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ABSTRACT. We show that several classical quantities controlling compressed sensing performance directly
match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart
schemes on first-order methods solving a broad range of compressed sensing problems, where sharpness at the
optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written
as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be
recovered by the observation matrix. In a similar vein, Renegar’s condition number is a data-driven complexity
measure for convex programs, generalizing classical condition numbers for linear systems. We show that for a
broad class of compressed sensing problems, the worst case value of this algorithmic complexity measure taken
over all signals matches the restricted singular value of the observation matrix which controls robust recovery
performance. Overall, this means in both cases that, in compressed sensing problems, a single parameter
directly controls both computational complexity and recovery performance. Numerical experiments illustrate
these points using several classical algorithms.

INTRODUCTION

Sparse recovery problems have received a lot of attention from various perspectives. On one side, an
extensive literature explores the limits of recovery performance. On the other side, a long list of algorithms
now solve these problems very efficiently. Early on, it was noticed empirically by e.g. Donoho and Tsaig
[2008], that recovery problems which are easier to solve from a statistical point of view (i.e., where more
samples are available), are also easier to solve numerically. Here, we show that these two aspects are indeed
intimately related.

Recovery problems consist in retrieving a signal z*, lying in some Euclidean space F, given linear ob-
servations. If the signal is “sparse”, namely if it can be efficiently compressed, a common approach is to
minimize the corresponding sparsity inducing norm || - || (e.g. the /1 norm in classical sparse recovery). The
exact sparse recovery problem then reads

minimize ||z

subjectto  A(z) = b, M

in the variable x € F, where A is a linear operator on F and b = A(z*) is the vector of observations. If the
observations are affected by noise a robust version of this problem is written as

minimize ||z|

subjectto  ||A(z) —b||2 <€,

in the variable = € E, where || - ||2 is the Euclidean norm and € > 0 is a tolerance to noise. In penalized
form, this is

minimize ||z|| + A||A(x) — b||3
in the variable x € E where A > 0 is a penalization parameter. This last problem is known as the LASSO
[Tibshirani, 1996] in the ¢; case.
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When x* has no more than s non zero values, Donoho and Tanner [2005] and Candes and Tao [2006]
have shown that, for certain linear operators A, O(slogp) observations suffice for stable recovery of x*
by solving the exact formulation (1) using the ¢; norm (a linear program). These results have then been
generalized to many other recovery problems with various assumptions on signal structure (e.g., where x
is a block-sparse vector, a low-rank matrix, etc.) and corresponding convex relaxations were developed in
those cases (see e.g. Chandrasekaran et al. [2012] and references therein). Recovery performance is often
measured in terms of the number of samples required to guarantee exact or robust recovery given a level of
noise.

On the computational side, many algorithms were developed to solve these problems at scale. Besides
specialized methods such as LARS [Efron et al., 2004], FISTA [Beck and Teboulle, 2009] and NESTA
[Becker, Bobin and Candes, 2011], solvers use accelerated gradient methods to solve robust recovery prob-
lems, with efficient and flexible implementations covering a wide range of compressed sensing instances
developed by e.g. Becker, Candeés and Grant [2011]. Recently, linear convergence results have been ob-
tained for the LASSO [Agarwal et al., 2011; Yen et al., 2014; Zhou et al., 2015] using variants of the
classical strong convexity assumption, while [Zhou and So, 2017] studied error bounds for a much broader
class of structured optimization problems including sparse recovery and matrix completion. Some restart
schemes have also been developed in e.g. [O’Donoghue and Candes, 2015; Su et al., 2014; Giselsson and
Boyd, 2014] while Fercoq and Qu [2016] showed that generic restart schemes can offer linear convergence
given a rough estimate of the behavior of the function around its minimizers.

As mentioned above, Donoho and Tsaig [2008] was one of the first reference to connect statistical and
computational performance in this case, showing empirically that recovery problems which are easier to
solve from a statistical point of view (i.e., where more samples are available), are also easier to solve nu-
merically (using homotopy methods). More recently, Chandrasekaran and Jordan [2013]; Amelunxen et al.
[2014] studied computational and statistical tradeoffs for increasingly tight convex relaxations of shrinkage
estimators. They show that recovery performance is directly linked to the Gaussian squared-complexity of
the tangent cone with respect to the constraint set and study the complexity of several convex relaxations. In
[Chandrasekaran and Jordan, 2013; Amelunxen et al., 2014] however, the structure of the convex relaxation
is varying and affecting both complexity and recovery performance, while in [Donoho and Tsaig, 2008] and
in what follows, the structure of the relaxation is fixed, but the data (i.e. the observation matrix A) varies.

Here, as a first step, we study the exact recovery case and show that the null space property introduced by
Cohen et al. [2009] can be seen as a measure of sharpness on the optimum of the sparse recovery problem.
On one hand this allows us to develop linearly convergent restart schemes whose rate depends on this
sharpness. On the other hand we recall how the null space property is linked to the recovery threshold of the
sensing operator A for random designs, thus producing a clear link between statistical and computational
performance.

We then analyze the underlying conic geometry of recovery problems. Robust recovery performance
is controlled by a minimal conically restricted singular value. We recall Renegar’s condition number and
show how it affects the computational complexity of optimality certificates for exact recovery and the linear
convergence rate of restart schemes. By observing that the minimal conically restricted singular value
matches the worst case value of Renegar’s condition number on sparse signals, we provide further evidence
that a single quantity controls both computational and statistical aspects of recovery problems. Numerical
experiments illustrate its impact on various classical algorithms for sparse recovery.

The first two sections focus on the ¢; case for simplicity. We generalize our results to non-overlapping
group norms and the nuclear norm in a third section.

Notations. For a given integer p > 1, [1, p] denotes the set of integers between 1 and p. For a given subset

S C [1, p], we denote S¢ = [1,p] \ S its complementary and Card(.S) its cardinality. For a given vector

x € RP, we denote Supp(x) = {i € [1,p] : x; # 0} the support of z, ||z|o = Card(Supp(z)) its sparsity

and ||z||, its p-norm. For a given vector x and integer subset S C [1,p], zs € RP denotes the vector
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obtained by zeroing all coefficients of x that are not in .S. For a given linear operator or matrix A, we denote
Null(A) its null space, Im(A) its range, and || X ||2 its operator norm with respect to the Euclidean norm (for
matrices this is the spectral norm). The identity operator is denoted I. In a linear topological space £ we
denote int(F') the interior of F' C E. Finally for a given real a, we denote [a] the smallest integer larger
than or equal to @ and || the largest integer smaller than or equal to a.

1. SHARPNESS, RESTART AND SPARSE RECOVERY PERFORMANCE

In this section and the following one, we discuss sparse recovery problems using the /1 norm. Given a
matrix A € R"*P and observations b = Ax™* on a signal x* € RP, recovery is performed by solving the /1
minimization program

minimize ||z|;

subjectto Az =b (¢4 recovery)

in the variable x € RP.
In what follows, we show that the Null Space Property condition (recalled below) can be seen as measure
of sharpness for ¢1-recovery of a sparse signals z*, with

lzlls = ll=*ll > ~llz — 2"l (Sharp)

for any x # x* such that Ax = b, and some 0 < -y < 1. This first ensures that z* is the unique minimizer
of problem (¢; recovery) but also has important computational implications. It allows us to produce linear
convergent restart schemes whose rates depend on sharpness. By connecting the null space property to re-
covery threshold for random observation matrices, we get a direct link between computational and statistical
aspects of sparse recovery problems.

1.1. Null space property & sharpness for exact recovery. Although the definition of null space property
appeared in earlier work [Donoho and Huo, 2001; Feuer and Nemirovski, 2003] the terminology of restricted
null space is due to Cohen et al. [2009]. The following definition differs slightly from the original one in
order to relate it to intrinsic geometric properties of the problem in Section 2.

Definition 1.1. (Null Space Property) The matrix A satisfies the Null Space Property (NSP) on support
S C [1, p] with constant o« > 1 if for any z € Null(A) \ {0},

allzslli < llzse |1 (NSP)

The matrix A satisfies the Null Space Property at order s with constant o > 1 if it satisfies it on every
support S of cardinality at most s.

The Null Space Property is a necessary and sufficient condition for the convex program (¢; recovery) to
recover all signals up to some sparsity threshold. Necessity will follow from results recalled in Section 2.2.
We detail sufficiency of (NSP) using sharpness in the following proposition.

