Tutorial: Algorithms for Large-Scale Semidefinite Programming

Alexandre d’Aspremont, CNRS & Ecole Polytechnique.

Support from NSF, ERC (project SIPA) and Google.
A **semidefinite program** (SDP) is written

\[
\begin{align*}
\text{minimize} & \quad \text{Tr}(CX) \\
\text{subject to} & \quad \text{Tr}(A_iX) = b_i, \quad i = 1, \ldots, m \\
& \quad X \succeq 0,
\end{align*}
\]

where \(X \succeq 0 \) means that the matrix variable \(X \in \mathbb{S}_n \) is positive semidefinite.

Its **dual** can be written

\[
\begin{align*}
\text{maximize} & \quad b^T y \\
\text{subject to} & \quad C - \sum_{i=1}^{m} y_i A_i \succeq 0,
\end{align*}
\]

which is another semidefinite program in the variables \(y \).
Classical algorithms for semidefinite programming

- Following [Nesterov and Nemirovskii, 1994], most of the attention was focused on interior point methods.
- Basic idea: Newton’s method, with efficient linear algebra to compute the Newton step (or solve the KKT system).
- Fast, and robust on small problems ($n \sim 500$).
- Computing the Hessian is too hard on larger problems. Exploiting structure (sparsity, etc.) is hard too.

Solvers

- Open source solvers: SDPT3, SEDUMI, SDPA, CSDP, . . .
- Very powerful modeling systems: CVX
Solving a MaxCut relaxation using CVX

\[
\begin{align*}
\text{max.} \quad & \text{Tr}(XC') \\
\text{s.t.} \quad & \text{diag}(X) = 1 \\
& X \succeq 0,
\end{align*}
\]

is written as follows in CVX/MATLAB

```plaintext
cvx_begin
  variable X(n,n) symmetric
  maximize trace(C*X)
  subject to
  diag(X) == 1
  X == semidefinite(n)
cvx_end
```
Introduction

Algorithms for large-scale semidefinite programming.

Structure ⇒ algorithmic choices

Examples:

- SDPs with constant trace cast as max. eigenvalue minimization problems.
- Fast projection steps.
- Fast prox or affine minimization subproblems.
- Closed-form or efficiently solvable block minimization subproblems.
- Etc. . .
Example. In many semidefinite relaxations of combinatorial problems, we can impose $\text{Tr}(X) = 1$ and solve

$$\begin{align*}
\text{maximize} & \quad \text{Tr}(CX) \\
\text{subject to} & \quad \text{Tr}(A_i X) = b_i, \quad i = 1, \ldots, m \\
& \quad \text{Tr}(X) = 1, \quad X \succeq 0,
\end{align*}$$

The dual can be written as a **maximum eigenvalue minimization** problem

$$\min \lambda_{\text{max}} \sum_{i=1}^{m} x_i A_i - b^T x$$

in the variable $x \in \mathbb{R}^m$.
Outline

- Introduction
- First-order methods
 - Subgradient methods
 - Smoothing & accelerated algorithms
 - Improving iteration complexity
- Exploiting structure
 - Frank-Wolfe
 - Block coordinate descent
 - Dykstra, alternating projection
 - Localization, cutting-plane methods
Subgradient methods

Solve

$$\min_{x \in Q} \lambda_{\text{max}}(A(x)) + c^T x$$

where $A(x) = C + \sum_{i=1}^{m} x_i A_i$, using the projected subgradient method.

Input: A starting point $x_0 \in \mathbb{R}^m$.

1. for $t = 0$ to $N - 1$ do
2. Set

$$x_{t+1} = P_Q(x_t - \gamma \partial \lambda_{\text{max}}(A(x))).$$

3. end for

Output: A point $x = (1/N) \sum_{t=1}^{N} x_t$.

