
Subsampling, Spectral Methods

and Semidefinite Programming

Alexandre d’Aspremont, Princeton University

Joint work with Noureddine El Karoui, U.C. Berkeley.

Support from NSF, DHS and Google.

A. d’Aspremont MIT Operations Research Center, February 2010. 1

Introduction

• PCA, LSI, spectral clustering, etc., do not require a high precision.

• Idem for many optimization problems.

• Yet, we perform most linear algebra operations with 15 digits of accuracy. . .

Central question in this talk: How low can we go?

A. d’Aspremont MIT Operations Research Center, February 2010. 2

Introduction

The computing environment is changing. . .

• Storage is extremely cheap.

• CPUs are cheap too (Amazon EC2: $0.10/hour, Google, Yahoo, etc.).

• Clock speed is very expensive (physical limitations).

• Bandwidth and latency are also key limitations.

Solution: break large numerical problems into many small, independent tasks.

A. d’Aspremont MIT Operations Research Center, February 2010. 3

Introduction

Juditsky, Lan, Nemirovski & Shapiro (2009) solve

min
x∈X

max
y∈Y

xTAy + bTx + cTy

where X = {x ∈ Rn : x ≥ 0, 1Tx = 1} and Y = {y ∈ Rn : y ≥ 0, 1Ty = 1},
using a stochastic gradient algorithm.

• Linear algebra operations are performed using subsampling: at each iteration
Ax is replaced by Ai where i is sampled from x.

• Use entropy based Bregman projections on the simplex.

• The total cost of getting a solution with relative accuracy ǫ and confidence
1 − δ is then

O

(

n log n + n log(1/δ)

ǫ2

)

which is negligible compared to the data size O(n2)!

A. d’Aspremont MIT Operations Research Center, February 2010. 4

Introduction

Focus on eigenvalues & eigenvectors.

Spectral methods.

• Computing leading eigenvectors using iterative methods costs O(n2).

• Approximate leading eigenvectors at a cost below O(n2)?

Optimization.

• Subgradient techniques for semidefinite programming require leading
eigenvectors.

• Use approximate eigenvectors in semidefinite programming while controlling
complexity?

A. d’Aspremont MIT Operations Research Center, February 2010. 5

Introduction

Subsampling procedure from Achlioptas & McSherry (2007).

Given p ∈ [0, 1] and a symmetric matrix A ∈ Sn, define

Sij =

{

Aij/p with probability p
0 otherwise.

By construction

• S has mean A and independent coefficients.

• S is sparse, it has pn2 nonzero entries on average when A is dense.

Because of independence, the impact of subsampling on the spectrum is both
small and isotropic. . .

A. d’Aspremont MIT Operations Research Center, February 2010. 6

Introduction

A simple experiment.

• Covariance matrix of the 500 most active genes in the cancer data set from
Alon, Barkai, Notterman, Gish, Ybarra, Mack & Levine (1999).

• Use the subsampling procedure described in the previous slide for various
values of the sampling probability p.

• For each sample, measure the alignment uTv between the true eigenvector u
and its approximation v.

• Average all subsampled vectors and test its quality too.

A. d’Aspremont MIT Operations Research Center, February 2010. 7

Introduction

Phase transition.

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

u
T
v

10
−2

10
−1

10
0

0.9

0.92

0.94

0.96

0.98

1

p
u

T
v

Left: Alignment uTv between the true and the normalized average of 1000
subsampled eigenvectors (blue circles), median value of uTv over all sampled
matrices (solid black line), with dotted lines at plus and minus one standard
deviation, for various values of the sampling probability p on a gene expression
covariance matrix. Right: Zoom on the the interval p ∈ [10−2, 1].

A. d’Aspremont MIT Operations Research Center, February 2010. 8

Introduction

The cost of computing a few leading eigenvectors of a sparse matrix using the
power or Lanczos methods is proportional to the number of nonzero coefficients.
The main benefit is lower memory usage however.

0 0.05 0.1 0.15 0.2 0.25 0.3
10

0

10
1

10
2

p

S
p
ee

d
u
p

Ratio of average CPU time for computing the leading eigenvalue of a (sparse)
subsampled matrix using ARPACK (directly) over average CPU time for the
original (dense) matrix, versus sampling probability p, with n = 2000.

