Convex Optimization M2

Lecture 5
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Barrier Method
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Barrier Method

m inequality constrained minimization

m logarithmic barrier function and central path
m barrier method

m feasibility and phase | methods

m complexity analysis via self-concordance

m generalized inequalities
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Inequality constrained minimization

minimize  fo(x)
subject to fz( ) <0, i=1,....m (1)
Az =10

m f; convex, twice continuously differentiable
m AcRP" with Rank A =p
m we assume p* is finite and attained

m we assume problem is strictly feasible: there exists & with
x € dom f, fi(z) <0, 1=1,...,m, Ax =0b

hence, strong duality holds and dual optimum is attained
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Examples

x LP, QP, QCQP, GP

m entropy maximization with linear inequality constraints

minimize Z?’:l x;log x;
subjectto Fxr <g
Ar =10

with dom fo = R’} |

m differentiability may require reformulating the problem, e.g., piecewise-linear
minimization or £,.,-norm approximation via LP

m SDPs and SOCPs are better handled as problems with generalized inequalities
(see later)
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize  fo(z) + >, I-(fi(z))
subject to Az =1b

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier

minimize  fo(z) — (1/1) Y1, log(—fi(x))

subject to Ax =1b

m an equality constrained problem

m fort >0, —(1/t)log(—u) is a smooth
approximation of /_

m approximation improves as t — o0

=3 9
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logarithmic barrier function

_Zlog(_fi(g,;)), dom ¢ ={x | fi(x) <O0,..., fm(z) <0}

= convex (follows from composition rules)

m twice continuously differentiable, with derivatives

Ms

Vo(r) =

Vi i)

Vip(r) = Z Vi@V fila +Z

fz)
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Central path

s for t > 0, define *(¢) as the solution of

minimize  tfo(x) + ¢(x)
subject to Ax =1b

(for now, assume x*(t) exists and is unique for each ¢ > 0)

m central path is {x*(¢) | t > 0}

example: central path for an LP

minimize clzx

subject to alx <b;, i=1,...,6

hyperplane ¢!z = c¢l'z*(t) is tangent to level
curve of ¢ through x*(t)
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Dual points on central path

x = x*(t) if there exists a w such that

Vfi(x)+ ATw =0, Az =10

1V fola) + 30—

s therefore, 2*(t) minimizes the Lagrangian

L(z, A*(t),v"(t)) = fo(z) + Z L) filz) + v () (Az — b)

where we define A\X(¢) = 1/(—tf;(x*(¢t)) and v*(t) = w/t
= this confirms the intuitive idea that fo(z*(t)) — p* if t — oo:
g(A*(t), v*(1))
= L(a™(), A*(2),v*(t))
= Jfo(z™(t)) —m/t

*

p

'V
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Interpretation via KKT conditions

x=2x*(t), A= \(t), v = v*(¢) satisfy

1. primal constraints: f;(z) <0,i=1,...,m, Axr =0
2. dual constraints: A = 0
3. approximate complementary slackness: —\;f;(z) =1/t,i=1,...
4. gradient of Lagrangian with respect to = vanishes:
Vf()(ZU) + Z )\ZVfZ(ZE) + ATV =0
i=1

difference with KKT is that condition 3 replaces \; f;(z) =0
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tfo(x) — Y0, log(— fi(x))

force field interpretation

= tfo(x) is potential of force field Fy(x) = —tV fo(x)
s —log(—fi(x)) is potential of force field F;(x) = (1/fi(x))V fi(x)

the forces balance at x*(¢):
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example
T

minimize c'x
. T .
subjectto a;x <b;, t1=1,...,m
= objective force field is constant: Fy(x) = —tc

m constraint force field decays as inverse distance to constraint hyperplane:

—Q; 1

i(@)]l2 = dist (z, ;)

where H; = {z | al z = b;}

—3c
t=1 t =3
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Barrier method

given strictly feasible z, t := t(®) > 0, ;1 > 1, tolerance € > 0.
repeat

1. Centering step. Compute x*(t) by minimizing tfy + ¢, subject to Ax = b.
2. Update. x := x*(1).

3. Stopping criterion. quit if m/t < e.

4. Increaset. t := ut.

= terminates with fo(z) — p* < € (stopping criterion follows from
fo(z*(t)) — p* < m/t)

m centering usually done using Newton’s method, starting at current x

m choice of u involves a trade-off: large 1 means fewer outer iterations, more
inner (Newton) iterations; typical values: pu = 10-20

s several heuristics for choice of (%)
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Convergence analysis

number of outer (centering) iterations: exactly

{log(m/ (et(0>))w

log u

plus the initial centering step (to compute x*(t(o)))

centering problem
minimize tfo(x) + ¢(x)

see convergence analysis of Newton's method

m {fo+ ¢ must have closed sublevel sets for ¢ > £(0)
m classical analysis requires strong convexity, Lipschitz condition

m analysis via self-concordance requires self-concordance of ¢ fy + ¢
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

n 1204}
0 5
o 10 'S 100/
o @
o I
E 5 ool |
© 107 é 40} f
—6 | — 3 — i 20¢ 1
10 pw =50 'u =150 u =2
I I | | O L : - L L L L I I
0 20 40 60 80 0 40 &0 120 160 200
Newton iterations M

m starts with x on central path (t(o) = 1, duality gap 100)
= terminates when t = 10% (gap 1079)
m centering uses Newton's method with backtracking

m total number of Newton iterations not very sensitive for © > 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log 22:1 exp(ad, + bOk))

subject to log 22:1 exp(a;,x + bzk)) <0, 1=1,....m

duality gap

0 20 40 60 &0 100 120
Newton iterations
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family of standard LPs (A € R™*2™)

minimize ¢!z

subjectto Axr=0b, x>0

m = 10,...,1000; for each m, solve 100 randomly generated instances

T T — T T T T — T T T T
T T T

Newton iterations

10! 102 103

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase | methods

feasibility problem: find x such that

filx) <0, 1=1,...,m, Ar =1 (2)
phase |: computes strictly feasible starting point for barrier method
basic phase | method

minimize (over x, s) s
subject to file)<s, i=1,....m (3)
b

m if z, s feasible, with s < 0, then x is strictly feasible for (2)
= if optimal value p* of (3) is positive, then problem (2) is infeasible

» if p* = 0 and attained, then problem (2) is feasible (but not strictly);
if p* = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase | method
minimize 175
subjectto s>=0, fi(x)<s;, i=1,....m
Ax =b
for infeasible problems, produces a solution that satisfies many more inequalities

than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)

60 ‘ ‘ ‘ ‘ 60
= 40 s 40|
o) o)
£ £
3 =
c 20t c 20¢
0 J_H_H—HTW mmmmm i 0 e A HH I e ene 0
-1 —0.5 0 T0.5 1 1.5 —1 —0.5 0 TO.5 1 1.5
b; — a; Tmax b; — a; Tsum

left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 inequalities
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example: family of linear inequalities Az < b+ vAb
m data chosen to be strictly feasible for v > 0, infeasible for v < 0

m use basic phase |, terminate when s < 0 or dual objective is positive

n 100t 3
5 |
+ 807 [Infeasible | Feasible
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= 60 2
S 40, 5
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o 207 )
= =
05 =2 —4 6 04 —4 ) 0
—10 —10 ~ —10 —10 10 10 ~ 10 10

number of iterations roughly proportional to log(1/|v|)
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Complexity analysis via self-concordance

same assumptions as on page 4, plus:

= sublevel sets (of fp, on the feasible set) are bounded

m tfo+ ¢ is self-concordant with closed sublevel sets

second condition

m holds for LP, QP, QCQP

m may require reformulating the problem, e.g.,

minimize Y.  x;logz; —  minimize > x;logx;
subjectto Fzx <Xg subjectto Fr =g, x>0

m needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

ptfo(x) + ¢(x) — ptfo(z™) — p(x™)

