Convex Optimization M2

Lecture 5
Barrier Method
Barrier Method

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- generalized inequalities
Inequality constrained minimization

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

(1)

- \(f_i \) convex, twice continuously differentiable
- \(A \in \mathbb{R}^{p \times n} \) with \(\text{Rank} \ A = p \)
- we assume \(p^* \) is finite and attained
- we assume problem is strictly feasible: there exists \(\tilde{x} \) with

\[
\tilde{x} \in \text{dom} \ f_0, \quad f_i(\tilde{x}) < 0, \quad i = 1, \ldots, m, \quad A\tilde{x} = b
\]

hence, strong duality holds and dual optimum is attained
Examples

- LP, QP, QCQP, GP
- Entropy maximization with linear inequality constraints

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} x_i \log x_i \\
\text{subject to} & \quad Fx \leq g \\
& \quad Ax = b
\end{align*}
\]

with \(\text{dom } f_0 = \mathbb{R}^n_{++} \)

- Differentiability may require reformulating the problem, e.g., piecewise-linear minimization or \(l_\infty \)-norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)
Logarithmic barrier

reformulation of (1) via indicator function:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) + \sum_{i=1}^{m} I_-(f_i(x)) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

where \(I_-(u) = 0 \) if \(u \leq 0 \), \(I_-(u) = \infty \) otherwise (indicator function of \(\mathbb{R}_- \))

approximation via logarithmic barrier

\[
\begin{align*}
\text{minimize} & \quad f_0(x) - \frac{1}{t} \sum_{i=1}^{m} \log(-f_i(x)) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

- an equality constrained problem
- for \(t > 0 \), \(-\frac{1}{t} \log(-u)\) is a smooth approximation of \(I_- \)
- approximation improves as \(t \to \infty \)
logarithmic barrier function

\[\phi(x) = - \sum_{i=1}^{m} \log(-f_i(x)), \quad \text{dom } \phi = \{ x \mid f_1(x) < 0, \ldots, f_m(x) < 0 \} \]

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

\[
\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)
\]

\[
\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)
\]
for $t > 0$, define $x^*(t)$ as the solution of

$$\begin{align*}
\text{minimize} & \quad tf_0(x) + \phi(x) \\
\text{subject to} & \quad Ax = b
\end{align*}$$

(for now, assume $x^*(t)$ exists and is unique for each $t > 0$)

central path is $\{x^*(t) \mid t > 0\}$

example: central path for an LP

$$\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, \ldots, 6
\end{align*}$$

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$
Dual points on central path

\[x = x^*(t) \text{ if there exists a } w \text{ such that} \]

\[t \nabla f_0(x) + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \quad Ax = b \]

- therefore, \(x^*(t) \) minimizes the Lagrangian

\[L(x, \lambda^*(t), \nu^*(t)) = f_0(x) + \sum_{i=1}^{m} \lambda_i^*(t)f_i(x) + \nu^*(t)^T(Ax - b) \]

where we define \(\lambda_i^*(t) = 1/(-tf_i(x^*(t))) \) and \(\nu^*(t) = w/t \)

- this confirms the intuitive idea that \(f_0(x^*(t)) \to p^* \) if \(t \to \infty \):

\[
\begin{align*}
p^* & \geq g(\lambda^*(t), \nu^*(t)) \\
& = L(x^*(t), \lambda^*(t), \nu^*(t)) \\
& = f_0(x^*(t)) - m/t
\end{align*}
\]
Interpretation via KKT conditions

\[x = x^*(t), \lambda = \lambda^*(t), \nu = \nu^*(t) \text{ satisfy} \]

1. primal constraints: \[f_i(x) \leq 0, \; i = 1, \ldots, m, \; Ax = b \]
2. dual constraints: \[\lambda \succeq 0 \]
3. approximate complementary slackness: \[-\lambda_i f_i(x) = 1/t, \; i = 1, \ldots, m \]
4. gradient of Lagrangian with respect to \(x \) vanishes:

\[\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + A^T \nu = 0 \]

difference with KKT is that condition 3 replaces \(\lambda_i f_i(x) = 0 \)
Force field interpretation

centering problem (for problem with no equality constraints)

\[
\text{minimize} \quad t f_0(x) - \sum_{i=1}^{m} \log(-f_i(x))
\]

force field interpretation

- \(t f_0(x) \) is potential of force field \(F_0(x) = -t \nabla f_0(x) \)
- \(- \log(-f_i(x))\) is potential of force field \(F_i(x) = (1/f_i(x)) \nabla f_i(x) \)

the forces balance at \(x^*(t) \):

\[
F_0(x^*(t)) + \sum_{i=1}^{m} F_i(x^*(t)) = 0
\]
example

minimize \(c^T x \)
subject to \(a_i^T x \leq b_i, \quad i = 1, \ldots, m \)