Proposition 1.2. Given a coding matrix A € R™*P satisfying (NSP) at order s with constant o > 1, if the
original signal x* is s-sparse, then for any x € RP satisfying Ax = b, x # =™, we have

a—1
a+1

[l = fl=*lx > [l = ™1

This implies signal recovery, i.e. optimality of x* for ({1 recovery), and the sharpness bound (Sharp) with
—1
Y= 37_;_1



Proof. The proof follows the one in Cohen et al. [2009, Theorem 4.4]. Let S = supp(z*), with
Card(S) < s, and let  # x* such that Ax = b, s0 z = & — z* # 0 satisfies Az = 0. Then

[zlls = [l + 251 + [[2s¢[l1
> [zl — [[zsllt + llzsellx
= ||zl + [[2llx — 2|25l
Now as A satisfies (NSP) on support S,
[zlln = llzsll1 + llzsellr > (1 + a)llzs]lx

hence
o — a—1
o+ a+1
As a > 1, this implies that x* is the solution of program (¢; recovery) and the corresponding sharpness
bound. m

[zl = llz" ]l >

1
=l = =21

Sharpness is a crucial property for optimization problems that can be exploited to accelerate the per-
formance of classical optimization algorithms [Nemirovskii and Nesterov, 1985; Roulet and d’ Aspremont,
2017]. Before that we remark that it is in fact equivalent to (NSP) at order s.

Proposition 1.3. Given a matrix A € R"™*P such that problem ({1 recovery) is sharp on every s-sparse
signal x*, i.e. there exists 0 < v < 1 such that

[zlx = ll=*[lx > vlle = 21,
for any x # x* such that Ax = Ax*. Then, A satisfies (NSP) at order s with constant o = }i—% > 1.

Proof. Let S C [1,p] with Card(S) < s and z € Null(A), z # 0, such that Azg = —Azge and
zs # —zge. Using sharpness of problem (¢ recovery) with * = zg, and x = —zgc, we get
[zselli = llzslls > 7llzlle = llzslls + vllzse]l1-
Rearranging terms and using v < 1, this reads
1+~
cll1 >
sl > 72
which is (NSP) on support S with the announced constant. As .S was taken arbitrarily, this means (NSP)
holds at order s. m

1511,

1.2. Restarting first-order methods. In this section, we seek to solve the recovery problem (¢; recovery)
and exploit the sharpness bound (Sharp). The NESTA algorithm [Becker, Bobin and Candes, 2011] uses the
smoothing argument of Nesterov [2005] to solve (¢; recovery). In practice, this means using the optimal
algorithm of Nesterov [1983] to minimize

€
a2 sup {uto - julg)
Julloo <1 2p

for some € > 0, which approximates the ¢; norm uniformly up to €/2. This is the classical Huber function,
which has a Lipschitz continuous gradient with constant equal to p/e. Overall given an accuracy € and a
starting point xg this method outputs after ¢ iterations a point x = A(x, €, t) such that

et? 2’
for any Z solution of problem (¢; recovery). Now if the sharpness bound is satisfied, restarting this method,

as described in the (Restart) scheme presented below, accelerates its convergence.
4
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Algorithm 1 Restart Scheme (Restart)

Input: Initial point yo € RP, initial gap €p > ||yo|[1 — ||Z||1, decreasing factor p, restart clock ¢
Fork =1..., K compute
€ = PEk—1, Y = A(Yk—1, €k, t) (Restart)
Output: A point § = yx approximately solving (¢; recovery).

1.2.1. Optimal restart scheme. We begin by analyzing an optimal restart scheme assuming the sharpness
constant is known. We use a non-integer clock to highlight its dependency to the sharpness. Naturally clock
and number of restarts must be integer but this does not affect much bounds as detailed in Appendix A.
The next proposition shows that algorithm .4 needs a constant number of iterations to decrease the gap by a
constant factor, which means restart leads to linear convergence.

Proposition 1.4. Given a coding matrix A € R™ P and a signal x* € RP such that the sharpness
bound (Sharp) is satisfied with v > 0, i.e.

el = ll2*lle > ylle = 2",

Y

. . 2
for any x # x* such that Ax = Ax*, running the (Restart) scheme with t > Tpp ensures

1yl = [l < e, 3)

at each iteration, with x* the unique solution of problem ({1 recovery). Using optimal parameters

2e
pf=e"! and t* = 7\/]5, 4
v
we get a point Y such that
. * g
gl — ||z7||1 < exp (—eN) €0- ®)
19l = [l2"| NG

after running a total of N inner iterations of Algorithm Restart with t = t* (hence N/t restarts).

Proof. By the choice of ¢q, (3) is satisfied for ¥ = 0. Assuming it holds at iteration k£, combining
sharpness bound (Sharp) and complexity bound (2) leads to, for z = A(yg_1, €k, t),

2p(lyr—1l1 = lz*[1)* | e

x| = [|z¥||1 < ok

el — ¥l < e +5

dp e | €

<S55+
— pi22 2 0 2

Therefore after ¢ > % iterations, the method has achieved the decreased accuracy €, which proves (3).

The overall complexity after a total of N inner iterations, hence N/t restarts, is then

19l = llz* [l < p™*eo.

. . N . .
If v is known, using exactly T‘f inner iterations at each restart leads to

N * ¥
il = a7l < ex (2= Nplog ) o
Optimizing in p yields p* = e~!, and with ¢* inner iterations the complexity bound (5) follows. m

To run NESTA, AT A is assumed to be an orthogonal projector (often the case in compressed sensing
applications) such that the projection on the feasible set is easy. Becker, Bobin and Candes [2011] already
studied restart schemes that they called “acceleration with continuation”. However their restart criterion
depends on the relative variation of objective values, not on the number of iterates, and no linear convergence
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was proven. We further note that linear convergence of restart schemes only requires an assumption of the
form

where d(x, X*) is the distance (in any norm) from z to the set of minimizers of the objective function f
(here f(x) = ||z||1). This type of bound is known as Lojasiewicz’s inequality, studied for example in Bolte
et al. [2007] for non-smooth convex functions. Here (NSP) ensures that the set of minimizers is reduced to
a singleton, the original signal.

1.2.2. Practical restart scheme. Several parameters are needed to run the optimal scheme above. The op-
timal decreasing factor is independent of the data. The initial gap €y can be taken as ||yo|/1 for Ay = b.
The sharpness constant + is for its part mostly unknown such that we cannot choose the number ¢* of inner
iterations a priori. However, given a budget of iterations [V, a log scale grid search can be performed on
the optimal restart clock to get nearly optimal rates as detailed in the following corollary (contrary to the
general results in [Roulet and d’ Aspremont, 2017], the sharpness exponent is known here, simplifying the
parameter search).

Corollary 1.5. Given a coding matrix A € R"*P, a signal x* € RP such that the sharpness bound (Sharp)
is satisfied with v > 0, a budget of N iterations, run the following schemes from an initial point yg

(Restart) with ¢t = h/, j=1,...,|log, N|

with h the grid search precision. Stop restart iteration when the total number of iterations has exceeded the
budget N. Then, provided that N > ht*, where t* is defined in (4), at least one of these restart schemes
achieves a precision given by

. v

—|lz*1 <exp | — eN | eo. 7
il = el < exp (e ) o Q
Overall running the logarithmic grid search has a complexity log; N times higher than running N iterations
in the optimal scheme.

Proof. All schemes stop after at most N —|—h? < 2N iterations. As we assumed N > ht*, j = [log, t*] <
log;, N and (Restart) has been run with ¢ = h’. Proposition 1.4 ensures, since ¢ > t*, that the output of this
scheme achieves after N/ > N total iterations a precision

Il = 12l < eVt < e Ne
and as t < ht*
gl = 12l < eVt
which gives the result. Finally the logarithmic grid search costs log;, N to get this approximative optimal
bound. m

0

Sharpness therefore controls linear convergence of simple restart schemes to solve (¢1 recovery). We now
turn back to (NSP) estimates and connect them to recovery thresholds of the sampling matrix. This will give
us a direct link between computational complexity and recovery performance for exact recovery problems.

