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Introduction

Spectral methods.

• Computing leading eigenvectors using iterative methods costs

O

(

n2 log(n/δ2)√
ǫ

)

with probability of failure δ, using the Lanczos method with random start.

• Subsampling methods approximate leading eigenvectors at cost below O∗(n2).

Averaging.

• Monte-Carlo: Averaging approximate eigenvectors to improve precision. . .
Run many, cheap independent subsampling approximations.

• Basic CPUs are cheap (Amazon EC2: $0.10/hour, Google, Yahoo, etc.).

• Clock speed, bandwidth and low latency are very expensive (physical
limitations).

When, why does it work?
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Introduction

Subsampling procedure from Achlioptas and McSherry (2007).

Given p ∈ [0, 1] and a symmetric matrix A ∈ Sn, define

Sij =

{

Aij/p with probability p
0 otherwise.

By construction

• E[S] = A.

• S has independent coefficients.

• S is sparse: it has pn2 nonzero entries on average.

Because of independence, the impact of subsampling on the spectrum is both
small and isotropic. . .
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Introduction

A few related references.

• Early subsampling results by Groh et al. (1991) and Papadimitriou et al. (2000)
who described algorithms based on subsampling and random projections.

• Explicit error estimates for columnwise and elementwise sampling strategies
followed in Frieze et al. (2004), Drineas et al. (2006), Achlioptas and McSherry
(2007). Survey in Kannan and Vempala (2009).

• More recently, Recht et al. (2007), Candes and Recht (2008), Candes and Tao
(2009), Keshavan et al. (2009) focused on low-rank matrix reconstruction.

• Stability results in clustering and ranking by Ng et al. (2001) and Huang et al.
(2008) for example.

• Averaging used in Coifman et al. (2008) for Cryo-EM imaging.

• In optimization: Juditsky et al. (2009) and Arora and Kale (2007).
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Outline

• Introduction

• Subsampling & averaging

• Applications & Numerical Results
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Elementwise subsampling

Subsampling: given A ∈ Sn and p ∈ [0, 1], define

Sij =

{

Aij/p with probability p
0 otherwise.

(Achlioptas and McSherry, 2007, Th. 1.4)

‖A − S‖2 ≤ 4

√

n

p
max

ij
|Aij|,

holds with high probability for n large enough.

• What is the lowest reasonable p here?

• How does maxij |Aij|
√

n/p behave when n → ∞?
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Matrix Completion

Let’s write

A =

n
∑

i=1

λiuiu
T
i

• Recent results in Recht et al. (2007), Candes and Recht (2008), Candes and
Tao (2009), Keshavan et al. (2009). In particular, when

‖ui‖2
∞ ≤ µ

n

with µ = O(1), and we randomly sample more than O(n log4 n) coefficients,
then

A = argmin ‖X‖∗
s.t. Xij = Sij, when Sij 6= 0

with high probability.

• All the information we need on A is contained in S (which only has
O(n log4 n) nonzero coefficients), but is expensive to extract.
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Elementwise subsampling

With

A =
n

∑

i=1

λiuiu
T
i

• Here, we measure the incoherence of the spectrum of A by

µ(A, α) =
n

∑

i=1

|λi|nαi‖ui‖2
∞

for some α ∈ [0, 1]n.

• Because NumCard(x) =
‖x‖2

2
‖x‖2

∞
, the norm ‖ui‖∞ is a proxy for sparsity.