Here, $\gamma > 0$ and $P_Q(\cdot)$ is the Euclidean projection on Q.
The **number of iterations** required to reach a target precision ϵ is

\[
N = \frac{D_Q^2 M^2}{\epsilon^2}
\]

where D_Q is the diameter of Q and $\|\partial \lambda_{\text{max}}(A(x))\| \leq M$ on Q.

The **cost per iteration** is the sum of

- The cost p_Q of computing the Euclidean projection on Q.
- The cost of computing $\partial \lambda_{\text{max}}(A(x))$ which is e.g. $v_1v_1^T$ where v_1 is a leading eigenvector of $A(x)$.

Computing one leading eigenvector of a dense matrix X with relative precision ϵ, using a randomly started Lanczos method, with probability of failure $1 - \delta$, costs

\[
O \left(\frac{n^2 \log(n/\delta^2)}{\sqrt{\epsilon}} \right)
\]

ciclops [Kuczynski and Wozniakowski, 1992, Th.4.2].
Subgradient methods

Solving $\min_{X \in Q} \lambda_{\text{max}}(A(x))$ using projected subgradient.

- Easy to implement.
- Very poor performance in practice. The $1/\epsilon^2$ dependence is somewhat punishing. . .

Example below on MAXCUT.
Smoothing & accelerated algorithms
[Nesterov, 2007] We can **regularize** the objective and solve

\[
\min_{x \in Q} f_\mu(x) \triangleq \mu \log \text{Tr} \exp \frac{A(x)}{\mu}
\]

for some regularization parameter \(\mu > 0 \) (\(\exp(\cdot) \) is the **matrix** exponential here).

- If we set \(\mu = \epsilon / \log n \) we get

\[
\lambda_{\text{max}}(A(x)) \leq f_\mu(x) \leq \lambda_{\text{max}}(A(x)) + \epsilon
\]

- The gradient \(\nabla f_\mu(x) \) is Lipschitz continuous with constant

\[
\frac{\|A\|^2 \log n}{\epsilon}
\]

where \(\|A\| = \sup_{\|h\| \leq 1} \|A(h)\|_2 \).
Smoothing & accelerated algorithms

- The number of iterations required to get an ϵ solution using the smooth minimization algorithm in Nesterov [1983] grows as

$$\frac{\|A\| \sqrt{\log n} \ d(x^*)}{\epsilon \sigma}$$

where $d(\cdot)$ is strongly convex with parameter $\sigma > 0$.

- The cost per iteration is (usually) dominated by the cost of forming the matrix exponential

$$\exp \left(\frac{A(x)}{\mu} \right)$$

which is $O(n^3)$ flops [Moler and Van Loan, 2003].

- Much better empirical performance.
This means that the two classical complexity options for solving

$$\min_{x \in Q} \lambda_{\text{max}}(A(x))$$

(assuming \(A(x)\) cheap)

- **Subgradient methods**

 $$O \frac{D_Q^2 (n^2 \log n + p_Q)}{\epsilon^2}$$

- **Smooth optimization**

 $$O \frac{D_Q \sqrt{\log n (n^3 + p_Q)}}{\epsilon}$$

if we pick \(\| \cdot \|_2^2\) in the prox term.
Improving iteration complexity
Approximate gradients

Approximate gradient is often enough. This means computing only a few leading eigenvectors.

Spectrum of $\exp((X - \lambda_{\text{max}}(X)I)/0.1)$ at the MAXCUT solution.
Convergence guarantees using approximate gradients: if $\tilde{\nabla} f(x)$ is the approximate gradient oracle, we require

$$|\langle \tilde{\nabla} f(x) - \nabla f(x), y - z \rangle| \leq \delta \quad x, y, z \in Q,$$

(the condition depends on the diameter of Q). For example, to solve

\[
\begin{align*}
\text{minimize} \quad & \lambda_{\max}(A + X) \\
\text{subject to} \quad & |X_{ij}| \leq \rho
\end{align*}
\]

we only need to compute the j largest eigenvalues of $A + X$, with j such that

$$\left(\sum_{j} \lambda_{i} \right) + \sqrt{\frac{\sum_{j} \lambda_{i}}{\rho n}} \leq \delta.$$