1.3. Recovery threshold. If (NSP) is satisfied at a given order s it holds also for any s' < s. However,
the constant, and therefore the speed of convergence, may change. Here we show that this constant actually
depends on the ratio between the maximal order at which A satisfies (NSP) and the sparsity of the signal
that we seek to recover.

To this end, we give a more concrete geometric meaning to the constant « in (NSP), connecting it with
the diameter of a section of the ¢; ball by the null space of the matrix A (see e.g. Kashin and Temlyakov
[2007] for more details).
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Lemma 1.6. Given a matrix A € R"*P, denote
1
3 diam(BY N Null(A)) = sup 2],
=<1
the radius of the section of the {1 ball BY by the null space of the matrix A and
s4 2 1/diam(B? N Null(4))?, ®)
a recovery threshold. Then A satisfies (NSP) at any order s < s 4 with constant

a=2v/s4/s—1>1. 9

Proof. For any z € Null(A) and support set S with Card(S) < s, using equivalence of norms and
definition of the radius,

1 S 1 s
< Sy == /= e
I2s]l1 < Vs [lz]l2 < 2\ 51 [2]11 2\ 51 (Izsll1 + [[zsell1),

which means, as s < sy4,
|2sell1 = (2v/54/s — 1)| 2],
hence the desired result. m

With s 4 defined in (8), for any signal x* of sparsity s < s 4, the sharpness bound (Sharp) then reads

ol = Nzl > (1= v/s7sa) llz = 2",

and the optimal restart scheme defined in Proposition 1.4 has complexity

. « e
il = el < ex (= (1= V3753) 52 ) o

which means that, given a sensing matrix A with recovery threshold s 4, the sparser the signal, the faster the
algorithm.

Precise estimates of the diameter of random sections of norm balls can be computed using classical
results in geometric functional analysis. The low M™* estimates of Pajor and Tomczak-Jaegermann [1986]
(see [Vershynin, 2011, Theorem 3.1] for a concise presentation) show that when & C RP is a random
subspace of codimension n (e.g. the null space of a random matrix A € R™*P), then

1
diam(B/NE)<c o8p
n

with high probability, where ¢ > 0 is an absolute constant. This means that the recovery threshold s4
satisfies

sa > n/(c*logp),
with high probability and leads to the following corollary.

Corollary 1.7. Given a random sampling matrix A € R"*P and a signal x* with sparsity s < n/(c?log p),
(Restart) scheme with optimal parameters defined in (4) outputs a point 3 such that

I
19l = 12 < exp (— (1 . \/?) : \/ﬁN) o,

with high probability, where c is a universal constant and N is the total number of iterations.
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This means that the complexity of the optimization problem (/; recovery) is controlled by the oversam-
pling ratio n/s. In other words, while increasing the number of samples increases the time complexity of
elementary operations of the algorithm, it also increases its rate of convergence.

2. RENEGAR’S CONDITION NUMBER AND RESTRICTED SINGULAR VALUES

We first gave concrete evidence of the link between optimization complexity and recovery performance
for the exact recovery problem by highlighting sharpness properties of the objective around the true signal,
given by the null space condition. We now take a step back and consider results on the underlying conic
geometry of recovery problems that also control both computational and statistical aspects.

On the statistical side, minimal conically restricted singular values are known to control recovery perfor-
mance in robust recovery problems. On the computational side, Renegar’s condition number, a well known
computational complexity measure for conic convex programs, controls the cost of obtaining optimality
certificates for exact recovery and the sharpness of exact recovery problems (hence computational complex-
ity of the (Restart) scheme presented in the previous section). Numerical experiments will then illustrate its
relevance to control numerous other classical algorithms. By observing that minimal conically restricted sin-
gular values match the worst case of Renegar’s condition number on sparse signals, our analysis shows once
more that one single geometrical quantity controls both statistical robustness and computational complexity
of recovery problems.

2.1. Conic linear systems. Conic linear systems arise naturally from optimality conditions of the exact
recovery problem. To see this, define the tangent cone at point = with respect to the ¢1 norm, that is, the set
of descent directions for || - ||; at z, as

T(x) =cone{z : ||z + 2|1 < ||z]1} (10)

As shown for example by Chandrasekaran et al. [2012, Prop 2.1] a point x is then the unique optimum of
the exact recovery problem (¢; recovery) if and only if Null(A) N 7 (xz) = {0}, that is, there is no point
satisfying the linear constraints that has lower ¢; norm than x. Correct recovery of an original signal x* is
therefore certified by the infeasibility of a conic linear system of the form

find =z
st. Az=0 (Pac)
zeC, z#0,

where C'is a closed convex cone and A a given matrix. For both computational and statistical aspects we
will be interested in the distance to feasibility. On the computational side this will give a distance to ill-
posedness that plays the role of a condition number. On the statistical side it will measure the amount of
perturbation that the recovery can handle.

Definition 2.1 (Distance to feasibility). Writing Mo = {A € R"*P : (Pa ) is infeasible}, distance to
feasibility is defined as
oc(A) éiAng{HAAHg t A+ AA ¢ Me}. (11)

A geometric analysis of the problem explicits the distance to feasibility in terms of minimal conically
restricted singular value, as recalled in the following lemma.

Lemma 2.2. Given a matrix A € RP*™ and a closed convex cone C, the distance to feasibility of (Pac) is
given by
oc(A) = min ||Azls. (12)
zeC

llzll2=1
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Proof. We recall the short proof of Amelunxen and Lotz [2014, Lemma 3.2]. Similar results have
been derived by Freund and Vera [1999b, Theorem 2] and Belloni and Freund [2009, Lemma 3.2]. Let
z € C, with ||z||2 = 1, achieve the minimum above. Then AA = —AzzT satisfies (A + AA)z = 0, so
A+ AA ¢ Mc and

oc(A) < [[AAllz = [|Az|2]z[l2 = min [|Az|2.
zeC
llzllz2=1
On the other hand denote A A a perturbation such that A + AA ¢ M. Then there exists z € C'\ {0} such
that (A + AA)z = 0. Thus we have

AA A
I8elly 1Al oy g,
EIEE
ll= ||2 1

Taking the infimum on the left-hand side over all A A such that A + AA ¢ M concludes the proof. m

|AA]2 =

Expression (12) writes distance to infeasibility as a cone restricted eigenvalue. Minimal cone restricted
eigenvalues also directly characterize recovery performance as we recall now.

2.2. Recovery performance of robust recovery. The previous section showed that recovery of a signal «*
is ensured by infeasiblity of the conic linear system (P4 7(,+)), i.e. positiveness of the minimal conically
restricted singular value o7« )(A) We now show how this quantlty also controls recovery performance in
the presence of noise. In that case, the robust recovery problem attempts to retrieve an original signal z* by
solving

minimize ||z

subjectto || Az — bl|2 < 0| A]|2,
in the variable x € RP, with the same design matrix A € R"*P, where b € R™ are given observations
perturbed by noise of level 6 > 0. The following classical result then bounds reconstruction error in terms
of UT(:{:*) (A)

(Robust ¢; recovery)

Lemma 2.3. Given a coding matrix A € R"*P and an original signal x*, suppose we observe b = Ax* +w
where ||wl||2 < 6||Al|2 and denote an optimal solution of (Robust ¢ recovery) by Z. If the minimal singular
value O‘T(m*)(A) in (12) restricted to the tangent cone T (z*) in (10) is positive, the following error bound
holds:

0| A
12— s < 2 [ Al

_— 13
T o7 (A) (13

Proof. We recall the short proof of Chandrasekaran et al. [2012, Prop. 2.2]. Both & and x* are feasible
for (Robust ¢; recovery) and & is optimal, so that ||Z||; < ||z*||;. Thus, the error vector & — z* is in the
tangent cone 7 (z*). By the triangle inequality,

[A(E = 2%) |2 < [[AZ = bl}2 + [[Az™ = b]l2 < 25[| A2
Furthermore, by definition of o7(,+)(A),
[A(E = 2%)[l2 = o7(2=)(A) [[£ = 27 |2

Combining the two concludes the proof. m

Therefore the robustness of the coding matrix A on all s-sparse signals is measured by

ns(4) = inf Znglg: | Az]]2. (14)
lzll2=

Expression of this minimal conically singular value can the be simplified by identifying the tangent cones
on s-sparse signals, as done in the following lemma.
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Lemma 2.4. For any subset S C [1,p], let
Es={z:|zseli <llzsll}  and  Fs= |J T(),

T:T=Tg
then Eg = Fg.
Proof. Let z € £g, take © = —zg, then
o+ zl[1 = [lzsell1 < [lzslly = [[=]1-

Therefore z € T (z) C Fs asz = zg.
Conversely let z € Fg, and x € RP, with z = zg, such that z € T (z). Then

[+ 2l = llz + zslls + llzselly = [lzlln = 2]l + [[zs¢ -

As z € T (x), this implies ||zg<||1 < ||zs]|1, so z € Es and we conclude that E¢ = Fs. m

Therefore, the previous expression for the minimal conically restricted singular value (14) can be equiv-
alently stated as

us(A) = min min Azlls. (15)
o(4) SChpl  Ilzselh<llzslh Az
Card(S)<s [|z]|2=1

This quantity was introduced in [Bickel et al., 2009] and further explored in e.g. [Van De Geer and
Biihlmann, 2009]. Bickel et al. [2009] notably showed that it controls estimation performance of LASSO
and Dantzig selector. Observe that positiveness of 115(A) is equivalent to (NSP) at order s with constant 1
which shows necessity of (NSP) for sparse recovery.