- objective force field is constant: \(F_0(x) = -tc \)
- constraint force field decays as inverse distance to constraint hyperplane:

\[
F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \quad \|F_i(x)\|_2 = \frac{1}{\text{dist}(x, \mathcal{H}_i)}
\]

where \(\mathcal{H}_i = \{x \mid a_i^T x = b_i\} \)

\[t = 1\]
\[t = 3\]
Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat
1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$.
2. Update. $x := x^*(t)$.
3. Stopping criterion. quit if $m/t < \epsilon$.
4. Increase t. $t := \mu t$.

■ terminates with $f_0(x) - p^* \leq \epsilon$ (stopping criterion follows from $f_0(x^*(t)) - p^* \leq m/t$)

■ centering usually done using Newton’s method, starting at current x

■ choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10–20$

■ several heuristics for choice of $t^{(0)}$
Convergence analysis

number of outer (centering) iterations: exactly

\[
\left\lceil \frac{\log\left(\frac{m}{\epsilon t^{(0)}}\right)}{\log \mu} \right\rceil
\]

plus the initial centering step (to compute \(x^*(t^{(0)}) \))

centering problem

\[
\text{minimize } \quad tf_0(x) + \phi(x)
\]

see convergence analysis of Newton’s method

- \(tf_0 + \phi \) must have closed sublevel sets for \(t \geq t^{(0)} \)
- classical analysis requires strong convexity, Lipschitz condition
- analysis via self-concordance requires self-concordance of \(tf_0 + \phi \)
Examples

inequality form LP \((m = 100 \text{ inequalities}, n = 50 \text{ variables})\)

- starts with \(x\) on central path \((t^{(0)} = 1, \text{ duality gap } 100)\)
- terminates when \(t = 10^8\) \((\text{gap } 10^{-6})\)
- centering uses Newton’s method with backtracking
- total number of Newton iterations not very sensitive for \(\mu \geq 10\)
geometric program \((m = 100 \text{ inequalities and } n = 50 \text{ variables}) \)

minimize \[\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k}) \right) \]
subject to \[\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik}) \right) \leq 0, \quad i = 1, \ldots, m \]
family of standard LPs \((A \in \mathbb{R}^{m \times 2m})\)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad x \succeq 0
\end{align*}
\]

\(m = 10, \ldots, 1000;\) for each \(m,\) solve 100 randomly generated instances

number of iterations grows very slowly as \(m\) ranges over a 100 : 1 ratio
Feasibility and phase I methods

feasibility problem: find x such that

$$f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Ax = b$$

(phase I): computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to $f_i(x) \leq s, \quad i = 1, \ldots, m$

$Ax = b$

- if x, s feasible, with $s < 0$, then x is strictly feasible for (2)
- if optimal value \bar{p}^* of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^* = 0$ and attained, then problem (2) is feasible (but not strictly);
 if $\bar{p}^* = 0$ and not attained, then problem (2) is infeasible
sum of infeasibilities phase I method

\[
\begin{align*}
\text{minimize} & \quad 1^T s \\
\text{subject to} & \quad s \succeq 0, \quad f_i(x) \leq s_i, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 inequalities
example: family of linear inequalities $Ax \preceq b + \gamma \Delta b$

- data chosen to be strictly feasible for $\gamma > 0$, infeasible for $\gamma \leq 0$
- use basic phase I, terminate when $s < 0$ or dual objective is positive

number of iterations roughly proportional to $\log(1/|\gamma|)$
same assumptions as on page 4, plus:

■ sublevel sets (of f_0, on the feasible set) are bounded
■ $tf_0 + \phi$ is self-concordant with closed sublevel sets

second condition

■ holds for LP, QP, QCQP
■ may require reformulating the problem, e.g.,

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} x_i \log x_i \\
\text{subject to} & \quad Fx \preceq g \\
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} x_i \log x_i \\
\text{subject to} & \quad Fx \preceq g, \quad x \succeq 0
\end{align*}
\]