The impact of the diameter makes these conditions quite conservative.
Approximate gradients

Other possible conditions (often less stringent), when solving

$$\min_{x \in Q} \max_{u \in U} \Psi(x, u)$$

If u_x is an approximate solution to $\max_{u \in U} \Psi(x, u)$, we can check $V_i(u_x) \leq \delta$

$$V_1(u_x) = \max_{u \in U} \nabla_2 \Psi(x, u_x)^T(u - u_x)$$

$$V_2(u_x) = \max_{u \in U} \Psi(x, u) - \Psi(x, u_x) + \kappa \|u - u_x\|^2 / 2$$

$$V_3(u_x) = \max_{u \in U} \Psi(x, u) - \Psi(x, u_x)$$

where

$$V_1(u_x) \leq V_2(u_x) \leq V_3(u_x) \leq \delta$$

The target accuracy δ on the oracle is a function of the target accuracy ϵ.

See [d'Aspremont, 2008a], [Devolder, Glineur, and Nesterov, 2011] for further details.
Stochastic Smoothing

Max-rank one Gaussian smoothing. Suppose we pick $u_i \in \mathbb{R}^n$ with i.i.d. $u_{ij} \sim \mathcal{N}(0, 1)$ and define

$$f(X) = \mathbb{E} \max_{i=1,\ldots,k} \lambda_{\max}(X + (\epsilon/n)u_i u_i^T)$$

- Approximation results are preserved up to a constant $c_k > 0$

$$\lambda_{\max}(X) \leq \mathbb{E}[\lambda_{\max}(X + (\epsilon/n)uu^T)] \leq \lambda_{\max}(X) + c_k \epsilon$$

- The function $f(X)$ is smooth and the Lipschitz constant of its gradient is bounded by

$$L_f \leq \mathbb{E} \frac{n}{2\epsilon} \min_{i=1,\ldots,k} \frac{1}{u_{i,1}^2} \leq C_k \frac{n}{\epsilon}$$

where $C_k = \frac{1}{\sqrt{2(k-2)}}$, is finite when $k \geq 3$.

- Computing $\max_{i=1,\ldots,k} \lambda_{\max}(X + (\epsilon/n)u_i u_i^T)$ costs $O(kn^2 \log n)$.

A. d'Aspremont
HPOPT, Delft, June 2012. 19/51
Stochastic Smoothing

$$\min_{x \in Q} \Psi(x) \triangleq f(x) + h(x)$$

with the following assumptions

- $f(x)$ has Lipschitz gradient with constant L and $h(x)$ is Lipschitz with constant M,
- we have a stochastic oracle $G(x, \xi_t)$ for the gradient, which satisfies

$$\mathbb{E}[G(x, \xi_t)] = g(x) \in \partial \Psi(x) \quad \text{and} \quad \mathbb{E}[\|G(x, \xi_t) - g(x)\|_*^2] \leq \sigma^2$$

After N iterations, the iterate x_{N+1} satisfies

$$\mathbb{E} \left[\Psi(x_{N+1}^{ag}) - \Psi^* \right] \leq \frac{8LD_\omega^2}{N^2} + \frac{4D_{\omega,Q} \sqrt{4M^2 + \sigma^2}}{\sqrt{N}}$$

which is optimal. Additional assumptions guarantee convergence w.h.p.
Maximum Eigenvalue Minimization

For maximum eigenvalue minimization

- We have $\sigma \leq 1$, but we can reduce this by averaging q gradients, to control the tradeoff between smooth and non-smooth terms.
- If we set $q = \max\{1, D_Q/(\epsilon \sqrt{n})\}$ and $N = 2D_Q \sqrt{n}/\epsilon$ we get the following complexity picture