Since both null space property and conically restricted singular values are necessary and sufficient condi-
tions for exact recovery they may have been linked previously in the literature. Here we derive estimates for
the constant in (NSP) from the minimal cone restricted singular value using tools form conic linear systems.
We search for « such that (NSP) is satisfied at order s. Equivalently we search for o such that for any
support .S of cardinality at most s, the conic linear system

find =z
st. Az=0 (16)
[zselly < allzsll1, 2 #0
is infeasible. Notice that system (16) for o > 1 is a perturbed version of the case o = 1, so the problem
reduces to studying the sensitivity to perturbations of conic linear systems as shown in the following lemma.

Lemma 2.5. Given a matrix A € R"*P and an integer s € [1,p], if the minimal conically restricted
singular value pgs(A) in (14) and (15) is positive, then A satisfies (NSP) at order s for any constant

-1
Us (A) >
a < <1 — .
1All2
Proof. For a support S of cardinality at most s, write P the orthogonal projector on this support (that is,

Pr = zg), P = I — P its orthogonal projector and define the closed convex cone Cs = {z : [[zsc[1 <
llzs|l1}. Given o > 1,denote H = o~ 'P + P =1— (1 — a~!)P. Observe that

{z ¢ llzselly < allzs]li} = HCs.

Therefore, the conic linear system (16) reads

find =z
st. Az=0
z€ HCg, z #0.
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As H is invertible, this is equivalent to

find =z
st. AHz=0 a7
z€Cg, z#0.
Therefore, if the conic linear system
find 2
st. Az=0
z€Cg, 2#0

is infeasible, that is ocg (A) > 0, by Lemma 2.2, which is true for ps > 0, then by definition of the distance
to feasibility, (17) is also infeasible provided || AH — Al|s < o¢4(A), which holds for any o > 1 such that

(1—a™)[AP|2 < acy(A).
2, infeasibility is ensured in particular for any « such that
0Cs (A) < oL

Using that || AP < ||A

1— <«
1A]l2
To ensure infeasibility of the conic linear systems (16) for any support S, it suffices to take « such that
fs(A) -1
1-— <a .
1A]l2

This means that (NSP) at order s is satisfied for any
-1
us(A)>
a<|(1-—
( [Al2

where we used that, by definition of the minimal conically restricted singular value, p5(A) < ||A||2 (in case
of equality (NSP), will be satisfied for any o > 1). m

We now relate the minimal cone restricted singular value to computational complexity measures.

2.3. Computational complexity of recovery problems. Computational complexity for convex optimiza-
tion problems is often described in terms of polynomial functions of problem size. This produces a clear
link between problem structure and computational complexity but fails to account for the nature of the data.
If we use linear systems as a basic example, unstructured linear systems of dimension n can be solved with
complexity O(n?) regardless of the matrix values, but iterative solvers will converge much faster on systems
that are better conditioned. The seminal work of Renegar [1995b, 2001] extends this notion of condition-
ing to optimization problems, producing data-driven bounds on the complexity of solving conic programs,
and showing that the number of outer iterations of interior point algorithms increases as the distance to
ill-posedness decreases.

2.3.1. Renegar’s condition number. Renegar’s condition number [Renegar, 1995b,a; Pefia, 2000] provides
a data-driven measure of the complexity of certifying infeasibility of a conic linear system of the form
presented in (Pa ) (the larger the condition number, the harder the problem). It is rooted in the sensible
idea that certifying infeasibility is easier if the problem is far from being feasible. It is defined as the scale
invariant reciprocal of the distance to feasibility o (A), defined in (11), of problem (P, ¢), i.e.

a Al .
Re(A) = ol A) | Al|2/ \\%181 | Az]|2. (18)
z||o=

Notice that, if C' were the whole space R?, and if AT A were full-rank (never the case if n < p), then o (A)

would be the smallest singular value of A. As a result, R (A) would reduce to the classical condition

number of A (and to co when AT A is rank-deficient). Renegar’s condition number is necessarily smaller
11



(better) than the latter, as it further incorporates the notion that A need only be well conditioned along those
directions that matter with respect to C'.

2.3.2. Complexity of certifying optimality. In a first step, we study the complexity of the oracle certifying
optimality of a candidate solution z to (¢ recovery) as a proxy for the problem of computing an optimal
solution to this problem. As mentioned in Section 2.1, optimality of a point z is equivalent to infeasibility
of

find =z
st. Az=0 (Pa,7(x))
z €T (x), z+#0,

where the tangent cone 7 (z) is defined in (10). By a theorem of alternative, infeasibility of (P, 7)) is
equivalent to feasibility of the dual problem

find y
s.t. ATy € int(T(x)°), (Da7(x))

where 7 (z)° is the polar cone of 7 (). Therefore, to certify infeasibility of (P 7 (,)) it is sufficient to
exhibit a solution for the dual problem (D 7(,))-

Several references have connected Renegar’s condition number and the complexity of solving such conic
linear systems using various algorithms [Renegar, 1995b; Freund and Vera, 1999a; Epelman and Freund,
2000; Renegar, 2001; Vera et al., 2007; Belloni et al., 2009]. In particular, Vera et al. [2007] linked it to the
complexity of solving the primal dual pair (P 7(,))—(Da 7(,)) using a barrier method. They show that the
number of outer barrier method iterations grows as

O (Vplog (pR7(x)(4))) ,

where p is the barrier parameter, while the conditioning (hence the complexity) of the linear systems arising
at each interior point iteration is controlled by R, (A)2. This link was also tested empirically on linear
programs using the NETLIB library of problems by Ordéfiez and Freund [2003], where computing times
and number of iterations were regressed against estimates of the condition number computed using the
approximations for Renegar’s condition number detailed by Freund and Vera [2003].

Studying the complexity of computing an optimality certificate gives insights on the performance of
oracle based optimization techniques such as the ellipsoid method. We now show how Renegar’s condition
also controls the number steps in the (Restart) scheme presented in Section 1.2.

2.3.3. Complexity of restart scheme with Renegar’s condition number. Convergence of the (Restart) scheme
presented in Section 1.2 is controlled by the sharpness of the problem deduced from (NSP). We now ob-
serve that sharpness is controlled by the worst case Renegar condition number for the optimality certificates
(Pa.7(2)) on all s-sparse signals, defined as

Rs(4) = Sup_ Ry (4) = 14112/ s(4) (19)

Connecting Lemmas 2.3, 2.5 and Proposition 1.4 we get the following corollary.

Corollary 2.6. Given a coding matrix A € R™*P and a sparsity level s > 1, if Rs(A) < 400 in (19) then
optimal (Restart) scheme achieves an € precision in at most

O((2Rs(A) —1)loge™)
iterations.

This shows that Renegar’s condition number explicitly controls the convergence of an algorithmic scheme
devoted to the exact recovery problem (/1 recovery), through its link with sharpness.
On the statistical side, we observed that the minimal conically restricted singular value controls recovery
performance of robust procedures and that its positivity ensures exact recovery. On the computational side,
12



we presented the role of Renegar’s condition number as a computational complexity measure for sparse
recovery problems. A key observation is that the worst case of Renegar’s condition number R s(A), defined
in (19), matches the minimal conically restricted singular value defined in (14). Once again, a single quantity
controls both aspects. This at least partially explains the common empirical observation (see, e.g., Donoho
and Tsaig [2008]) that problem instances where statistical estimation succeeds are computationally easier to
solve.

