ν‖∗ ≤ 1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize cTx
subject to Ax = b

−1 � x � 1

maximize −bTν − 1Tλ1 − 1Tλ2
subject to c+ATν + λ1 − λ2 = 0

λ1 � 0, λ2 � 0

reformulation with box constraints made implicit

minimize f0(x) =

{
cTx −1 � x � 1
∞ otherwise

subject to Ax = b

dual function

g(ν) = inf
−1�x�1

(cTx+ νT (Ax− b))

= −bTν − ‖ATν + c‖1

dual problem: maximize −bTν − ‖ATν + c‖1
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Problems with generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

�Ki
is generalized inequality on Rki

definitions are parallel to scalar case:

� Lagrange multiplier for fi(x) �Ki
0 is vector λi ∈ Rki

� Lagrangian L : Rn × Rk1 × · · · × Rkm × Rp → R, is defined as

L(x, λ1, · · · , λm, ν) = f0(x) +

m∑
i=1

λTi fi(x) +

p∑
i=1

νihi(x)

� dual function g : Rk1 × · · · × Rkm × Rp → R, is defined as

g(λ1, . . . , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)
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lower bound property: if λi �K∗i
0, then g(λ1, . . . , λm, ν) ≤ p?

proof: if x̃ is feasible and λ �K∗i
0, then

f0(x̃) ≥ f0(x̃) +

m∑
i=1

λTi fi(x̃) +

p∑
i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

minimizing over all feasible x̃ gives p? ≥ g(λ1, . . . , λm, ν)

dual problem
maximize g(λ1, . . . , λm, ν)
subject to λi �K∗i

0, i = 1, . . . ,m

� weak duality: p? ≥ d? always

� strong duality: p? = d? for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (Fi, G ∈ Sk)

minimize cTx
subject to x1F1 + · · ·+ xnFn � G

� Lagrange multiplier is matrix Z ∈ Sk

� Lagrangian L(x, Z) = cTx+Tr (Z(x1F1 + · · ·+ xnFn −G))

� dual function

g(Z) = inf
x
L(x, Z) =

{
−Tr(GZ) Tr(FiZ) + ci = 0, i = 1, . . . , n
−∞ otherwise

dual SDP

maximize −Tr(GZ)
subject to Z � 0, Tr(FiZ) + ci = 0, i = 1, . . . , n

p? = d? if primal SDP is strictly feasible (∃x with x1F1 + · · ·+ xnFn ≺ G)
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Duality: SOCP example

Let’s consider the following Second Order Cone Program (SOCP):

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m,

with variable x ∈ Rn. Let’s show that the dual can be expressed as

maximize
∑m

i=1(b
T
i ui + divi)

subject to
∑m

i=1(A
T
i ui + civi) + f = 0

‖ui‖2 ≤ vi, i = 1, . . . ,m,

with variables ui ∈ Rni, vi ∈ R, i = 1, . . . ,m and problem data given by f ∈ Rn,
Ai ∈ Rni×n, bi ∈ Rni, ci ∈ R and di ∈ R.
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Duality: SOCP

We can derive the dual in the following two ways:

1. Introduce new variables yi ∈ Rni and ti ∈ R and equalities yi = Aix+ bi,
ti = cTi x+ di, and derive the Lagrange dual.

2. Start from the conic formulation of the SOCP and use the conic dual. Use the
fact that the second-order cone is self-dual:

t ≥ ‖x‖ ⇐⇒ tv + xTy ≥ 0, for all v, y such that v ≥ ‖y‖

The condition xTy ≤ tv is a simple Cauchy-Schwarz inequality
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Duality: SOCP

We introduce new variables, and write the problem as

minimize cTx
subject to ‖yi‖2 ≤ ti, i = 1, . . . ,m

yi = Aix+ bi, ti = cTi x+ di, i = 1, . . . ,m

The Lagrangian is

L(x, y, t, λ, ν, µ)

= cTx+

m∑
i=1

λi(‖yi‖2 − ti) +
m∑
i=1

νTi (yi −Aix− bi) +
m∑
i=1

µi(ti − cTi x− di)

= (c−
m∑
i=1

AT
i νi −

m∑
i=1

µici)
Tx+

m∑
i=1

(λi‖yi‖2 + νTi yi) +

m∑
i=1

(−λi + µi)ti

−
n∑

i=1

(bTi νi + diµi).
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Duality: SOCP

The minimum over x is bounded below if and only if

m∑
i=1

(AT
i νi + µici) = c.

To minimize over yi, we note that

inf
yi
(λi‖yi‖2 + νTi yi) =

{
0 ‖νi‖2 ≤ λi
−∞ otherwise.

The minimum over ti is bounded below if and only if λi = µi.
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Duality: SOCP

The Lagrange dual function is

g(λ, ν, µ) =


−
∑n

i=1(b
T
i νi + diµi) if

∑m
i=1(A

T
i νi + µici) = c,

‖νi‖2 ≤ λi, µ = λ

−∞ otherwise

which leads to the dual problem

maximize −
n∑

i=1

(bTi νi + diλi)

subject to
m∑
i=1

(AT
i νi + λici) = c

‖νi‖2 ≤ λi, i = 1, . . . ,m.

which is again an SOCP
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Duality: SOCP

We can also express the SOCP as a conic form problem

minimize cTx
subject to −(cTi x+ di, Aix+ bi) �Ki

0, i = 1, . . . ,m.