A. d’Aspremont MIT Operations Research Center, February 2010. 9

Introduction

References.

• Early subsampling results by Groh, Marshall, Kunz & Givens (1991) and
Papadimitriou, Raghavan, Tamaki & Vempala (2000) who described
algorithms based on subsampling and random projections.

• Explicit error estimates for columnwise and elementwise sampling strategies
followed in Frieze, Kannan & Vempala (2004), Drineas, Kannan & Mahoney
(2006), Achlioptas & McSherry (2007).

• More recently, Recht, Fazel & Parrilo (2007), Candes & Recht (2008), Candes
& Tao (2009), Keshavan, Montanari & Oh (2009) focused on low-rank matrix
reconstruction.

• Stability results in clustering and ranking by Ng, Zheng & Jordan (2001) and
Huang, Yan, Jordan & Taft (2008) for example.

• In optimization: Bertsimas & Vempala (2004) solve convex feasibility problems
using random walks, Arora & Kale (2007) focus on combinatorial relaxations
and Juditsky & Nemirovski (2008) use subsampling to solve a matrix game.

A. d’Aspremont MIT Operations Research Center, February 2010. 10

Outline

• Introduction

• Subsampling

• Semidefinite programming

A. d’Aspremont MIT Operations Research Center, February 2010. 11

Elementwise subsampling

Subsampling: given A ∈ Sn and p ∈ [0, 1], define

Sij =

{

Aij/p with probability p
0 otherwise.

Achlioptas & McSherry (2007, Th. 1.4) show that

‖A − S‖2 ≤ 4

√

n

p
max

ij
|Aij|,

holds with high probability for n large enough.

• What is the lowest reasonable p here?

• How does maxij |Aij|
√

n/p behave when n → ∞?

A. d’Aspremont MIT Operations Research Center, February 2010. 12

Matrix Completion

Let’s write

A =

n
∑

i=1

λiuiu
T
i

• Recent results in Recht et al. (2007), Candes & Recht (2008), Candes & Tao
(2009), Keshavan et al. (2009) show that when

‖ui‖∞ ≤ µ√
n

with µ = O(1) and Rank(A) = O(1), and we sample more than O(n log4 n)
coefficients, then

A = argmin ‖X‖∗
subject to Xij = Sij, when Sij 6= 0

with high probability.

• All the information we need on A is contained in S (which only has
O(n log4 n) nonzero coefficients), but is expensive to extract.

A. d’Aspremont MIT Operations Research Center, February 2010. 13

Elementwise subsampling

With

A =
n

∑

i=1

λiuiu
T
i

• Here, we measure the incoherence of the spectrum of A by

µ(A, α) =
n

∑

i=1

|λi|nαi‖ui‖2
∞

for some α ∈ [0, 1]n.

• Because NumCard(x) = ‖x‖2
2/‖x‖2

∞, the norm ‖ui‖∞ is a proxy for sparsity.

• When the eigenvector coefficients are uniformly distributed, we have

‖ui‖∞ ∼ n−1/2, when n → ∞

we can take αi = 1 and µ(A, α) will be bounded if ‖X‖1 remains bounded.

A. d’Aspremont MIT Operations Research Center, February 2010. 14

Error bounds

Main Result. Suppose there is a vector α ∈ [0, 1]n for which

µ(M,α) ≤ µ and Card(ui) ≤
κ

2
nαi, i = 1, . . . , n

as n → ∞, where µ and κ are absolute constants. Then

‖A − S‖2 ≤ κµ√
pnαmin

almost surely (asymptotically), where αmin = mini=1,...,n αi.

A. d’Aspremont MIT Operations Research Center, February 2010. 15

Error bounds

Proof. (Sketch) Using e.g. Horn & Johnson (1991, Th. 5.5.19)

‖A − S‖2 =

√

1 − p

p

∥

∥

∥

∥

∥

n
∑

i=1

λiC ◦ (uiu
T
i)

∥

∥

∥

∥

∥

2

≤
√

1 − p

p

n
∑

i=1

|λi|nαi/2‖ui‖2
∞

∥

∥

∥

∥

Cαi

nαi/2

∥

∥

∥

∥

2

where C is i.i.d. Bernoulli with

Cij =

{
√

(1 − p)/p with probability p

−
√

p/(1 − p) otherwise.

with Cαi is a sparse submatrix of C. Vu (2007, Th. 1.4) shows

∥

∥

∥

∥

Cαi

nαi/2

∥

∥

∥

∥

2

≤ κ

almost surely (asymptotically), whenever p is greater than (log n)4+δ/nαi, for
some δ > 0. We need to control the max. of these quantities.