2.4. Computational complexity for inexact recovery. When the primal problem (P, 7(.,) is feasible, so
that o7(;)(A) = 0, Renegar’s condition number as defined here is infinite. While this correctly captures
the fact that, in that regime, statistical recovery does not hold, it does not properly capture the fact that,
when (P 7(,)) is “comfortably” feasible, certifying so is easy, and algorithms terminate quickly (although
they return a useless estimator). From both a statistical and a computational point of view, the truly delicate
cases correspond to problem instances for which both (P4 7)) and (D4 7(,)) are only barely feasible or
infeasible. This is illustrated in simple numerical example by Boyd and Vandenberghe [2004, §11.4.3] and
in our numerical experiments, corresponding to the peaks in the CPU time plots of the right column in
Figure 4: problems where sparse recovery barely holds/fails are relatively harder. For simplicity, we only
focused here on distance to feasibility for problem (P 7(,)). However, it is possible to symmetrize the
condition numbers used here as described by Amelunxen and Lotz [2014, §1.3], where a symmetric version
of the condition number is defined as

5 : Al || Al
R7(z)(A) = min ; :
- 77w (A) T (4)

where Jf;(m) (A) and a%x) (A) denote the distance to feasibility of respectively (P4 7,)) and (Dp 7(y)).
This quantity peaks for programs that are nearly feasible/infeasible.

As we noticed in Section 1.2, a Lojasiewicz inequality (6) for the (¢; recovery) problem is sufficient to
ensure linear convergence of the restart scheme. Connecting the symmetrized Renegar condition number to
the Lojasiewicz inequality constant ¥ may then produce complexity bounds for the restart scheme beyond the
recovery case. Lojasievicz inequalities for convex programs have indeed proven their relevance. They were
used by Fercoq and Qu [2016]; Roulet and d’ Aspremont [2017] to accelerate classical methods, in particular
on the LASSO problem. Lower computational bounds for convex optimization problems satisfying it were
also studied by Nemirovskii and Nesterov [1985, Page 6]. Although the Lojasievicz inequality is proven to
be satisfied by a broad class of functions [Bolte et al., 2007], quantifying its parameters is still a challenging
problem that would enable better parameter choices for appropriate algorithms.

2.5. Other algorithms. The restart scheme presented in Section 1.2 is of course not the only one to solve
problem (¢; recovery) in practice and it has not been analyzed in the noisy case. However, we will ob-
serve in the numerical experiments of Section 4 that the condition number is correlated with the empirical
performance of efficient recovery algorithms such as LARS [Efron et al., 2004] and Homotopy [Donoho
and Tsaig, 2008; Asif and Romberg, 2014]. On paper, the computational complexities of (¢; recovery)
and (Robust ¢; recovery) are very similar (in fact, infeasible start primal-dual algorithms designed for solv-
ing (/1 recovery) actually solve problem (Robust /1 recovery) with § small). However in our experiments,
we did observe sometimes significant differences in behavior between the noisy and noiseless case.

3. GENERALIZATION TO COMMON SPARSITY INDUCING NORMS

In this section we generalize previous results to sparse recovery problems in (non-overlapping) group
norms or nuclear norm. Group norms arise in contexts such as genomics to enforce the selection of groups
of genes (e.g., Obozinski et al. [2011] and references therein.) The nuclear norm is used for low-rank
estimation (e.g., Recht et al. [2008] and references therein.) We use the framework of decomposable norms
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introduced by Negahban et al. [2009] which applies to these norms. This allows us to generalize the null
space property and to derive corresponding sharpness bounds for the exact recovery problem in a broader
framework. We then again relate recovery performance and computational complexity of these recovery
problems.

3.1. Decomposable norms. Sparsity inducing norms have been explored from various perspectives. Here,
we use the framework of decomposable norms by Negahban et al. [2009] to generalize our results from
£1 norms to non-overlapping group norms and nuclear norms in a concise form. We then discuss the key
geometrical properties of these norms and potential characterization of their conic nature.

We first recall the definition of decomposable norms by Negahban et al. [2009] in terms of projectors.

Definition 3.1. Decomposable norms Given a Euclidean space E, a norm ||.|| on E is said to be decom-
posable if there exists a family of orthogonal projectors P such that

(i) to each P € P is associated a non-negative weight n)(P) and an orthogonal projector P such that
PP =PP =0, and - -
(ii) forany x € E and P € P, |Px + Pz| = ||Px| + || Px| .

A signal x is then said to be s-sparse if there exists P € P, such that n(P) < s and Px = .

We now detail the family of projectors for some decomposable norms of interest.

£1 norm. In the the /; norm case, £ = R? and P is the set of projectors on coordinate subspaces of R?, that
is, P contains all projectors which zero out all coordinates of a vector except for a subset of them, which
are left unaffected. The maps P are the complementary projectors: P = I — P. Property (ii) is the classical
decomposability of the ¢; norm. Naturally, the complexity level corresponds to the number of coordinates
preserved by P, i.e., v(P) = Rank(P). These definitions recover the usual notion of sparsity.

Group norms. Given a partition G of [1,p] in (non-overlapping) groups g C [1,p], the group norm is
defined for z € R? as
lz] =D llzglrs

geG
where ||z||, is the £,-norm of the projection of = onto the coordinates defined by g. The cases r = 2, 00
correspond respectively to ¢1 /02 and ¢1 /{~, block norms. Here, E = RP and the family P is composed of
orthogonal projectors onto coordinates defined by (disjoint) unions of groups g, and P = I — P. Formally,
to each P we associate F' C G such that for any « € E, (Px), = z4if g € F and (Pz), = 0 otherwise.
Decomposability (ii) then clearly holds. To each group g we associate a weight 7, and for a projector P € P

with associated F' C G, n(P) = deF 7g- A classical choice of weightsis , = 1 forall g € G.

Nuclear norm. The nuclear norm is defined for matrices X € RP*? with singular values o;(X) as
min(p,q)
IXII= Y ow(X).
k=1
Here ' = RP*4 and its associated family of projectors contains P such that
P: X~ F)leftXPrighta

and
P: X~ (I - Pleft)X(I - Pright)a
where Py € RP*P and Pyigny € R?7%? are orthogonal projectors. Their weights are defined as n(P) =
max (Rank(Pef ), Rank(Prignt)) defining therefore s-sparse matrices as matrices of rank at most s. As
P and P project on orthogonal row and column spaces, condition (ii) holds.
Decomposable norms offer a unified nomenclature for the study of sparsity inducing norms. However,

they appear to be essentially restricted to the three examples presented above. Moreover, it is not clear if
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their definition is sufficient to characterize the conic nature of these norms, in particular in the nuclear norm
case that will require additional linear algebra results. In comparison, the framework proposed by Juditsky
et al. [2014] can encompass non-latent overlapping groups. For future use, we simplify the third property of
their definition [Juditsky et al., 2014, Section 2.1] in Appendix B. It is not clear how this view can be used
for latent overlapping group norms presented by Obozinski et al. [2011] applied in biology. Moreover the
sufficient conditions that Juditsky et al. [2014] present are sufficient but not necessary in the nuclear norm
case. Better characterizing the key geometrical properties of these norms is therefore a challenging research
direction.

3.2. Sharpness and generalized null space property. From now on, we assume that we are given an am-
bient Euclidean space F with one of the three decomposable norms ||. || presented in previous section, i.e. {1,
group or nuclear norm, and the associated family of orthogonal projectors P as introduced in Definition 3.1.
We study the sparse recovery problem

minimize ||z|

subjectto  A(z) =0
in the variable x € E, where A is a linear operator onto R™ and the observations b € R™ are taken from an
original point z* such that b = A(z*). We begin by generalizing the null space property in this setting.

(Sparse recovery)

Definition 3.2. (Generalized Null space Property) A linear operator A on E satisfies the Generalized
Null Space Property (GNSP) for orthogonal projector P € P with constant o > 1 if and only if for any
z € Null(A) \ {0} such that z = Pz + Pz,

ol Pz|| < || Pz]|. (GNSP)
The linear operator A satisfies the Generalized Null Space Property at order s with constant o > 1 if it
satisfies it for any P such that n(P) < s.

