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Introduction

• Classic Black & Scholes (1973) option pricing based on:

◦ a dynamic hedging argument
◦ a model for the asset dynamics (geometric BM)

• Sensitive to liquidity, transaction costs, model risk ...

• What can we say about derivative prices with much weaker assumptions?
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Static Arbitrage

Here, we rely on a minimal set of assumptions:

• no assumption on the asset distribution

• one period model

An arbitrage in this simple setting is a buy and hold strategy:

• form a portfolio at no cost today with a strictly positive payoff at maturity

• no trading involved between today and the option’s maturity
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What for?

• Data validation (e.g. before calibration), static arbitrage means market
data is incompatible with any dynamic model. . .

• Test extrapolation formulas

• In illiquid markets, find optimal static hedge
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Simplest Example: Put Call Parity

payoff
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− =
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Static Arbitrage: Calls

Also, necessary and sufficient conditions on call prices:

Suppose we have a set of market prices for calls C(Ki) = pi, then there is no
arbitrage iff there is a function C(K):

• C(K) positive

• C(K) decreasing

• C(K) convex

• C(Ki) = pi and C(0) = S

This is very easy to test. . .

A. d’Aspremont, INFORMS, San Francisco, Nov. 14 2005. 7



80 85 90 95 100 105 110 115 120
0

5

10

15

20

25

30

strike price

o
p
ti
o
n

pr
ic

e

Dow Jones index call option prices on Mar. 17 2004, maturity Apr. 16 2004
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Why?

Data quality...

• All the prices are last quotes (not simultaneous)

• Low volume

• Some transaction costs

Problem: this data is used to calibrate models and price other derivatives...
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Dimension n: Basket Options

• A basket call payoff is given by:

(

k
∑

i=1

wiSi − K

)+

where w1, . . . , wk are the basket’s weights and K is the option’s strike
price

• Examples include: Index options, spread options, swaptions...

• Basket option prices are used to gather information on correlation

We denote by C(w, K) the price of such an option, can we get conditions to
test basket price data?
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Necessary Conditions

Similar to dimension one...

Suppose we have a set of market prices for calls C(wi, Ki) = pi, and there is
no arbitrage, then the function C(w, K) satisfies:

• C(w, K) positive

• C(w, K) decreasing in K, increasing in w

• C(w, K) jointly convex in (w, K)

• C(wi, Ki) = pi and C(0) = S

This is still tractable in dimension n as a linear program.
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Sufficient?

A key difference with dimension one: Bertsimas & Popescu (2002) show that
the exact problem is NP-Hard.

• These conditions are only necessary...

• Numerical cost is minimal (small LP)

• We can show sufficiency in some particular cases

In practice: these conditions are far from being tight, how can we refine
them?
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Arrow-Debreu prices

• Arrow-Debreu: There is no arbitrage in the static market iff there is a
probability measure π such that:

C(w, K) = Eπ(wTx − K)+

• π(x) represents Arrow-Debreu state prices.

• Discretize on a uniform grid: This turns this into a linear program with mn

variables, where n is the number of assets xi and m is the number of bins.

• Numerically: hopeless. . .

• Explicit conditions derived by Henkin & Shananin (1990) (link with Radon
transform), but intractable. . .
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Tractable Conditions

• Bochner’s theorem on the Fourier transform of positive measures:

f(s) =
∫

e−i<s,x>g(x)dx with g(x) ≥ 0

m

f(s) positive semidefinite

which means testing if the matrices f(sisj) are positive semidefinite

• Can we generalize this result to other transforms? In particular:

∫

Rn
+

(wTx − K)+dπ(x)
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Harmonic Analysis on Semigroups

Some quick definitions...

• A pair (S, ·) is called a semigroup iff:

◦ if s, t ∈ S then s · t is also in S

◦ there is a neutral element e ∈ S such that e · s = s for all s ∈ S

• The dual S
∗ of S is the set of semicharacters, i.e. applications χ : S → R

such that

◦ χ(s)χ(t) = χ(s · t) for all s, t ∈ S

◦ χ(e) = 1, where e is the neutral element in S

• A function f : S → R is positive semidefinite iff for every family {si} ⊂ S

the matrix with elements f(si · sj) is positive semidefinite
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Harmonic Analysis on Semigroups

Last definitions (honest)...

• A function α is called an absolute value on S iff

◦ α(e) = 1
◦ α(s · t) ≤ α(s)α(t), for all s, t ∈ S

• A function f is bounded with respect to the absolute value α iff there is a
constant C > 0 such that

|f(s)| ≤ Cα(s), s ∈ S

• f is exponentially bounded iff it is bounded with respect to an absolute
value

Carleman type conditions on growth for moment determinacy, etc. . .
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Harmonic Analysis on Semigroups: Central Result

The central result, see Berg, Christensen & Ressel (1984) based on
Choquet’s theorem:

• the set of exponentially bounded positive definite functions is a Bauer
simplex whose extreme points are the bounded semicharacters...

• this means that we have the following representation for positive definite
functions on S:

f(s) =

∫

S∗

χ(s)dµ(χ)

where µ is a Radon measure on S
∗
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Harmonic Analysis on Semigroups: Simple Examples

• Berstein’s theorem for the Laplace transform

S = (R+,+), χx(t) = e−xt and f(t) =

∫

R+

e−xtdµ(x)

• with involution, Bochner’s theorem for the Fourier transform

S = (R,+), χx(t) = e2πixt and f(t) =

∫

R

e2πixtdµ(x)

• Hamburger’s solution to the unidimensional moment problem

S = (N,+), χx(k) = xk and f(k) =

∫

R

xkdµ(x)
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The Option Pricing Problem Revisited

What is the appropriate semigroup here?