A. d’Aspremont MIT Operations Research Center, February 2010. 16

Error bounds

A few facts. . .

• The subsampled matrix must have more than

O(n(2−αmin) log4 n)

nonzero coefficients to keep the error small (αmin = 1 for incoherent
spectrum). The sparsest eigenvector determines error size through αmin.

• The smallest submatrix we can form using this result must have more than
O

(

n log4 n
)

nonzero coefficients.

• Because ‖C/n1/2‖2 blows up if p ≤ (log n)1−δ/n, the best we can hope for
here is O(n log n) nonzero coefficients.

A. d’Aspremont MIT Operations Research Center, February 2010. 17

Coupon Collector

Coupon collector. Let Cn be the number of elements that need to be drawn
from [1,n] with replacement until one first obtains a collection with n different
elements. Then

E[Cn] = nHn

where Hn is the nth harmonic number, with Hn ∼ log n.

The O(n log n) lower bound on the size of the sampled matrix is natural since
below this rate we are not guaranteed to sample from every row/column.

A. d’Aspremont MIT Operations Research Center, February 2010. 18

Averaging

• Kato (1995, Theorem II.3.9) shows that if

‖A − S‖2 ≤ (λ1 − λ2)/2

the subsampled matrix can be seen as a small perturbation of the original one.

• If the matrix satisfies
κµ√

pnαmin
≤ (λ1 − λ2)/2,

we get the following expansion for the leading eigenvector v of the subsampled
matrix compared to the true vector u

v = u − REu + R(E − uTEuI)RE + oP (‖E‖2
2)

where E = A − S and R is the reduced resolvent of A, written

R =
∑

j 6=1

1

λj − λ1
uju

T
j .

A. d’Aspremont MIT Operations Research Center, February 2010. 19

Averaging

• Phase transition when

‖A − S‖2 ≤ (λ1 − λ2)/2

• Because
E[R(A − S)u] = 0,

averaging eigenvectors over many subsampled matrices in the perturbative
regime means that the residual error will be of order ‖A − S‖2

2.

• The variance of the first order term is given by

E[‖REu‖2
2] ≤

1

(1 − λ2/λ1)2
‖u1‖2

∞

NumRank(A)

p

so the quality of the eigenvector approximation is a function of

◦ The spectral gap λ2/λ1.

◦ The numerical sparsity of u1, measured by ‖u1‖∞.

◦ The numerical rank of the matrix A.

◦ The sampling probability p.

A. d’Aspremont MIT Operations Research Center, February 2010. 20

Computing model

Higher granularity. . .

...
n log n n log nn log nn log nn

2

n
2

n
2

Data

CPU & Mem.

Cost

This works if getting additional CPUs is very cheap, but memory and bandwidth
are limited.

A. d’Aspremont MIT Operations Research Center, February 2010. 21

Numerical results: Averaging

10
−2

10
−1

10
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

u
T
v

10
−4

10
−3

10
−2

10
−1

10
0

10
1

p

S
p
ee

d
u
p

Left: Alignment uTv between the true and the normalized average of 1000
subsampled left eigenvectors (blue circles), median value (solid black line) and
proportion of samples satisfying the perturbation condition (dashed red line), for
various values of p on a term document matrices with dimensions 6779 × 11171.

Right: Speedup in computing leading eigenvector of a gene expression data,
including subsampling time, for various values of the sampling probability p.
(Memory scales linearly with p).

A. d’Aspremont MIT Operations Research Center, February 2010. 22

Numerical results: Averaging

100 200 300 400 500
10

−4

10
−3

10
−2

10
−1

10
0

i

|u
i|

1000 2000 3000 4000 5000 6000
10

−4

10
−3

10
−2

10
−1

10
0

i
|u

i|
Magnitude of eigenvector coefficients |ui| in decreasing order for both the leading
eigenvector of the gene expression covariance matrix (left) and the leading left
singular vector of the 6779 × 11171 term document matrix (right).