Notice that if P = I — P, the condition z = Pz + Pz is not restrictive. However it will be useful to
prove necessity of (GNSP) for the nuclear norm. In that case, observe that it is equivalent to the condition
introduced by Oymak and Hassibi [2010], i.e.

min(pyq)

Vz € Null(A) \ {0}, aZaz Z oi(2),

i=s+1

where ;(2) are the singular values of z in decreasing order. Notice also that we recover the classical
Definition NSP in the ¢; case. The sharpness bound then easily follows if P = I — P. In the case of the
nuclear norm it requires additional linear algebra results.

Proposition 3.3. Given a linear operator A that satisfies (GNSP) at order s with constant «, if the original
point x* is s-sparse, then for any x € E satisfying A( ) = b, x # z¥, we have

]| = "] >

o — a7
This implies recovery, i.e., optimality of x* for (Sparse recovery).

Proof. Denote P such that n(P) < s and Px* = z*, which defines its sparsity. Let  # z* such
that A(x) = b,s0 z = x — z* € Null(A) and = 7é 0. IfP =1—- P,z = Pz + Px and using the
decomposability (ii), we have

=]l = [|[Pz* + Pz|| + || Pz]
> ||lz*]| = [[P=] + [|P=]]
= [l&*[| + ll=]l = 2[|P=].

(1 + «)||Pz||. The result follows by arranging the terms.
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If ||.|| is the nuclear norm and P # I — P, as in [Oymak and Hassibi, 2010, Lemma 6], we use that
(see Horn and Johnson [1990, Theorem 7.4.9.1])

min(p,q)

le* 42> Y o) — ou(2)l,
i=1
where o;(z*), 0;(z) denote the singular values in decreasing order of respectively x* and z. Then, using
that * has rank at most s,

min(p,q)

Izl =) loi(@*) —ai(2)| + D 0il2)
i=1 i=s+1
s s min(p,q)
> i) =) oiz) + Y 0il2)
=1 =1 i=s+1

= [l2*[| - lQ=]l + Q=I,

where (@ is the projector on the s largest singular directions of z and therefore () the projector onthen —s
others. These can be defined using the singular value decomposition of z such that z = @z + @z. Then,
using (GNSP) and the decomposability (ii) concludes the proof as above. m

This shows that the sharpness bound of the form (Sharp) generalizes to non-overlapping group norms
and the nuclear norm. Proposition 1.3 can also be generalized directly to this case with our definition of
(GNSP). The smoothing argument and restart schemes developed in Section 1.2 can then be applied with
similar linear convergence rates that essentially depend on the sharpness constant. By looking at the diameter
of the section of the unit ball of the norm by the null space of A, one may also show that the oversampling
ratio controls the sharpness bound as in Section 1.3.

As in Section 2, we now study the conic quantities which control statistical and optimization aspects.

3.3. Robust recovery performance and computational complexity. In this section, for a Euclidean space
E and x € E we denote ||z |2 the {2 norm of its coefficients, if E is a matrix space ||z||2 is then the Frobenius
norm of .

3.3.1. Generalized cone restricted singular value. We begin by addressing the recovery performance of
robust sparse recovery problems that reads

minimize ||z||

subjectto || A(z) — bl|2 < 0||A]|2,
in the variable x € E, with the same linear operator A, where the observations b € R" are affected by noise
of level 6 > 0. For a linear operator A from E to R"™, we denote its operator norm with respect to || - ||,
[All2 = supep: ay),<1 [ A(2)]2-

The results of Section 2.2 transpose directly to the general case by replacing || - ||; by || - ||. Precisely, as-

suming that b = Ax* +w where ||wl||2 < || A|2, an optimal solution Z of problem (Robust sparse recovery)
satisfies the error bound

(Robust sparse recovery)

. 5|l A
i 2o < 2 Ak
o7 (@) (A)

where the tangent cone is defined as
T(x) = cone{z : [z + 2| <=},

and robust recovery of s-sparse signals is therefore controlled by

J(A) = inf inf in || Az|. 20
ps(A) per o ey e, Zéﬂ;&)ll 2|2 (20)
lzll2=1
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The key point is then to characterize the tangent cones of s-sparse signals. First, this will allow statistical
estimations of us(A). Second, it will enable us to estimate the constant (GNSP), hence sharpness of the
exact recovery problem and computational complexity of associated restart schemes. This is the aim of the
following lemma.

Lemma 3.4. For a given sparsity s, write

E= |J A{z€E:z=Pz+ Pz |Pzf <|Pzll}
PeP:n(P)<s
and
F = U U T ().
PeP:n(P)<s z€F:xz=Px
Then & = F.

Proof. Let z € £ and P € P such that z = Pz + Pz. Taking x = — Pz we get
lz + 2l = | P2]| < || P2]| = ||=|l.
Therefore 2 € T(x) C F. Conversely, if z € F, denote z € FE and P € P such that z = Pz, z € T (2)
and n(P) < s. If P =1 — P, by decomposability (ii),
|z + 2ll = | Pz + Pz + [|[Pz]| = [l2]| - [|Pz]| + || Pz]|.
Since z € T (x), we have ||z + z|| < ||z||; combined with the previous statement, this implies that z € {z €

E:z= Pz+Pz ||Pz|| < ||Pz||} C &€ Now,if ||| is the nuclear norm, as in the proof of Proposition (3.3),
we have

o+ 2] > ||zl = [|Q=[l + [|Q=Il,
where () is the projector on the s largest singular directions of z given by the singular value decomposition

of 2, so that 2 = Qz + Qz. Therefore, z € T (z) implies z € {z € E: 2 = Q2+ Qz, ||Qz| < ||Qz||} C €.
In all cases we have therefore proven £ = F. m

Using the previous lemma, the minimal cone restricted singular value reads:

A) = inf min Az||o. 21
() PeP,n(P)<s z€E, ||z]|l2=1 41l D
z=Pz+Pz, ||Pz| <[ Pz||
This quantity can then be linked to the (GNSP) constant, as shown in the following lemma.
Lemma 3.5. Given a linear operator A on E, If the minimal cone restricted singular value s(A), defined
in (20) and reformulated in (21), is positive, then A satisfies (GNSP) at order s for any constant

o< (1 3 us(A)>1‘

[Al2

Proof. For a given P € P, denote Cp = {z € Im(P) + Im(P) : ||Pz|| < ||Pz||} and define for o > 1
the conic linear system
find 2 € Im(P) + Im(P)
st A(z) =0 (22)
|1Pz]] < af|Pzl|, = # 0.

Infeasibility of this system for all P € P such that n(P) < s is then equivalent to (GNSP) at order s with
constant . Denote H = I — (1 — o~ !) P such that

{2 € Im(P) + Im(P) : | Pz|| < a|P2||} = HCp.
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Since H is invertible, we observe as in Lemma 2.5 that the conic linear system (22) is equivalent to

find z € Im(P) + Im(P)
st. A—(1—-aHAPz=0 (23)
ze€Cp, z#0.

If this problem is infeasible for v = 1, i.e., its distance to feasibility pc, (A) defined in (11) is positive, then
(23) is infeasible for any o > 1 such that

(1= a™AP| < nep(A).
Now, if 115(A) > 0 the conic linear system (22) will still be infeasible for any
-1
us(A)>
a< <1 — .
[P
Thus, A satisfies (GNSP) at order s with « as above. m

3.3.2. Renegar’s condition number. On the computational side, denote R, (A) the Renegar condition
number of the conic linear system

find =z
st.  A(z) =0
zeT(x), z#0,
and the worst-case Renegar condition number on s-sparse signals
Rs(A) = sup sup  R(a)(A) = [[All2/ps(A).

PeP:n(P)<s z€k: Pr=x

First, Renegar’s condition number plays the same role as before in computing optimality certificates for the
exact recovery problems. Then, combining Lemma 3.5 and Proposition 3.3 shows that the sharpness bound
for exact recovery reads

]| = =" >

e~
—— |z -2z
2Rs(A) — 1
This sharpness will then control linearly convergent restart schemes for the exact recovery problem.
Overall then, as established earlier in this paper, a single geometric quantity—namely, the minimal cone
restricted singular value—appears to control both computational and statistical aspects. We now illustrate

this statement on numerical experiments.