• When the eigenvector coefficients are uniformly distributed, we have

‖ui‖∞ ∼ n−1/2, when n → ∞

we can take αi = 1 and µ(A, α) will be bounded if ‖X‖1 remains bounded.
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Error bounds

Theorem 1

Error bound. Suppose there is a vector α ∈ [0, 1]n for which

µ(M,α) ≤ µ and Card(ui) ≤
κ

2
nαi, i = 1, . . . , n

as n → ∞, where µ and κ are absolute constants. If

lim inf
n→∞

pnαmin

log nαmin
= ∞,

then
‖A − S‖2 ≤ κµ√

pnαmin

almost surely (asymptotically), where αmin = mini=1,...,n αi.
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Error bounds

Proof. (Sketch) Using e.g. (Horn and Johnson, 1991, Th. 5.5.19)

‖A − S‖2 =

√

1 − p

p

∥

∥

∥

∥

∥

n
∑

i=1

λiC ◦ (uiu
T
i )

∥

∥

∥

∥

∥

2

≤
√

1 − p

p

n
∑

i=1

|λi|nαi/2‖ui‖2
∞

∥

∥

∥

∥

Cαi

nαi/2

∥

∥

∥

∥

2

where C is i.i.d. Bernoulli with

Cij =

{
√

(1 − p)/p with probability p

−
√

p/(1 − p) otherwise.

with Cαi is a sparse submatrix of C. We first control

∥

∥

∥

∥

Cαi

nαi/2

∥

∥

∥

∥

2

almost surely (asymptotically), then the max. of these quantities.

Alex d’Aspremont MMDS, June 2010. 10/24



Error bounds

A few facts. . .

• The subsampled matrix must have more than

O(n(2−αmin) log n)

nonzero coefficients to keep the error small (αmin = 1 for incoherent spectrum).

• The sparsest eigenvector determines error size through αmin.

• The smallest submatrix we can form using this result must have more than
O (n log n) nonzero coefficients.

• Tightness: Because ‖C/n1/2‖2 blows up if p ≤ (log n)1−δ/n, the best we can
hope for here is O(n log n) nonzero coefficients (Coupon collector effect).
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Averaging

• (Kato, 1995, Theorem II.3.9) shows that if

‖A − S‖2 ≤ (λ1 − λ2)/2

the subsampled matrix can be seen as a small perturbation of the original one.

• If the matrix satisfies
κµ√

pnαmin
≤ (λ1 − λ2)/2,

we get the following expansion for the leading eigenvector v of the subsampled
matrix compared to the true vector u

v = u − REu + R(E − uTEuI)RE + oP (‖E‖2
2)

where E = A − S and R is the reduced resolvent of A, written

R =
∑

j 6=1

1

λj − λ1
uju

T
j .
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Averaging

When ‖A − S‖2 ≤ (λ1 − λ2)/2, the first order term has zero mean

E[R(A − S)u] = 0.

Averaging eigenvectors over many subsampled matrices in the perturbative
regime means that the residual error will be of order ‖A − S‖2

2.

The variance of the first order term is given by

E[‖REu‖2
2] ≤

1

(1 − λ2/λ1)2
‖u1‖2

∞

NumRank(A)

p

so the quality of the eigenvector approximation is a function of

• The spectral gap λ2/λ1.

• The numerical sparsity of u1, measured by ‖u1‖∞.

• The numerical rank of the matrix A.

• The sampling probability p.
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Averaging: residual

The first-order term vanishes after averaging. We also control the residual. . .

Theorem 2

Second Order Accuracy. Suppose the assumptions of the previous result are
satisfied. Call u1 the leading eigenvector of A and v1 the leading eigenvector of S
(such that uT

1 v1 ≥ 0), then

E[‖u1 − v1‖2] = O

(

1

(λ1 − λ2)2
µ2

pnαmin

)
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Outline
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PCA: averaging

A simple experiment.

• Covariance matrix of the 500 most active genes in the cancer data set from
Alon et al. (1999).

• Use the subsampling procedure described in the previous slide for various
values of the sampling probability p.

• For each sample, measure the alignment uTv between the true eigenvector u
and its approximation v.

• Average all subsampled vectors and test quality.
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PCA: averaging

Phase transition.
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Left: Alignment uTv between true and normalized average of 1000 subsampled
eigenvectors (blue circles), median value of uTv (solid black line), with dotted
lines at plus and minus one stdev, for various values of the sampling probability p
on a gene expression covariance matrix.
Right: Zoom on the the interval p ∈ [10−2, 1].
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Latent Semantic Indexing: Averaging
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Left: Alignment uTv between the true and the normalized average of 1000
subsampled left eigenvectors (blue circles), median value (solid black line) and
proportion of samples satisfying the perturbation condition (dashed red line), for
various values of p on a term document matrices with dimensions 6779 × 11171.