#Newton iterations < +c
Y

= bound on effort of computing ™ = x*(ut) starting at x = 2*(t)

m 7, c are constants (depend only on Newton algorithm parameters)

s from duality (with A = \*(¢), v = v*(¢)):
ptfo(z) + ¢(x) — ptfo(z™) — d(a™)

= ptfo(z) — pt fo(z +Zlog —ptAifi(a™)) —mlog

< ptfo(z) — ptfolx utZA fi(a™) —m —mlogu

< ptfo(z) — ptg(Av) —m — mlogu
= m(u—1—logu)
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total number of Newton iterations (excluding first centering step)

#Newton iterations < N = [

10g<m/(t(0>6))w (m(u —1—logp) C)

log p g

510%
410%

) gure shows N for typical values of ~, c,
310% *

Z
m

4} = 100 = 10°
210 m : 0
1104

0 I

1 1.1 1.2

I

m confirms trade-off in choice of u

m in practice, #iterations is in the tens; not very sensitive for ;> 10
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polynomial-time complexity of barrier method

m for y=141//m:

o ()

= number of Newton iterations for fixed gap reduction is O(y/m)

= multiply with cost of one Newton iteration (a polynomial function of problem
dimensions), to get bound on number of flops

this choice of 11 optimizes worst-case complexity; in practice we choose pu fixed
(u=10,...,20)
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Generalized inequalities

minimize  fo(x)

subject to  fi(z) <k, 0, i=1,...,m
Ar =0
m fo convex, f; : R® — RFi i =1,...,m, convex with respect to proper cones

K,; € RFi
m f; twice continuously differentiable
m Ac RP" with Rank A =p
m we assume p* is finite and attained

m we assume problem is strictly feasible; hence strong duality holds and dual
optimum is attained

examples of greatest interest: SOCP, SDP
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Generalized logarithm for proper cone

Y : R? — R is generalized logarithm for proper cone K C R if;

s dom ) = int K and VZ)(y) < 0 for y = 0
m Y(sy) =P(y) +0Ologs for y =k 0, s > 0 (0 is the degree of )

examples
= nonnegative orthant K = R": ¢(y) = >_._, logy;, with degree § =n

= positive semidefinite cone K = S”':

Y(Y) =logdetY (0 =n)

s second-order cone K = {y € R*"1 | (12 + -+ 2)/2 <y, 1 }:

V(y) =log(yppr —yi—-—wyn)  (0=2)
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properties (without proof): for y > 0,

Vi(y) =x+0,  y' Vi(y) =06

= nonnegative orthant R} : 9(y) = Z?Zl log v;
V(y) = (/ys,-- 1 /yn), ¥y Vi(y) =n

= positive semidefinite cone S%: (YY) = logdetY

VY(Y)=Y1, Tr(YVY(Y)) =n

s second-order cone K = {y ¢ R™ | (47 + - 4+ y2)V/2 <y }:

Ly
) :
Y(y) = L, Y VYY) =2
() Yol —Yi— = Y2 | —Yn
| Yn+1
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Logarithmic barrier and central path

logarithmic barrier for fi(x) <k, 0, ..., fiu(z) 2k, O:

p(x) = —sz’(—fz'(ﬂ?))a dom¢ = {z | fi(z) <k, 0, i=1,...,m}

m 1; is generalized logarithm for K;, with degree 6;

m ¢ is convex, twice continuously differentiable
central path: {z*(¢) | ¢ > 0} where x*(¢) solves

minimize  tfo(z) + ¢(x)
subject to Ax =1b
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Dual points on central path

x = x*(t) if there exists w € RP,
tV fo(x) + Z Dfi(x vaz (—fi(x)) + Atw =0

(Dfi(z) € R**™ is derivative matrix of f;)

m therefore, *(t) minimizes Lagrangian L(x, \*(t),v*(t)), where

N (D) = V(- f@ (1), ) =

w
t
= from properties of ¥;: \f(t) = x> 0, with duality gap

fo(@*(t)) — g(A* (1), v*(¢)) = (1/1) Zﬁi
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example: semidefinite programming (with F; € SP)

minimize clzx

subject to  F'(z) =" ,x;F; + G =<0

= logarithmic barrier: ¢(z) = logdet(—F(x)™ 1)