4. NUMERICAL RESULTS

In this section, we first test the empirical performance of restart schemes and its link with recovery
performance. We then perform similar experiments on Renegar’s condition number.

4.1. Sharpness & restart for exact recovery. We test the (Restart) scheme on ¢1-recovery problems with
random design matrices. Throughout the experiments, we use the NESTA code described in [Becker, Bobin
and Candes, 2011] as the subroutine in the restart strategy. We generate a random design matrix A € R™*P
with i.i.d. Gaussian coefficients. We then normalize A so that AAT = I (to fit NESTA’s format) and
generate observations b = Ax* where x* € RP is an s-sparse vector whose nonzero coefficients are all
ones. We denote  the solution given by a common solver run at machine precision and plot convergence
f(z) — f* = ||lze|lr — ||2])1 (scaled such that f(zo) — f(&) = 1).
18



4.1.1. Restart scheme performance. First we compare in Figure 1 the practical scheme presented in Sec-
tion 1.2.2 with a plain implementation of NESTA without restart or continuation steps. Dimensions of the
problem are p = 500, n = 200 and s = 30. Starting from zo = A”b, we use ey = ||xo]|1 as a first initial
guess on the gap and perform a grid search of step size h = 4 for a budget of N = 500 iterations. The
first and last schemes of the grid search were not run as they are unlikely to produce a nearly optimal restart
scheme. The grid search can be parallelized and the best scheme found is plotted with a solid red line. The
dashed red line represents the convergence rate accounting for the cost of the grid search. For the plain
implementation of NESTA, we used different target precisions. These control indeed the smoothness of the
surrogate function f. which itself controls the step size of Nesterov’s algorithm. Therefore a high precision
slows down the algorithm. However for low precision NESTA can be faster but will not approximate well
the original signal. Also, the theoretical bound (2) might be very pessimistic, as the surrogate function f,
may approximate the £; norm for the points of interest at a much better accuracy than e.

[l = f

==== Plain NESTA low -
=== Plain NESTA high
= Restart

== Fair restart

10710 ‘ ‘ : :
0 100 200 300 400 500

Inner iterations

FIGURE 1. Best restarted NESTA (solid red line) and overall cost of the practical restart
schemes (dashed red line) versus plain NESTA implementation with low accuracy ¢ = 107!
(dotted black line) and higher accuracy € = 10~3 (dash-dotted black line) for a budget of
500 iterations.

Overall, we observe a clear linear convergence of the restart scheme that outperforms the plain implemen-
tation. This was already observed by Becker, Bobin and Candes [2011] who developed their continuation
steps against which we compare in Figure 2. We used default options for NESTA, namely 5 continuation
steps with a stopping criterion based on the relative objective change in the surrogate function (specifically,
the algorithm stops when these changes are lower than the target accuracy, set to 10~%). We compare contin-
uations steps and best restart found by grid search for different dimensions of the problem, we fix p = 500,
s = 30 and vary the number of samples n = {200, 300}. Continuation steps converge faster with better
conditioned problems, i.e., more samples. Otherwise they may get stuck due to the termination criterion.
Notice that a lot of parameters are involved for both algorithms, in particular the target precision may play
an important role, so that more extensive experiments may be needed to refine these statements.

Our goal here is to provide a simple but strong baseline with theoretical guarantees for recovery. Improv-
ing on it, as Fercoq and Qu [2016] did for LASSO, is an appealing research direction. Sharpness may be
used for example to refine the heuristic strategy of the continuations steps.
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FIGURE 2. Best restarted NESTA (solid red line) and overall cost of the practical restart
schemes (dashed red line) versus NESTA with 5 continuation steps (dotted blue line) for a
budget of 500 iterations. Crosses represent the restart occurrences. Left: n = 200. Right :

n = 300.
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4.1.2. Convergence rate and oversampling ratio. We now illustrate the theoretical results of Section 1.3
by running the practical scheme presented in Section 1.2.2 for increasing values of the oversampling ratio
7 = n/s. In Figure 3, we plot the best scheme found by the grid search, that approximates the optimal
scheme, for a budget of N = 500 iterations. We use a fine grid of step size h = 2. Other algorithmic
parameters remain unchanged: xo = A”7'b and €y = ||z||1. We fix the dimension p = 1000 and either make
n vary for a fixed sparsity s = 20 or make s vary for a fixed number of samples n = 200. In both cases we
do observe an improved convergence for increasing oversampling ratio 7. Notice that linear convergence is
observed even for 7 < log p, that is, outside the recovery region. This suggests that sharpness may also hold
in this case in the form of a Lojasiewicz inequality as mentioned in Sections 1.2 and 2.3.
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TABLE 1. Time to achieve ¢ = 1072 by the best restart scheme for increasing number of
samples n

Number of samples n 100 200 400

Time in seconds 72 - -
for f(xz) — f* < 1072 5.07-10 3.07-10 1.66 - 10

In table 1, we report the time needed to achieve an € = 10~2 precision for a fixed sparsity s = 20 and
increasing number of samples n = {100, 200,400}. While the cost of core operations (namely, matrix-
vector multiplications) increases with n, the overall time required to reach convergence decreases. In other
words, getting more samples increases the recovery performance at little or no computational cost.

4.2. Renegar’s condition number and compressed sensing performance. Our theoretical results showed
that Renegar’s condition number measures the complexity for the exact recovery problem (1). However it
does not a priori control convergence of the robust recovery problems defined in the introduction. This
numerical section aims therefore at analyzing the relevance of this condition number for general recovery
problems in the ¢; case, assuming that their complexity corresponds roughly to that of checking optimality
of a given point at each iteration, as mentioned in Section 2.3. We first describe how we approximate the
value of R (,+)(A) as defined in (18) for a given original signal z* and matrix A € R"*P. We then detail
numerical experiments on synthetic data sets.

4.2.1. Computing R (,+)(A). The condition number R, (A) appears here in upper bounds on compu-
tational complexities and statistical performances. In order to test numerically whether this quantity truly
explains those features (as opposed to merely appearing in a wildly pessimistic bound), we explicitly com-
pute it in numerical experiments.

To compute R, (A), we propose a heuristic which computes OT (%) (A) in (11) and (12), the value of
a nonconvex minimization problem over the cone of descent directions 7 (x*). The closure of the latter is
the polar of the cone generated by the subdifferential to the £;-norm ball at 2* [Chandrasekaran et al., 2012,
§2.3]. Let S C [1, p] denote the support of z* and s = Card(S). Then, with u = sign(z*),

T (z*) = cone {z € RP : zg = ug, zgc € [1, 1]”—5)}O = {2z €RP: [|zge[r < —ubzg = —UTZ} .
Thus, 7(,+)(A) is the square root of

min 27 ATAz st ||zla=1 and ||zse|1 < —u’ 2. (24)
z€RP

Let \ denote the largest eigenvalue of A7 A. If it were not for the cone constraint, solutions of this problem
would be the dominant eigenvectors of A\ — AT A, which suggests a projected power method [Deshpande
et al., 2014] as follows. Given an initial guess zy € R?, ||z¢||2 = 1, iterate

Zk1 = Projr( (AL — AT A)z) 2i+1 = i1/ Zk1ll2, (25)
where we used the orthogonal projector to 7 (z*),
Projr(pe (%) = in [z — 23 st eli < —u'z. 26
rojy(p) () =argmin [lz — Zll; st flasefs < —utz (26)
This convex, linearly constrained quadratic program is easily solved with CVX [Grant et al., 2001]. As

can be seen from KKT conditions, this iteration is a generalized power iteration [Luss and Teboulle, 2013;
Journée et al., 2008]

Zk+1 € arg max AL - ATA)z, st |z)a <1 and  |zse|1 < —ul 2.
z€RP
From the latter, it follows that ||Azx||2 decreases monotonically with k. Indeed, owing to convexity of

f(z) = 12T(A\I — AT A)z, we have f(z) — f(z) > (2 — 2z)T(AI — AT A)z,. The next iterate z =
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Zk+1 maximizes this lower bound on the improvement. Since z = zj is admissible, the improvement is
nonnegative and f(z) increases monotonically.