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Num. of Iterations</th>
<th>Cost per Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsmooth alg.</td>
<td>$O \frac{D_Q^2}{\epsilon^2}$</td>
<td>$O(p_Q + n^2 \log n)$</td>
</tr>
<tr>
<td>Smooth stochastic alg.</td>
<td>$O \frac{D_Q \sqrt{n}}{\epsilon}$</td>
<td>$O(p_Q + \max{1, \frac{D_Q}{\epsilon \sqrt{n}}} n^2 \log n)$</td>
</tr>
<tr>
<td>Smoothing alg.</td>
<td>$O \frac{D_Q \sqrt{\log n}}{\epsilon}$</td>
<td>$O(p_Q + n^3)$</td>
</tr>
</tbody>
</table>
Approximate gradients reduce empirical complexity. No \textit{a priori} bounds on iteration cost.

More efficient to run \textit{a lot of cheaper iterations}, everything else being equal.

Many open questions. . .

Not clear if rank one perturbations achieve the optimal complexity/smoothness tradeoff. Can we replicate the exponential smoothing stochastically?

Non monotonic line search for stochastic optimization?

Outline

- Introduction
- First-order methods
 - Subgradient methods
 - Smoothing & accelerated algorithms
 - Improving iteration complexity
- Exploiting structure
 - Frank-Wolfe
 - Block coordinate descent
 - Dykstra, alternating projection
 - Localization, cutting-plane methods
Frank-Wolfe
Frank-Wolfe

- Classical first order methods for solving

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C,
\end{align*}
\]

in \(x \in \mathbb{R}^n \), with \(C \subset \mathbb{R}^n \) convex, relied on the assumption that the following \textbf{prox subproblem} could be solved efficiently

\[
\begin{align*}
\text{minimize} & \quad y^T x + d(x) \\
\text{subject to} & \quad x \in C,
\end{align*}
\]

in the variable \(x \in \mathbb{R}^n \), where \(d(x) \) is a strongly convex function.

- The Franke-Wolfe alg. assumes that the \textbf{affine minimization subproblem}

\[
\begin{align*}
\text{minimize} & \quad d^T x \\
\text{subject to} & \quad x \in C
\end{align*}
\]

can be solved efficiently for any \(y \in \mathbb{R}^n \).
Frank-Wolfe

Frank and Wolfe [1956] algorithm. See also [Jaggi, 2011].

Input: A starting point $x_0 \in C$.

1: for $t = 0$ to $N - 1$ do
2: Compute $\nabla f(y_k)$
3: Solve the affine minimization subproblem

$$\begin{align*}
\text{minimize} & \quad x^T \nabla f(x_k) \\
\text{subject to} & \quad x \in C
\end{align*}$$

in $x \in \mathbb{R}^n$, call the solution x_d.

4: Update the current point

$$x_{k+1} = x_k + \frac{2}{k+2} (x_d - x_k)$$

5: end for

Output: A point x_N.

Note that all iterates are feasible.
■ **Complexity.** Assume that f is differentiable. Define the curvature C_f of the function $f(x)$ as

$$C_f \triangleq \sup_{s, x \in M, \alpha \in [0,1], \atop y = x + \alpha(s-x)} \frac{1}{\alpha^2} (f(y) - f(x) - \langle y - x, \nabla f(x) \rangle).$$

The Franke-Wolfe algorithm will then produce an ϵ solution after

$$N_{\text{max}} = \frac{4C_f}{\epsilon}$$

iterations.