= central path: z*(¢) minimizes tc!'x — log det(—F(x)); hence
te; — Te(F;F(z*(t)" ') =0, i=1,...,n
= dual point on central path: Z*(t) = —(1/t)F(2*(t))~! is feasible for
maximize Tr(GZ)
(F

subject to Tr(F;Z)+c¢; =0, i=1,...,n
Z =0

= duality gap on central path: cl'z*(t) — Tr(GZ*(t)) = p/t
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Barrier method

given strictly feasible z, t := t(®) > 0, ;1 > 1, tolerance € > 0.

repeat

1. Centering step. Compute x*(t) by minimizing tfy + ¢, subject to Ax = b.
2. Update. x := x*(1).

3. Stopping criterion. quit if (D> _.0;)/t <e.

4. Increaset. t := ut.

= only difference is duality gap m/t on central path is replaced by > . 6,/t

m number of outer iterations:

{mg((z@- 9i>/<et<0>>>w

log

m complexity analysis via self-concordance applies to SDP, SOCP
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Examples

second-order cone program (50 variables, 50 SOC constraints in R%)

102 - ") |
Rt S 120
a 10V i B
> 2 S 801
z 1077 <
ER s | *
< 107 ) = 40 |
106 =50 p=200 pu=2 = | ]
0 20 40 60 30 050 60 100 140 180
Newton iterations H

semidefinite program (100 variables, LMI constraint in $'%°)

140
2
10 =7, %
2 100 1 4(_3 100!
2 —2 9
= 10 c 60/
S —4 _8
2 10 L s
1076 w=150"p =50 =2 = 20
0 20 40 60 20 100 0 20 40 60 80 100 120
Newton iterations M
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family of SDPs (A € S”, z € R")

minimize 17z
subject to A + diag(x) = 0

n = 10,...,1000, for each n solve 100 randomly generated instances

351

v 30}

9

4

o

p=

c

O

)

=

()

=
150 ‘ ‘

10 102 10°
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

m update primal and dual variables at each iteration; no distinction between inner
and outer iterations

m often exhibit superlinear asymptotic convergence

m search directions can be interpreted as Newton directions for modified KKT
conditions

m can start at infeasible points

m cost per iteration same as barrier method
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Interior-point methods: summary

= Interior point methods (IPM) are very reliable on small scale problems.

o Example: SDP of dimension 100, SOCP with less than a thousand variables.
o Most conic problems with a couple of hundred variables can formulated and
solved very quickly using preprocessors such as CVX.

m IPM often efficient on larger problems if KKT system has some structure
(sparsity, blocks, etc).

o Large scale linear programs with thousands of variables are routinely solved
by free or commercial solvers using IPM (e.g. SDPT3, MOSEK, GLPK,
CPLEX, etc.).

o Much larger sparse LPs can also be solved efficiently using the same
techniques.

m Not workable for very large problems.

o For some problems, e.g. semidefinite programs, exploiting structure in IPM
is hard.

o First order methods (using the gradient only) seem to be the only option for
extremely large problems
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Semidefinite programming: CVX

Solving the maxcut relaxation

max. Tr(XC)
s.t. diag(X)=1
X =0,

is written as follows in CVX/MATLAB

cvx_begin
variable X(n,n) symmetric
maximize trace(C*X)
subject to
diag(X)==
X==semidefinite(n)
cvx_end
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