■ needed for complexity analysis; barrier method works even when self-concordance assumption does not apply
Newton iterations per centering step: from self-concordance theory

\[
\text{#Newton iterations} \leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c
\]

- bound on effort of computing \(x^+ = x^*(\mu t)\) starting at \(x = x^*(t)\)
- \(\gamma, c\) are constants (depend only on Newton algorithm parameters)
- from duality (with \(\lambda = \lambda^*(t), \nu = \nu^*(t)\)):

\[
\begin{align*}
\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+) &= \mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^{m} \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu \\
&\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu t \sum_{i=1}^{m} \lambda_i f_i(x^+) - m - m \log \mu \\
&\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu \\
&= m(\mu - 1 - \log \mu)
\end{align*}
\]
total number of Newton iterations (excluding first centering step)

\[\#\text{Newton iterations} \leq N = \left\lceil \frac{\log(m/\epsilon)}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right) \]

- figure shows \(N \) for typical values of \(\gamma, c, \)

\[m = 100, \quad \frac{m}{t^{(0)}\epsilon} = 10^5 \]

- confirms trade-off in choice of \(\mu \)
- in practice, \#iterations is in the tens; not very sensitive for \(\mu \geq 10 \)
polynomial-time complexity of barrier method

- for $\mu = 1 + 1/\sqrt{m}$:

 $$N = O\left(\sqrt{m} \log \left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$

- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops

this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu = 10, \ldots, 20$)
Generalized inequalities

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \preceq_{K_i} 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- \(f_0\) convex, \(f_i : \mathbb{R}^n \to \mathbb{R}^{k_i}, i = 1, \ldots, m\), convex with respect to proper cones \(K_i \in \mathbb{R}^{k_i}\)
- \(f_i\) twice continuously differentiable
- \(A \in \mathbb{R}^{p \times n}\) with \(\text{Rank} A = p\)
- we assume \(p^*\) is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP
Generalized logarithm for proper cone

$\psi : \mathbb{R}^q \to \mathbb{R}$ is generalized logarithm for proper cone $K \subseteq \mathbb{R}^q$ if:

- $\text{dom } \psi = \text{int } K$ and $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$
- $\psi(sy) = \psi(y) + \theta \log s$ for $y \succ_K 0$, $s > 0$ (θ is the degree of ψ)

examples

- nonnegative orthant $K = \mathbb{R}^n_+$: $\psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$
- positive semidefinite cone $K = S^n_+$:

 \[\psi(Y) = \log \det Y \quad (\theta = n) \]

- second-order cone $K = \{ y \in \mathbb{R}^{n+1} \mid (y_1^2 + \cdots + y_n^2)^{1/2} \leq y_{n+1} \}$:

 \[\psi(y) = \log(y_{n+1}^2 - y_1^2 - \cdots - y_n^2) \quad (\theta = 2) \]
properties (without proof): for $y \succeq_K 0$,

$$\nabla \psi(y) \succeq_K 0, \quad y^T \nabla \psi(y) = \theta$$

- nonnegative orthant \mathbb{R}^n_+: $\psi(y) = \sum_{i=1}^n \log y_i$

 $$\nabla \psi(y) = (1/y_1, \ldots, 1/y_n), \quad y^T \nabla \psi(y) = n$$

- positive semidefinite cone \mathbb{S}^n_+: $\psi(Y) = \log \det Y$

 $$\nabla \psi(Y) = Y^{-1}, \quad \text{Tr}(Y \nabla \psi(Y)) = n$$

- second-order cone $K = \{ y \in \mathbb{R}_{++}^{n+1} \mid (y_1^2 + \cdots + y_n^2)^{1/2} \leq y_{n+1} \}$:

 $$\psi(y) = 2 \frac{2}{y_{n+1}^2 - y_1^2 - \cdots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \quad y^T \nabla \psi(y) = 2$$
Logarithmic barrier and central path

Logarithmic barrier for $f_1(x) \preceq_{K_1} 0, \ldots, f_m(x) \preceq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom } \phi = \{ x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \ldots, m \}$$