A. d’Aspremont MIT Operations Research Center, February 2010. 23

Numerical results: Averaging

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

u
T
v

10
−2

10
−1

10
0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.99

.95

.75

p

u
T
v

Left: Alignment uTv between the true leading eigenvector u and the normalized
average leading eigenvector versus number of samples, on the gene expression
covariance matrix with subsampling probability p = 10−2.

Right: Alignment uTv for various values of the spectral gap λ2
λ1

= 0.75, 0.95, 0.99.

A. d’Aspremont MIT Operations Research Center, February 2010. 24

Numerical results: Ranking

Suppose we are given an adjacency matrix for a web graph

Aij = 1, if there is a link from i to j

with A ∈ Rn×n. We normalize it into a stochastic matrix

P g
ij =

Aij

degi

• The matrix P is the transition matrix of a Markov chain on the graph. If we set

P = cP g + (1 − c)11T/n

for c ∈ [0, 1], this Markov chain will be irreducible.

• The leading (Perron-Frobenius) eigenvector of this matrix is called the
Pagerank vector (see Page, Brin, Motwani & Winograd (1998)).

• The spectral gap is at least c. . .

A. d’Aspremont MIT Operations Research Center, February 2010. 25

Numerical results: Ranking

0 2000 4000 6000 8000

0

2000

4000

6000

8000

nz = 36854
10

0
10

2
10

4
10

6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

i

|u
i|

Left: The wb-cs.stanford graph (9914 nodes and 36854 edges).

Right: Loglog plot of the Pagerank vector coefficients for the cnr-2000 graph
(325,557 nodes and 3,216,152 egdes).

A. d’Aspremont MIT Operations Research Center, February 2010. 26

Numerical results: Ranking

Only the order of the coefficients matters in ranking, so measuring Pearson
correlation between pagerank vectors is pointless. For ranking performance, we
can use Spearman’s ρ.

• Suppose we get two pagerank vectors u, v ∈ Rn, we first convert them into
ranking vectors x, y ∈ [1, n]n such that uxi, uyi, i = 1, . . . , n are both
decreasing.

• We then compute the Pearson correlation between the ranking vectors

ρ(u, v) = corr(x, y)

A. d’Aspremont MIT Operations Research Center, February 2010. 27

Numerical results: Ranking

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

S
p
ea

rm
an

’s
ρ

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p

S
p
ea

rm
an

’s
ρ

Ranking correlation between true and averaged pagerank vector (blue circles),
median value of the correlation over all subsampled matrices (solid black line),
proportion of samples satisfying the perturbation condition (dashed red line), for
various values of the sampling probability p.

Left: On the wb-cs.stanford graph: 9914 nodes and 36854 edges.
Right: On the cnr-2000 graph: 325,557 nodes and 3,216,152 edges.

A. d’Aspremont MIT Operations Research Center, February 2010. 28

Outline

• Introduction

• Subsampling

• Semidefinite programming

A. d’Aspremont MIT Operations Research Center, February 2010. 29

Semidefinite programming

Consider the following spectral radius minimization problem

minimize
∥

∥

∥

∑p
j=1 yjAj + C

∥

∥

∥

2
− bTy

subject to y ∈ Q,

in the variable y ∈ Rp, with parameters Aj ∈ Sn, for j = 1, . . . , p, b ∈ Rp and
C ∈ Sn, where Q is a compact convex set.

• Subgradients here are given by leading eigenvectors.

• Can we use subsampling to reduce the cost of each iteration in a stochastic
gradient algorithm, as in Juditsky et al. (2009)?

The answer is yes, using a slightly different subsampling method. . .

A. d’Aspremont MIT Operations Research Center, February 2010. 30

Semidefinite programming

Matrix multiplication algorithm in Drineas et al. (2006)

Matrix multiplication

Input: A ∈ Rm×n, B ∈ Rn×p and s such that 1 ≤ s ≤ n.
1: Define a probability vector p ∈ Rn such that

pi =
‖A(i)‖2‖B(i)‖2

∑n
j=1 ‖A(j)‖2‖B(j)‖2

, i = 1, . . . , n.

2: Define subsampled matrices C ∈ Rm×s and R ∈ Rs×p as follows.
3: for i = 1 to s do

4: Pick j ∈ [1, n] with P(j = l) = pl.
5: Set C(i) = A(j)/

√
spj and R(i) = B(j)/

√
spj.