• Basket option payoffs (wTx − K)+ are not ideal in this setting.

• Solution: use straddles: |wTx − K|

• Straddles are just the sum of a call and a put, their price can be computed
from that of the corresponding call and forward by call-put parity.

• The fact that |wTx − K|2 is a polynomial keeps the complexity low.
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Payoff Semigroup

• The fundamental semigroup S here is the multiplicative payoff semigroup
generated by the cash, the forwards and the straddles:

S = {1, x1, . . . , xn, |wT
1 x − K1|, . . . , |w

T
mx − Km|, x2

1, x1x2, . . .}

• The semicharacters are the functions χx : S → R which evaluate the
payoffs at a certain point x

χx(s) = s(x), for all s ∈ S
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The Option Pricing Problem Revisited

• The original static arbitrage problem can be reformulated as

find f

subject to f(|wT
i x − Ki|) = pi, i = 1, . . . , m

f(s) = Eπ[s], s ∈ S (f moment function)

• The variable is now f : S → R, a function that associates to each payoff s

in S, its price f(s)

• The representation result in Berg et al. (1984) shows when a (price)
function f : S → R can be represented as

f(s) = Eπ[s]
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Option Pricing: Main Theorem

If we assume that the asset distribution has a compact support included in
Rn

+, and note ei for i = 1, . . . , n + m the forward and option payoff functions
we get:

A function f(s) : S → R can be represented as

f(s) = Eν[s(x)], for all s ∈ S,

for some measure ν with compact support, iff for some β > 0:

(i) f(s) is positive semidefinite

(ii) f(eis) is positive semidefinite for i = 1, . . . , n + m

(iii)
(

βf(s) −
∑n+m

i=1
f(eis)

)

is positive semidefinite

this turns the basket arbitrage problem into a semidefinite program
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Semidefinite Programming

A semidefinite program is written:

minimize TrCX

subject to TrAiX = bi, i = 1, . . . , m

X � 0,

in the variable X ∈ Sn, with parameters C, Ai ∈ Sn and bi ∈ R for
i = 1, . . . , m. Its dual is given by:

maximize bTλ

subject to C −
∑m

i=1
λiAi � 0,

in the variable λ ∈ Rm.

Extension of interior point techniques for linear programming show how to
solve these convex programs efficiently (see Nesterov & Nemirovskii (1994),
Sturm (1999) and Boyd & Vandenberghe (2004)).
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Option Pricing: a Semidefinite Program

We get a relaxation by only sampling the elements of S up to a certain
degree, the variable is then the vector f(s) with

e = (1, x1, . . . , xn, |wT
1 x−K1|, . . . , |w

T
mx−Km|, x2

1, x1x2, . . . , |w
T
mx−Km|N)

testing for the absence of arbitrage is then a semidefinite program:

find f

subject to MN(f(s)) � 0
MN(f(ejs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=1
ek)s)

)

� 0

f(ej) = pj, for j = 1, . . . , n + m and s ∈ S

where MN(f(s))ij = f(sisj) and MN(f(eks))ij = f(eksisj)
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Conic Duality

Let Σ ⊂ A(S) be the set of polynomials that are sums of squares of
polynomials in A(S), and P the set of positive semidefinite sequences on S

• instead of the conic duality between probability measures and positive
portfolios

p(x) ≥ 0 ⇔

∫

p(x)dν ≥ 0, for all measures ν

• we use the duality between positive semidefinite sequences P and sums of
squares polynomials Σ

p ∈ Σ ⇔ 〈f, p〉 ≥ 0 for all f ∈ P

with p =
∑

i qiχsi
and f : S → R, where 〈f, p〉 =

∑

i qif(si)
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Option Pricing: Caveats

• Size: grows exponentially with the number of assets: no free lunch. . .

• In dimension 2, for spread options, this is:

(

2 + d

2

)

(k + 1)

where d is the degree of the relaxation and k the number of assets.

• Conditioning issues. . .
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Conclusion

• Testing for static arbitrage in option price data is easy in dimension one

• The extension on basket options (swaptions, etc) is NP-hard but good
relaxations can be found

• We get a computationally friendly set of conditions for the absence of
arbitrage

• Small scale problems are tractable in practice as semidefinite programs

A. d’Aspremont, INFORMS, San Francisco, Nov. 14 2005. 29



References

Berg, C., Christensen, J. P. R. & Ressel, P. (1984), Harmonic analysis on
semigroups : theory of positive definite and related functions, Vol. 100
of Graduate texts in mathematics, Springer-Verlag, New York.

Bertsimas, D. & Popescu, I. (2002), ‘On the relation between option and
stock prices: a convex optimization approach’, Operations Research
50(2), 358–374.

Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate
liabilities’, Journal of Political Economy 81, 637–659.

Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge
University Press.

Henkin, G. & Shananin, A. (1990), ‘Bernstein theorems and Radon
transform, application to the theory of production functions’, American

A. d’Aspremont, INFORMS, San Francisco, Nov. 14 2005. 30



Mathematical Society: Translation of mathematical monographs
81, 189–223.

Nesterov, Y. & Nemirovskii, A. (1994), Interior-point polynomial algorithms
in convex programming, Society for Industrial and Applied Mathematics,
Philadelphia.

Sturm, J. F. (1999), ‘Using sedumi 1.0x, a matlab toolbox for optimization
over symmetric cones’, Optimization Methods and Software
11, 625–653.

A. d’Aspremont, INFORMS, San Francisco, Nov. 14 2005. 31