■ Can use line search at each iteration to improve convergence.
Stopping criterion. At each iteration, we get a lower bound on the optimum as a byproduct of the affine minimization step. By convexity,

\[f(x_k) + \nabla f(x_k)^T(x_d - x_k) \leq f(x), \quad \text{for all } x \in C \]

and finally, calling \(f^* \) the optimal value of problem, we obtain

\[f(x_k) - f^* \leq \nabla f(x_k)^T(x_k - x_d). \]

This allows us to bound the suboptimality of iterate at no additional cost.
Example. Semidefinite optimization with bounded trace.

\[
\begin{align*}
\text{minimize} & \quad f(X) \\
\text{subject to} & \quad \text{Tr}(X) = 1, \ X \succeq 0,
\end{align*}
\]

in the variable \(X \in \mathbf{S}_n \).

The affine minimization subproblem is written

\[
\begin{align*}
\text{minimize} & \quad \text{Tr}(\nabla f(X)Y) \\
\text{subject to} & \quad \text{Tr}(Y) = 1, \ Y \succeq 0,
\end{align*}
\]

in the variable \(Y \in \mathbf{S}_n \), and can be solved by a partial eigenvalue decomposition, with the optimum value equal to \(\lambda_{\min}(\nabla f(X)) \) [cf. Jaggi, 2011]. Each iteration is a \textbf{rank one} update.
Block coordinate descent methods
Coordinate Descent

We seek to solve

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

in the variable \(x \in \mathbb{R}^n \), with \(C \subset \mathbb{R}^n \) convex.

- Our main assumption here is that \(C \) is a product of simpler sets. We rewrite the problem

\[
\begin{align*}
\text{minimize} & \quad f(x_1, \ldots, x_p) \\
\text{subject to} & \quad x_i \in C_i, \quad i = 1, \ldots, p
\end{align*}
\]

where \(C = C_1 \times \ldots \times C_p \).

- This helps if the minimization subproblems

\[
\min_{x_i \in C_i} f(x_1, \ldots, x_i, \ldots, x_p)
\]

can be solved very efficiently (or in closed-form).
Coordinate Descent

Algorithm. The algorithm simply computes the iterates $x^{(k+1)}$ as

$$x_i^{(k+1)} = \arg\min_{x_i \in C_i} f(x_1^{(k)}, \ldots, x_i^{(k)}, \ldots, x_p^{(k)})$$

$$x_j^{(k+1)} = x_j^{(k)}, \quad j \neq i$$

for a certain $i \in [1, p]$, cycling over all indices in $[1, p]$.

Convergence.

- Complexity analysis similar to coordinate-wise gradient descent (or steepest descent in ℓ_1 norm).
- Need $f(x)$ strongly convex to get explicit complexity bound [Nesterov, 2010].
Example. **Covariance selection** [d’Aspremont et al., 2006]. The dual of the covariance selection problem is written

\[
\begin{align*}
\text{maximize} & \quad \log \det (S + U) \\
\text{subject to} & \quad \|U\|_\infty \leq \rho \\
& \quad S + U \succ 0
\end{align*}
\]

Let \(C = S + U \) be the current iterate, after permutation we can always assume that we optimize over the last column

\[
\begin{align*}
\text{maximize} & \quad \log \det \left(C_{11} + C_{12} + u \right) \\
\text{subject to} & \quad \|u\|_\infty \leq \rho \\
& \quad C_{12} \text{ is the last column of } C \text{ (off-diag.)}
\end{align*}
\]
We can use the block determinant formula

\[
\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B)
\]

to show that each row/column iteration reduces to a simple box-constrained QP

\[
\begin{align*}
\text{minimize} & \quad u^T(C^{11})^{-1}u \\
\text{subject to} & \quad \|u\|_\infty \leq \rho
\end{align*}
\]

the dual of this last problem is a LASSO optimization problem.
Dykstra, alternating projection
Dykstra, alternating projection

We focus on a simple feasibility problem

\[\text{find } x \in C_1 \cap C_2 \]

in the variable \(x \in \mathbb{R}^n \) with \(C_1, C_2 \subset \mathbb{R}^n \) two convex sets.