6: end for

Output: Matrix product CR approximating AB.

A. d’Aspremont MIT Operations Research Center, February 2010. 31

Semidefinite programming

• By construction
E[CR] = AB

• This algorithm can produce low-rank approximations of X ∈ Rm×n such that

‖SST − XXT‖F

is small, where S ∈ Rm×s is a scaled submatrix of X .

• Computing singular values of S using iterative methods is much faster because
of its size.

A. d’Aspremont MIT Operations Research Center, February 2010. 32

Semidefinite programming

Low-rank approximation algorithm in Drineas et al. (2006)

Low rank approximation

Input: X ∈ Rm×n and k, s such that 1 ≤ k ≤ s < n.
1: Define a probability vector p ∈ Rn such that pi = ‖X(i)‖2

2/‖X‖2
F , for

i = 1, . . . , n.
2: Define a subsampled matrix S ∈ Rm×s as follows.
3: for i = 1 to s do

4: Pick an index j ∈ [1, n] with P(j = l) = pl.
5: Set S(i) = X(j)/

√
spj.

6: end for

7: Form the eigenvalue decomposition STS = Y diag(σ)Y T where Y ∈ Rs×s

and σ ∈ Rs.
8: Form a matrix H ∈ Rm×k with H(i) = SY (i)/σ

1/2
i .

Output: Approximate singular vectors H(i), i = 1, . . . , k.

A. d’Aspremont MIT Operations Research Center, February 2010. 33

Semidefinite programming

Error bounds. Let X ∈ Rm×n and β ∈ [0, 1]. Given a precision target ǫ > 0,
construct a matrix S ∈ Rm×s by subsampling the columns of X . Let
η = 1 +

√

8 log(1/β) and

s = η2‖X‖2
2

ǫ2
NumRank(X)2 (1)

we have
E[|‖S‖2 − ‖X‖2|] ≤ ǫ

and
|‖S‖2 − ‖X‖2| ≤ ǫ

with probability at least 1 − β.

A. d’Aspremont MIT Operations Research Center, February 2010. 34

Semidefinite programming

Let’s come back to the spectral radius minimization problem

miny∈Q f(y) ≡ E
[
∥

∥

∥
π(s)

(

∑p
j=1 yjAj + C

)
∥

∥

∥

2

]

− bTy

in the variable y ∈ Rp and parameters Aj ∈ Sn, for j = 1, . . . , p, b ∈ Rp and
C ∈ Sn, with 1 ≤ s ≤ n controlling the sampling rate

• For X ∈ Sn, we have written π(s)(X) the subsampling/scaling operation

π(s)(X) = S

where 0 < s < n controls the sampling rate and S ∈ Rn×s.

• The function ‖π(s)(
∑p

j=1 yjAj + C)‖2 and a subgradient with respect to y are
computed using subsampling.

A. d’Aspremont MIT Operations Research Center, February 2010. 35

Semidefinite programming

Spectral norm minimization using subsampling

Input: Matrices Aj ∈ Sn, for j = 1, . . . , p, b ∈ Rp and C ∈ Sn, sampling rates s1

and s2.
1: Pick initial y0 ∈ Q
2: for l = 1 to N do

3: Compute v ∈ Rn, the leading singular vector of the matrix
π(s1)(

∑p
j=1 yl,jAj + C), subsampled with k = 1 and s = s1.

4: Compute the approximate subgradient gl = π(s2)(AT) π(s2)(vec(vvT)) − b,
by subsampling the matrix product with s = s2.

5: Set yl+1 = P Q,ω
yl

(γlgl).

6: Update the running average ỹN =
∑N

k=0 γlyl/
∑N

k=0 γl.
7: end for

Output: An approximate solution ỹN ∈ Rp with high probability.

A. d’Aspremont MIT Operations Research Center, February 2010. 36

Semidefinite programming

Complexity. . .

• On line 3: Computing the leading singular vector v.

◦ Computing the probabilities pi at a cost of c1n
2 operations.

◦ Forming the matrix S = π(s1)(
∑p

j=1 yl,jAj + C) costs pns1 flops.

◦ Computing the leading singular vector of S using the Lanczos method at a
cost of c2ns1.