- ψ_i is generalized logarithm for K_i, with degree θ_i
- ϕ is convex, twice continuously differentiable

Central path: $\{ x^*(t) \mid t > 0 \}$ where $x^*(t)$ solves

$$\begin{align*}
\text{minimize} & \quad tf_0(x) + \phi(x) \\
\text{subject to} & \quad Ax = b
\end{align*}$$
Dual points on central path

\[x = x^*(t) \text{ if there exists } w \in \mathbb{R}^p, \]

\[t \nabla f_0(x) + \sum_{i=1}^{m} Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0 \]

\((Df_i(x) \in \mathbb{R}^{k_i \times n} \text{ is derivative matrix of } f_i)\)

- therefore, \(x^*(t)\) minimizes Lagrangian \(L(x, \lambda^*(t), \nu^*(t))\), where

\[\lambda_i^*(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^*(t))), \quad \nu^*(t) = \frac{w}{t} \]

- from properties of \(\psi_i\): \(\lambda_i^*(t) \succ_{K_i^*} 0\), with duality gap

\[f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = \frac{1}{t} \sum_{i=1}^{m} \theta_i \]
example: semidefinite programming (with $F_i \in S^p$)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad F(x) = \sum_{i=1}^n x_i F_i + G \preceq 0
\end{align*}
\]

- logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$
- central path: $x^*(t)$ minimizes $tc^T x - \log \det(-F(x))$; hence
 \[
 tc_i - \text{Tr}(F_i F(x^*(t))^{-1}) = 0, \quad i = 1, \ldots, n
 \]
- dual point on central path: $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is feasible for
 \[
 \begin{align*}
 \text{maximize} & \quad \text{Tr}(GZ) \\
 \text{subject to} & \quad \text{Tr}(F_i Z) + c_i = 0, \quad i = 1, \ldots, n \\
 Z & \succeq 0
 \end{align*}
 \]
 duality gap on central path: $c^T x^*(t) - \text{Tr}(GZ^*(t)) = p/t$
Barrier method

given strictly feasible $x, t := t^{(0)} > 0, \mu > 1, $ tolerance $\epsilon > 0$.

repeat
1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$.
2. Update. $x := x^*(t)$.
3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
4. Increase t. $t := \mu t$.

- only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations:

\[
\left\lceil \frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu} \right\rceil
\]

- complexity analysis via self-concordance applies to SDP, SOCP
Examples

second-order cone program (50 variables, 50 SOC constraints in \mathbb{R}^6)

![Graph showing duality gap vs Newton iterations for different values of μ.]

semidefinite program (100 variables, LMI constraint in \mathbb{S}^{100})

![Graph showing duality gap vs Newton iterations for different values of μ.]
family of SDPs \((A \in S^n, x \in \mathbb{R}^n)\)

\[
\begin{align*}
\text{minimize} & \quad 1^T x \\
\text{subject to} & \quad A + \text{diag}(x) \succeq 0
\end{align*}
\]

\(n = 10, \ldots, 1000\), for each \(n\) solve 100 randomly generated instances
Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method
Interior-point methods: summary

- Interior point methods (IPM) are very reliable on small scale problems.
 - Example: SDP of dimension 100, SOCP with less than a thousand variables.
 - Most conic problems with a couple of hundred variables can formulated and solved very quickly using preprocessors such as CVX.
- IPM often efficient on larger problems if KKT system has some structure (sparsity, blocks, etc).
 - Large scale linear programs with thousands of variables are routinely solved by free or commercial solvers using IPM (e.g. SDPT3, MOSEK, GLPK, CPLEX, etc.).
 - Much larger sparse LPs can also be solved efficiently using the same techniques.
- Not workable for very large problems.
 - For some problems, e.g. semidefinite programs, exploiting structure in IPM is hard.
 - First order methods (using the gradient only) seem to be the only option for extremely large problems.
Solving the maxcut relaxation

\[
\begin{align*}
\text{max.} & \quad \text{Tr}(XC) \\
\text{s.t.} & \quad \text{diag}(X) = 1 \\
& \quad X \succeq 0,
\end{align*}
\]

is written as follows in CVX/MATLAB

```matlab
cvx_begin
  variable X(n,n) symmetric
  maximize trace(C*X)
  subject to
  diag(X)==1
  X==semidefinite(n)
cvx_end
```