We assume now that the projection problems on \(C_i \) are easier to solve

\[
\begin{align*}
\text{minimize} & \quad \|x - y\|_2 \\
\text{subject to} & \quad x \in C_i
\end{align*}
\]

in \(x \in \mathbb{R}^n \).
Dykstra, alternating projection

Algorithm (alternating projection)

- Choose $x_0 \in \mathbb{R}^n$.
- For $k = 1, \ldots, k^{\text{max}}$ iterate
 1. Project on C_1
 \[x_{k+1/2} = \arg\min_{x \in C_1} \|x - x_k\|_2 \]
 2. Project on C_2
 \[x_{k+1} = \arg\min_{x \in C_2} \|x - x_{k+1/2}\|_2 \]

Convergence. We can show $\text{dist}(x_k, C_1 \cap C_2) \to 0$. Linear convergence provided some additional regularity assumptions. See e.g. [Lewis, Malick, et al., 2008]
Dykstra, alternating projection

Algorithm (Dykstra)

- Choose $x_0, z_0 \in \mathbb{R}^n$.
- For $k = 1, \ldots, k_{max}$ iterate
 1. Project on C_1
 \[x_{k+1/2} = \arg\min_{x \in C_1} \|x - z_k\|_2 \]
 2. Update
 \[z_{k+1/2} = 2x_{k+1/2} - z_k \]
 3. Project on C_2
 \[x_{k+1} = \arg\min_{x \in C_2} \|x - z_{k+1/2}\|_2 \]
 4. Update
 \[z_{k+1} = z_k + x_{k+1} - x_{k+1/2} \]

Convergence. Usually faster than simple alternating projection.
Dykstra, alternating projection

Example. **Matrix completion** problem, given coefficients b_{ij} for $(i, j) \in S$

Find X

such that $X_{ij} = b_{ij}$, $(i, j) \in S$

$X \succeq 0$,

in the variable $X \in S_n$.

Blue: alternating projection. Red: Dykstra. (from EE364B)
Dykstra, alternating projection

Countless variations. . .

- Proximal point algorithm
- Douglas-Rachford splitting
- Operator splitting methods
- Bregman iterative methods
- . . .
Localization methods
Localization methods

From EE364B course at Stanford...

- **Function** $f : \mathbb{R}^n \rightarrow \mathbb{R}$ convex (and for now, differentiable)
- **problem:** minimize f
- **oracle model:** for any x we can evaluate f and $\nabla f(x)$ (at some cost)

Main assumption: **evaluating the gradient is very expensive.**

Convexity means $f(x) \geq f(x_0) + \nabla f(x_0)^T(x - x_0)$, so

$$\nabla f(x_0)^T(x - x_0) \geq 0 \quad \Rightarrow \quad f(x) \geq f(x_0)$$

i.e., all points in halfspace $\nabla f(x_0)^T(x - x_0) \geq 0$ are **worse** than x_0
Localization methods

- \mathcal{P}_k gives our uncertainty of x^* at iteration k
- want to pick $x^{(k)}$ so that \mathcal{P}_{k+1} is as small as possible
- clearly want $x^{(k)}$ near center of $\mathcal{C}^{(k)}$
Localization methods

analytic center of polyhedron $\mathcal{P} = \{ z \mid a_i^T z \leq b_i, \ i = 1, \ldots, m \}$ is

$$AC(\mathcal{P}) = \arg\min_z \chi^n - \sum_{i=1}^m \log(b_i - a_i^T z)$$

ACCPM is localization method with next query point $x^{(k+1)} = AC(\mathcal{P}_k)$ (found by Newton’s method)
Localization methods

- let x^* be analytic center of $\mathcal{P} = \{z \mid a_i^T z \preceq b_i, \ i = 1, \ldots, m\}$
- let H^* be Hessian of barrier at x^*,

$$H^* = -\nabla^2 \sum_{i=1}^{\infty} \log(b_i - a_i^T z) = \frac{a_i a_i^T}{(b_i - a_i^T x^*)^2}$$