Here c1 ≪ c2, as c2 is the number of iterations in the Lanczos method.

• On line 4: Computing the approximate subgradient

gl = π(s2)(AT) π(s2)(vec(vvT)) − b, by subsampling the matrix product.

◦ This means forming the vector p at a cost of O(n2).

◦ Computing the subsampled matrix vector product then costs O(ps2).

Both of these complexity bounds have low constants.

A. d’Aspremont MIT Operations Research Center, February 2010. 37

Semidefinite programming

Complexity Stoch. Approx. with Subsampling

Per Iter. c1n
2 + c3ps2 + c2nη2‖Y ∗‖2

2
ǫ2

NumRank(Y ∗)2 + c(p)

Num. Iter.
2D2

ω,Qδ∗(p)2

‖A‖2F
s2

+‖b‖2
2

!

αǫ2β2

Complexity of solving min. spectral norm problem using subsampled stochastic
approximation method versus original algorithm. Here c1, . . . , c4 are absolute
constants with c1, c3 ≪ c2, c4.

• Here, the main term in this complexity estimate is

nη2‖Y ∗‖2
2

ǫ2
NumRank(Y ∗)2

with Y ∗ =
∑p

j=1 y∗
jAj + C. This means that the complexity of the algorithm

grows as the square of the complexity of the solution.

• The optimal susbampling rate is not known a priori, but if duality gap can be
computed cheaply, getting a good s implies at most log2 n restarts.

A. d’Aspremont MIT Operations Research Center, February 2010. 38

Semidefinite programming

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

NumRank(X)

ǫ/
‖X

‖ 2

10
−4

10
−3

10
−2

10
−1

0

10

20

30

40

50

60

70

80

90

100

Error / Theoretical error

#
o
cc

u
re

n
ce

s
Left: Loglog plot of relative error ǫ/‖X‖2 versus numerical rank NumRank(X)
with 20% subsampling and n = 500 on random matrices (blue dots) and gene
expression covariance (red square). The dashed line has slope one in loglog scale.

Right: Histogram plot in semilog scale of relative error ǫ/‖X‖2 over theoretical
bound η NumRank(X)/

√
s for random matrices with n = 500.

A. d’Aspremont MIT Operations Research Center, February 2010. 39

Semidefinite programming

n Deterministic Subsampling Speedup factor
500 5 5 0.92
750 19 13 1.40

1000 32 24 1.31
1500 107 58 1.84
2000 281 120 2.34

CPU time (in seconds) versus problem dimension n for deterministic and
subsampled stochastic approximation algorithms on spectral norm minimization
problems.

n Deterministic Subsampling Speedup factor
100 154 23 6.67
200 766 63 12.2
500 4290 338 12.7

Median CPU time (in seconds) versus problem dimension n for deterministic and
subsampled stochastic approximation algorithms on collaborative filtering
problems.

A. d’Aspremont MIT Operations Research Center, February 2010. 40

Semidefinite programming

0 50 100 150 200 250
220

225

230

235

240

245

250

255

CPU time (secs.)

O
b
je

ct
iv

e
va

lu
e

0 50 100 150 200 250
160

170

180

190

200

210

220

230

240

250

CPU time (secs.)

S
u
rr

og
at

e
ga

p
Left: Objective value versus CPU for a sample matrix factorization problem in
dimension 100, using a deterministic gradient (squares) or a subsampled gradient
with subsampling rate set at 20% (circles).

Right: Surrogate duality gap versus CPU time on the same example.

A. d’Aspremont MIT Operations Research Center, February 2010. 41

Conclusion

• Subsampling/averaging works surprisingly well, in particular the perturbation
regime often holds for low sampling rates.

• Can be used to lower cost per iteration of stochastic gradient algorithms for
semidefinite optimization.

What next?

• Reduce the complexity/memory requirements of smooth optimization methods.

• Volume sampling produces relative accuracy sampling bounds

‖A − Sk‖2
F ≤ (1 + ǫ)‖A − Ak‖2

F

But computing the sampling probabilities is a hard combinatorial problem. See
Kannan & Vempala (2009) for details.

Slides, paper, source code, binaries available at

www.princeton.edu/~aspremon

A. d’Aspremont MIT Operations Research Center, February 2010. 42

References

Achlioptas, D. & McSherry, F. (2007), ‘Fast computation of low-rank matrix approximations’, Journal of the ACM 54(2).