Thus, the sequence || Azy||2 converges, but it may do so slowly, and the value it converges to may depend
on the initial iterate zg. On both accounts, it helps greatly to choose zg well. To obtain one, we modify (24)
by smoothly penalizing the inequality constraint in the cost function, which results in a smooth optimization
problem on the ¢5 sphere. Specifically, for small £1,2 > 0, we use smooth proxies h(z) = /a2 + &7 —
g1 ~ |z| and ¢(x) = e2log(1 + exp(z/e2)) ~ max(0,z). Then, with v > 0 as Lagrange multiplier, we
consider

min [ 42]5 +7 g CEEDIRICH)

We solve the latter locally with Manopt [Boumal et al., 2014], itself with a uniformly random initial guess
on the sphere, to obtain zy. Then, we iterate the projected power method. The value || Az||2 is an upper
bound on o7(,+)(A), so that we obtain a lower bound on R, (A). Empirically, this procedure, which is
random only through the initial guess on the sphere, consistently returns the same value, up to five digits of
accuracy, which suggests the proposed heuristic computes a good approximation of the condition number.
Similarly positive results have been reported on other cones by Deshpande et al. [2014], where the special
structure of the cone even made it possible to certify that this procedure indeed attains a global optimum
in proposed experiments. Similarly, a generalized power method was recently shown to converge to global
optimizers for the phase synchronization problem (in a certain noise regime) [Boumal, 2016; Zhong and
Boumal, 2017]. This gives us confidence in the estimates produced here.

4.2.2. Sparse recovery performance. We conduct numerical experiments in the ¢; case to illustrate the con-
nection between the condition number Ry (,+)(A), the computational complexity of solving (/; recovery),
and the statistical efficiency of the estimator (Robust /1 recovery). Importantly, throughout the experiments,
the classical condition number of A will remain essentially constant, so that the main variations cannot be
attributed to the latter.

We follow a standard setup, similar to some of the experiments by Donoho and Tsaig [2008]. Fixing the
ambient dimension p = 300 and sparsity s = ||z*||g = 15, we let the number of linear measurements n
vary from 1 to 150. For each value of n, we generate a random signal x* € R? (uniformly random support,
i.i.d. Gaussian entries, unit £5-norm) and a random sensing matrix A € R™*P with i.i.d. standard Gaussian
entries. Furthermore, for a fixed value 6 = 10~2, we generate a random noise vector w € R” with i.i.d.
standard Gaussian entries, normalized such that ||w||2 = 0||Al|2, and we let b = Ax* + w. This is repeated
100 times for each value of n.

For each triplet (A, z*, b), we first solve the noisy problem (Robust /; recovery) with the L1-Homotopy
algorithm (7 = 10~7) [Asif and Romberg, 2014], and report the estimation error || — z*||2. Then, we solve
the noiseless problem (1) with L1-Homotopy and the TFOCS routine for basis pursuit (1 = 1) [Becker,
Candés and Grant, 2011]. Exact recovery is declared when the error is less than 107>, and we report
the empirical probability of exact recovery, together with the number of iterations required by each of the
solvers. The number of iterations of LARS [Efron et al., 2004] is also reported, for comparison. For
L1-Homotopy, we report the computation time, normalized by the computation time required for one least-
squares solve in A, as in [Donoho and Tsaig, 2008, Fig. 3], which accounts for the growth in n. Finally,
we compute the classical condition number of A, x(A), as well as (a lower bound on) the cone-restricted
condition number R (,+)(A), as per the previous section. As it is the computational bottleneck of the
experiment, it is only computed for 20 of the 100 repetitions.

The results of Figure 4 show that the cone-restricted condition number explains both the computational
complexity of (/1 recovery) and the statistical complexity of (Robust ¢; recovery): fewer samples mean
bad conditioning which in turn implies high computational complexity. We caution that our estimate of
Rz (A) is only a lower bound. Indeed, for small 7, the third plot on the left shows that, even in the ab-
sence of noise, recovery of z* is not achieved by (Robust /1 recovery). Lemma 2.3 then requires R(,) (A)
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to be infinite. But the computational complexity of solving (/1 recovery) is visibly favorable for small n,
where far from the phase transition, problem (P, 7)) is far from infeasibility, which is just as easy to verify
as it is to certify that (P 7)) is infeasible when n is comfortably larger than needed. This phenomenon
is best explained using a symmetric version of the condition number [Amelunxen and Lotz, 2014] (omitted
here to simplify computations).

We also solved problem (¢; recovery) with interior point methods (IPM) via CVX. The number of iter-
ations appeared mostly constant throughout the experiments, suggesting that the practical implementation
of such solvers renders their complexity mostly data agnostic in the present setting. Likewise, the compu-
tation time required by L1-Homotopy on the noisy problem (Robust ¢; recovery), normalized by the time
of a least-squares solve, is mostly constant (at about 150). This hints that the link between computational
complexity of (/1 recovery) and (Robust ¢; recovery) remains to be fully explained.
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FIGURE 4. We plot the cone-restricted condition number of A (upper left), explaining both
the computational complexity of problem (¢; recovery) (right column) and the statistical
complexity of problem (Robust ¢ recovery) (second on the left). Central curves represent
the mean (geometric mean in log-scale plots), red curves correspond to 10th and 90th per-
centile. We observe that high computing times (peaks in the right column) are directly
aligned with instances where sparse recovery barely holds/fails (left), i.e. near the phase
transition around n = 70, where the distance to feasibility for problem (P 7)) also fol-
lows a phase transition.
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APPENDIX A. PRACTICAL OPTIMAL RESTART SCHEME

In Section 1.2 we quickly give optimal restart schemes in terms of a potentially non-integer clock. Following
corollary details optimal scheme for an integer optimal clock.

Corollary A.1. Given a coding matrix A € R™*? and an original signal x* € RP such that sharpness bound (Sharp)
is satisfied with v > 0, running Algorithm Restart with p* and t = [t*] where p* and t* are defined in (4) ensures
that after K > 1 restarts, i.e. N = K [t*] total number of iterations,

N~
glly — ||z*[|1 < exp | ———— ] €o- 27
il = el < exp (5 ) @
Proof. Denote § = [t*] —t* € [0,1[. As [t*] > t* (3) is ensured for p*. At the K™ restart, N = K (t* + J), and
190l = ll2*[l < e eo = exp(=N/(t" + 6)) < exp(~N/(t* + 1)).
Replacing t* by its value gives the result. m

APPENDIX B. REMARK ON SPARSITY INDUCING NORMS

We quickly discuss the framework of Juditsky et al. [2014] for sparsity inducing norms and show that it can be
simplified. We first recall the definition.

Definition B.1. (Sparsity structure [Juditsky et al., 2014]) A sparsity structure on a Euclidean space FE is defined
as anorm || - || on E, together with a family P of linear maps of E into itself, satisfying three assumptions:

(1) Every P € P is a projector, P? = P, B B

(2) Every P € P is assigned a weight v(P) > 0 and a linear map P on E such that PP = 0,

(3) Forany P € P and u,v € E, one has

1P*u + Pol|. < max([Jull, [lv].),
where || - ||« is the dual norm of || - | and P* is the conjugate mapping of the linear map P.

The last condition in Definition B.1 is arguably the least intuitive and following Lemma connects it with the more
intuitive notion of decomposable norm.

Lemma B.2. Condition (3) above, which reads
1P*u + Pol|« < max([lull« [lv].),
for any u,v € F, is equivalent to
[wl| = [[Pw]| + || Pwl],
foranyw € E.

Proof. Denote f : (u,v) — ||P*u + P*v||, and g : (u,v) — max(||u||, ||v]|+). Since f and g are non-negative,
continuous convex functions, f2/2 and g2 /2 are also convex continuous and following equivalences hold

f<g < %2§§ & (f;) >(922>a

using that for a convex continuous function h, h** = h. Now combining the conjugacy result for squared norm
[Boyd and Vandenberghe, 2004, Example 3.27] showing that the conjugate of a squared norm ||z||%/2 is the squared
conjugate norm ||z||2/2, with the result in [Rockafellar, 1970, Th. 16.3], we get

2\ 5
<2> (s,t):irul)f{||fw|\2/2:Pw:s,Pw:t}7

where the infimum is 400 if the constraints are infeasible. Then the dual of the norm g is (s,t) — ||s|| + ||t]| therefore
condition (3) is equivalent to
inf{ ] : Pw = s, Pw =t} > [sl| + [1t],
w
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for any s,t € E, which reads B
[w[| > || Pwl] + || Pw],

foranyw € E. m
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