- then, $\mathcal{P} \subseteq \mathcal{E} = \{z \mid (z - x^*)^T H^*(z - x^*) \leq m^2\}$ (not hard to show)
- let $\mathcal{E}^{(k)}$ be outer ellipsoid associated with $x^{(k)}$
- a lower bound on optimal value p^* is

$$p^* \geq \inf_{z \in \mathcal{E}^{(k)}} f(x^{(k)}) + g^{(k)T}(z - x^{(k)})$$

$$= f(x^{(k)}) - m_k \frac{p}{g^{(k)T}H^{(k)} - 1 g^{(k)}}$$

(m_k is number of inequalities in \mathcal{P}_k)
- gives simple stopping criterion $p \frac{g^{(k)T}H^{(k)} - 1 g^{(k)}}{\leq \epsilon/m_k}$
Localization methods

ACCPM algorithm.

Input: Polyhedron \mathcal{P} containing x^*.
1. **for** $t = 0$ to $N - 1$ **do**
2. Compute x^*, the analytic center of \mathcal{P}, and the Hessian H^*.
3. Compute $f(x^*)$ and $g \in \partial f(x^*)$.
4. Set $u := \min\{u, f(x^*)\}$ and $l := \max\{l, f(x^*) - m g^T H^{*-1} g\}$.
5. Add inequality $g^T(z - x^*) \leq 0$ to \mathcal{P}.
6. **end for**

Output: A localization set \mathcal{P}.
ACCPM adds an inequality to \mathcal{P} each iteration, so centering gets harder, more storage as algorithm progresses

Schemes for **dropping constraints** from $\mathcal{P}^{(k)}$:

- remove all redundant constraints (expensive)
- remove some constraints known to be redundant
- remove constraints based on some relevance ranking
Localization methods

Example. Classification with indefinite kernels. [Luss and d’Aspremont, 2008]

Solve

\[
\min \begin{cases} \{K \succeq 0, \|K - K_0\|_F^2 \leq \beta\} \end{cases} \quad \max \begin{cases} \{\alpha^T y = 0, 0 \leq \alpha \leq C\} \end{cases} \quad \alpha^T e - \frac{1}{2} \text{Tr}(K(Y\alpha)(Y\alpha)^T)
\]

in the variables \(K \in S^n \) and \(\alpha \in \mathbb{R}^n \). This can be written

\[
\text{maximize} \quad \alpha^T e - \frac{1}{2} \max \left\{ \sum_i \max(0, \lambda_i(K_0 + (Y\alpha)(Y\alpha)^T/4\rho)) (\alpha^TYv_i)^2 \middle| \alpha^Ty = 0, 0 \leq \alpha \leq C \right\}
\]

subject to \(\alpha^Ty = 0, 0 \leq \alpha \leq C \)

in the variable \(\alpha \in \mathbb{R}^n \).

Computing the gradient at each iteration is expensive, but the feasible set is a Polyhedron.
Localization methods

Convergence plots for ACCPM (left) and projected gradient method (right) on random subsets of the USPS-SS-3-5 data set (average gap versus iteration number, dashed lines at plus and minus one standard deviation).
Conclusion

Countless other methods not discussed here. Some with no convergence guarantees.

- Low Rank semidefinite programming. (Choose a factorization $X = VV^T$ and solve in V). [Burer and Monteiro, 2003, Journée et al., 2008]

- Row by row methods. Some solver variants for MAXCUT require only matrix vector products. [Wen et al., 2009]

Some recent activity on subsampling.

- Variational inequality formulation [Juditsky et al., 2008, Baes et al., 2011].

- Columnwise or elementwise matrix subsampling [d’Aspremont, 2008b].
Conclusion

Large-scale semidefinite programs.

- First-order algorithms for solving (mostly) generic problems.
- For more specialized problems

Structure \Rightarrow algorithmic choices

What subproblem can you solve easily? Which algorithm exploits it best?
References