Right: Speedup in computing leading eigenvector of a gene expression data,
including subsampling time, for various values of the sampling probability p.
(Memory scales linearly with p).
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PCA: Averaging
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Magnitude of eigenvector coefficients |ui| in decreasing order for both the leading
eigenvector of the gene expression covariance matrix (left) and the leading left
singular vector of the 6779 × 11171 term document matrix (right).
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Numerical results: Ranking

Suppose we are given an adjacency matrix for a web graph

Aij = 1, if there is a link from i to j

with A ∈ Rn×n. We normalize it into a stochastic matrix

P g
ij =

Aij

degi

• The matrix P is the transition matrix of a Markov chain on the graph. If we set

P = cP g + (1 − c)11
T/n

for c ∈ [0, 1], this Markov chain will be irreducible.

• The leading (Perron-Frobenius) eigenvector of this matrix is called the
Pagerank vector (Page et al., 1998).

• The spectral gap is at least c. . .
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Numerical results: Ranking
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Left: The wb-cs.stanford graph (9914 nodes and 36854 edges).
Right: Loglog plot of the Pagerank vector coefficients for the cnr-2000 graph
(325,557 nodes and 3,216,152 egdes).

Webgraph data (Boldi and Vigna, 2004) and BVGRAPH by David Gleich.
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Numerical results: Ranking

Only the order of the coefficients matters in ranking, so measuring Pearson
correlation between pagerank vectors is pointless. For ranking performance, we
can use Spearman’s ρ.

• Suppose we get two pagerank vectors u, v ∈ Rn, we first convert them into
ranking vectors x, y ∈ [1, n]n such that

uxi
and vyi

are decreasing.

• We then compute the Pearson correlation between the ranking vectors

ρ(u, v) = corr(x, y)
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Ranking

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

S
p
ea

rm
an

’s
ρ

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

S
p
ea

rm
an

’s
ρ

Ranking correlation between true and averaged pagerank vector (blue circles),
median value of the correlation over all subsampled matrices (solid black line),
proportion of samples satisfying the perturbation condition (dashed red line), for
various values of the sampling prob. p.

Left: On the cnr-2000 graph. 325,557 nodes and 3,216,152 edges, 1000 samples.
Right: On the UK-2002 graph. 1.8 × 107 nodes and 3 × 108 edges, 100 samples.
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Conclusion & Open Questions

• The perturbation regime often holds for surprisingly low sampling rates.

• Averaging produces second-order accurate eigenvector approximations.

What next?

• Applications in optimization (semidefinite programming).

• Explain performance on webgraph matrices?

• Volume sampling produces relative accuracy sampling bounds

‖A − Sk‖2
F ≤ (1 + ǫ)‖A − Ak‖2

F

But computing the sampling probabilities is computationally intensive, which
defeats our purpose here.

Slides, source code, binaries: www.princeton.edu/~aspremon
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Raw CPU gain from sparsity

The cost of computing a few leading eigenvectors of a sparse matrix using the
power or Lanczos methods (see (Golub and Van Loan, 1990, Chap. 8-9) for
example) is proportional to the number of nonzero coefficients.
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Ratio of average CPU time for computing the leading eigenvalue of a (sparse)
subsampled matrix using ARPACK (directly) over average CPU time for the
original (dense) matrix, versus sampling probability p, with n = 2000.

The main benefit is lower memory usage however.
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Numerical results: Averaging
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Left: Alignment uTv between the true leading eigenvector u and the normalized
average leading eigenvector versus number of samples, on the gene expression
covariance matrix with subsampling probability p = 10−2.

Right: Alignment uTv for various values of the spectral gap λ2
λ1

= 0.75, 0.95, 0.99.
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