Alon, A., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. & Levine, A. J. (1999), ‘Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays’, Cell Biology 96, 6745–6750.

Arora, S. & Kale, S. (2007), A combinatorial, primal-dual approach to semidefinite programs, in ‘Proceedings of the thirty-ninth annual ACM

symposium on Theory of computing’, pp. 227–236.

Bertsimas, D. & Vempala, S. (2004), ‘Solving convex programs by random walks’, J. ACM 51(4), 540–556.

Candes, E. & Recht, B. (2008), ‘Exact matrix completion via convex optimization’, preprint .

Candes, E. & Tao, T. (2009), ‘The Power of Convex Relaxation: Near-Optimal Matrix Completion’, arXiv:0903.1476 .

Donoho, D. & Tsaig, Y. (2006), ‘Fast solution of ℓ1-norm minimization problems when the solution may be sparse’, Preprint .

Drineas, P., Kannan, R. & Mahoney, M. (2006), ‘Fast Monte Carlo Algorithms for Matrices II: Computing a Low-Rank Approximation to a

Matrix’, SIAM Journal on Computing 36, 158.

Frieze, A., Kannan, R. & Vempala, S. (2004), ‘Fast monte-carlo algorithms for finding low-rank approximations’, Journal of the ACM (JACM)

51(6), 1025–1041.

Groh, D. J., Marshall, R. A., Kunz, A. B. & Givens, C. R. (1991), ‘An approximation method for eigenvectors of very large matrices’, Journal

of Scientific Computing 6(3), 251–267.

Horn, R. & Johnson, C. (1991), Topics in matrix analysis, Cambridge university press.

Huang, L., Yan, D., Jordan, M. & Taft, N. (2008), ‘Spectral Clustering with Perturbed Data’, Advances in Neural Information Processing

Systems (NIPS) .

Juditsky, A., Lan, G., Nemirovski, A. & Shapiro, A. (2009), ‘Stochastic approximation approach to stochastic programming’, SIAM Journal
on Optimization 19(4), 1574–1609.

Juditsky, A. & Nemirovski, A. (2008), ‘On verifiable sufficient conditions for sparse signal recovery via ℓ1 minimization’, ArXiv:0809.2650 .

Kannan, R. & Vempala, S. (2009), Spectral algorithms.

URL: http://www.cc.gatech.edu/∼vempala/spectralbook.html

Kato, T. (1995), Perturbation theory for linear operators, Springer.

Keshavan, R., Montanari, A. & Oh, S. (2009), ‘Matrix Completion from a Few Entries’, arXiv:0901.3150 .

Ng, A., Zheng, A. & Jordan, M. (2001), Stable algorithms for link analysis, in ‘ACM SIGIR’, ACM New York, NY, USA, pp. 258–266.

Page, L., Brin, S., Motwani, R. & Winograd, T. (1998), ‘The pagerank citation ranking: Bringing order to the web’, Stanford CS Technical
Report .

A. d’Aspremont MIT Operations Research Center, February 2010. 43

Papadimitriou, C., Raghavan, P., Tamaki, H. & Vempala, S. (2000), ‘Latent semantic indexing: a probabilistic analysis’, Journal of Computer

and System Sciences 61(2), 217–235.

Recht, B., Fazel, M. & Parrilo, P. (2007), ‘Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization’,

Arxiv preprint arXiv:0706.4138 .

Vu, V. (2007), ‘Spectral norm of random matrices’, Combinatorica 27(6), 721–736.

A. d’Aspremont MIT Operations Research Center, February 2010. 44

Semidefinite programming

Trace norm minimization

minimize
∥

∥

∥

∑p
j=1 yjAj + C

∥

∥

∥

tr
− bTy

subject to y ∈ Q,

in the variable y ∈ Rp where Q is a low dimension norm ball for example and the
matrices Aj have a block format with only a few nonzero coefficients.

The sampling rate is written

s = η2‖Y ∗‖2
tr

ǫ2
κ(Y ∗)2 Rank(Y ∗)

Simple solutions mean lower complexity (observed empirically in Donoho & Tsaig
(2006) for the LASSO).

A. d’Aspremont MIT Operations Research Center, February 2010. 45