The Lagrangian is given by:

L(x, ui, vi) = cTx−
∑

i(Aix+ bi)
Tui −

∑
i(c

T
i x+ di)vi

=
(
c−

∑
i(A

T
i ui + civi)

)T
x−

∑
i(b

T
i ui + divi)

for (vi, ui) �K∗i
0 (which is also vi ≥ ‖ui‖)
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Duality: SOCP

With

L(x, ui, vi) =

(
c−

∑
i

(AT
i ui + civi)

)T

x−
∑
i

(bTi ui + divi)

the dual function is given by:

g(λ, ν, µ) =

 −
∑n

i=1(b
T
i νi + diµi) if

∑m
i=1(A

T
i νi + µici) = c,

−∞ otherwise

The conic dual is then:

maximize −
∑n

i=1(b
T
i ui + divi)

subject to
∑m

i=1(A
T
i ui + vici) = c

(vi, ui) �K∗i
0, i = 1, . . . ,m.
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Proof

Convex problem & constraint qualification

⇓

Strong duality
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Slater’s constraint qualification

Convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

The problem satisfies Slater’s condition if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

� also guarantees that the dual optimum is attained (if p? > −∞)

� there exist many other types of constraint qualifications
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KKT conditions for convex problem

If x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

� from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

� from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃) with (x̃, λ̃, ν̃) feasible.

If Slater’s condition is satisfied, x is optimal if and only if there exist λ, ν that
satisfy KKT conditions

� Slater implies strong duality (more on this now), and dual optimum is attained

� generalizes optimality condition ∇f0(x) = 0 for unconstrained problem

Summary

� For a convex problem satisfying constraint qualification, the KKT conditions
are necessary & sufficient conditions for optimality.
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Proof

To simplify the analysis. We make two additional technical assumptions:

� The domain D has nonempty interior (hence, relintD = intD)

� We also assume that A has full rank, i.e. RankA = p.
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Proof

� We define the set A as

A = {(u, v, t) | ∃x ∈ D, fi(x) ≤ ui, i = 1, . . . ,m,
hi(x) = vi, i = 1, . . . , p, f0(x) ≤ t},

which is the set of values taken by the constraint and objective functions.

� If the problem is convex, A is defined by a list of convex constraints hence is
convex.

� We define a second convex set B as

B = {(0, 0, s) ∈ Rm × Rp × R | s < p?}.

� The sets A and B do not intersect (otherwise p? could not be optimal value of
the problem).

First step: The hyperplane separating A and B defines a supporting hyperplane
to A at (0, p?).
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Geometric proof

A

B

u

t

(ũ, t̃)

Illustration of strong duality proof, for a convex problem that satisfies Slater’s
constraint qualification. The two sets A and B are convex and do not intersect,
so they can be separated by a hyperplane. Slater’s constraint qualification
guarantees that any separating hyperplane must be nonvertical.
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Proof

� By the separating hyperplane theorem there exists (λ̃, ν̃, µ) 6= 0 and α such
that

(u, v, t) ∈ A =⇒ λ̃Tu+ ν̃Tv + µt ≥ α, (1)

and
(u, v, t) ∈ B =⇒ λ̃Tu+ ν̃Tv + µt ≤ α. (2)

� From (1) we conclude that λ̃ � 0 and µ ≥ 0. (Otherwise λ̃Tu+ µt is
unbounded below over A, contradicting (1).)

� The condition (2) simply means that µt ≤ α for all t < p?, and hence,
µp? ≤ α.

Together with (1) we conclude that for any x ∈ D,

µp? ≤ α ≤ µf0(x) +
m∑
i=1

λ̃ifi(x) + ν̃T (Ax− b) (3)
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Proof

Let us assume that µ > 0 (separating hyperplane is nonvertical)

� We can divide the previous equation by µ to get

L(x, λ̃/µ, ν̃/µ) ≥ p?

for all x ∈ D
� Minimizing this inequality over x produces p? ≤ g(λ, ν), where

λ = λ̃/µ, ν = ν̃/µ.

� By weak duality we have g(λ, ν) ≤ p?, so in fact g(λ, ν) = p?.

This shows that strong duality holds, and that the dual optimum is attained,
whenever µ > 0. The normal vector has the form (λ?, 1) and produces the
Lagrange multipliers.
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Proof

Second step: Slater’s constraint qualification is used to establish that the
hyperplane must be nonvertical, i.e. µ > 0.

By contradiction, assume that µ = 0. From (3), we conclude that for all x ∈ D,

m∑
i=1

λ̃ifi(x) + ν̃T (Ax− b) ≥ 0. (4)

� Applying this to the point x̃ that satisfies the Slater condition, we have

m∑
i=1

λ̃ifi(x̃) ≥ 0.

� Since fi(x̃) < 0 and λ̃i ≥ 0, we conclude that λ̃ = 0.
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Proof

This is where we use the two technical assumptions.

� Then (4) implies that for all x ∈ D, ν̃T (Ax− b) ≥ 0.

� But x̃ satisfies ν̃T (Ax̃− b) = 0, and since x̃ ∈ intD, there are points in D
with ν̃T (Ax− b) < 0 unless AT ν̃ = 0.

� This contradicts our assumption that RankA = p.

This means that we cannot have µ = 0 and ends the proof.
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